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1. Introduction 

 

Nowadays, the trend for deploying real-time embedded 

systems aims towards distributed manner (Iarovyi et al. 

2015). The distribution and parallelism in the design of real-

time embedded systems increase engineering challenges 

and require a new methodological system based on 

middleware Mohammed et al. (2018a). With this strategy, 

Brinkschulte et al. (2001) developed a middleware that 

supports the design of heterogeneous distributed real-time 
systems and allows the use of small microcontrollers as 

calculation nodes.  

Some systems and architectures for real time process 

monitoring have been designed and implemented in 

embedded platforms and frameworks such as those reported 

in AitMou et al. (2018) and Salman et al. (2019). However, 

some of them have opted for running on PCs (Mohammed 

et al. 2018b). These systems have begun to evolve, for 

example, based on FPGA (Field Programmable Gate Array) 

solutions capable of producing the same results but with 

lower computational costs (Hashmi et al. 2014, Humphreys  
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et al. 2014) and with a reduction of energy consumption 

(Castaño et al. 2010). Due to the cost-effectiveness of the 

new generation of devices powered by microcontrollers, it 

is economically feasible to embed a number of these 

devices into a machine placing the information sources near 

to the process to form a network of distributed smart 

sensors (Mönks et al. 2015). 

Machine tools equipped with Computerized Numerical 

Control (CNC) are the cornerstones of the manufacturing 

industry (Guerra et al. 2019). Therefore, machining 
processes are the most important operations. Milling, 

drilling and turning cover a wide variety of different 

operations and machines on scales from micro scale (0.01-

0.5 mm of cutting tool diameter) up to macro scale (> 0.5 

mm of cutting tools diameter). These processes are essential 

for producing high quality parts with complex shapes 

including ramps, contours, pocket, holes, etc., at high 

removal material rate. Nowadays, several manufacturing 

industries in aeronautics, health and space sectors demand 

high productivity with very high quality of the products. 

The quality monitoring of processes and components has 
been centered on tool wear and breakage, surface 

roughness, chattering and vibrations (Ramezani et al. 2019), 

among others (Park et al. 2018).  

Some complex manufacturing processes, such as micro-

mechanical machining operations, capable of component 
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Abstract.  Monitoring of complex processes faces several challenges mainly due to the lack of relevant sensory information or 

insufficient elaborated decision-making strategies. These challenges motivate researchers to adopt complex data processing and 
analysis in order to improve the process representation. This paper presents the development and implementation of quality 

monitoring framework based on a model-driven approach using embedded artificial intelligence strategies. In this work, the 
strategies are applied to the supervision of a microfabrication process aiming at showing the great performance of the framework 

in a very complex system in the manufacturing sector. The procedure involves two methods for modelling a representative 
quality variable, such as surface roughness. Firstly, the hybrid incremental modelling strategy is applied. Secondly, a generalized 

fuzzy clustering c-means method is developed. Finally, a comparative study of the behavior of the two models for predicting a 
quality indicator, represented by surface roughness of manufactured components, is presented for specific manufacturing 

process. The manufactured part used in this study is a critical structural aerospace component. In addition, the validation and 
testing are performed at laboratory and industrial levels, demonstrating proper real-time operation for non-linear processes with 

relatively fast dynamics. The results of this study are very promising in terms of computational efficiency and transfer of 
knowledge to manufacturing industry. 
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miniaturization, are highly demanded especially in 

applications related to medical instrumentation, aerospace 

engineering and computer manufacturing, among others 

(Venkatesh et al. 2017). More acute difficulties arise due to 

the increased accuracy of manufactured parts and the 
decrease in overall part dimensions and cutting tool 

diameters. Regarding monitoring, it is nearly impossible for 

expert operators to monitor micro-machining operations by 

means of visual inspection or audible signals alone due to 

the dimensions of tools, chips, burrs and the amount of 

lubricant that is used (Kiswanto et al. 2014. Muhammad et 

al. 2018, Ranjan et al. 2020, Villalonga et al. 2020). 

Moreover, the mechanical, thermal and electrical properties 

of certain strategic materials such as tungsten-copper alloys 

raise other problems, such as abrasive wear mechanism, 

deterioration in tool geometry, deterioration of surface 
quality and burr formation (Beruvides et al. 2013, Erçetin et 

al. 2018). 

One way to address some scientific and technical 

challenges that arise in micro-milling operations is by 

designing real-time monitoring systems that employs 

special sensors. The foundation of any reliable monitoring 

system is necessarily comprise of an efficient and if 

possible low-cost sensorial system with fast signal 

processing methods and low-cost computational strategies 

that are capable of relating measured signals with relevant 

information on the process status (Beruvides et al. 2014a, b, 

c). A multi-objective optimization strategy to integrate 
sensors data in efficient and simple computational 

procedure based on improved cross-entropy method is 

proposed by (Haber et al. 2017). More recently and focused 

on micro-scale processes, a system has been developed for 

tool condition monitoring in micro-milling processes by 

(Jemielniak et al. 2008). 

Even though the use of multiple sensors to monitor 

micro-milling contributes to the robustness and reliability of 

the process (Xu et al. 2019), their use also increases cost, 

wiring and computational processing. Nevertheless, the 

literature has also reported recent research on tool condition 
monitoring in milling processes by means of a single sensor.  

For example, interesting results have been reported on a 

single sensor that measures the current consumed by the 

feed drive (Sevilla-Camacho et al. 2011, Gao 2012) or by 

an acoustic emission sensor (Yen et al. 2013). However, a 

tradeoff between the amount of sensory information, 

sensitivity at high frequencies and cost in relation to other 

sensors (acoustic emission, cutting force, etc.) is hardly 

straightforward. The unique characteristics of vibration 

signals and vibration sensors should therefore be explored 

and studied for the monitoring of micro-milling systems 

(Huang et al. 2008). 
Therefore, from the best of authors’ knowledge, the 

main contribution of this work is a method for developing 

and implementing a distributed, modular and network-based 

framework with embedded model-driven strategies for real-

time quality monitoring of processes, specifically micro-

scale machining processes. Two AI-based strategies are 

studied and applied for monitoring the surface roughness by 

predictive models as follows: The hybrid incremental 

modelling with optimal parameters from the Simulated 

Annealing method (HIM-SA), and a Generalized Fuzzy 

Clustering C-Means method which parameters fitted by a 

Backpropagation error Procedure (GFCM-BP). In addition, 

the proposed method also takes into account the integration 

other essential procedures such cutting states and early tool 
breakage detection. The embedded model-driven approach 

is very challenging from computational viewpoint in real-

time adjustment and synchronization. The complexity of 

manufacturing processes and the cross-correlation of 

variables influencing on surface quality imply that these 

methods should run simultaneously in real time with 

parallel threads with different cycle time and priority (Lee 

et al. 2018). 

For a better understanding, this paper is organized as 

follows. After this introduction, a review of the state-of-art 

considering some works related to this research is 
presented. 

Later, the implementation, both software and hardware, 

of the system for intelligent quality monitoring is described. 

Next, the two computational intelligence methods for 

surface roughness modelling are presented in section 4. 

Then, the suitability study on integrating and real-time 

running of these methods in parallel is carried out and 

presented. An industrial application in manufacturing 

company with the goal of experimentally validating the 

proposed system is also presented. Finally, some 

conclusions and future research steps are addressed. 

 
 

2. Related works 
 

Up to date, a wide range of conventional methods (so 

called to differentiate them from intelligent techniques) has 

been used for the design of monitoring and supervision 

systems (Yi et al. 2015). The interface and final result of the 

monitoring strategy and quality control procedure can be 

delivered directly or modified by embedded algorithms that 

convert a high volume of real time data into useful 

information or recommendation in a more precise and 
understandable format by the operator (Beruvides et al. 

2014a, b, c). 

A typical embedded system is usually organized and 

structured in modules for embedded algorithms, a module 

for recording states, a module for data storage or database 

and modules for human-machine interaction and user 

interface among others (Lim 2019). The latter arises due to 

the nature of embedded systems that require computer 

components to interact with the external world, in what is 

called Human-Machine Interaction (HMI) (Lipiński and 

Majewski 2015). Therefore, real-time and embedded 

systems have a number of significant characteristics. The 
reader may find further information in Reichenbach et al. 

(2014). 

Complex processes such as micro-scale manufacturing 

processes are characterized by time variant and non-linear 

behavior, producing different undesirable results and 

unavoidable operation states of the system. The influence of 

disturbances is one of the main disadvantages to yield a 

controlled behavior of the system in an optimal operating 

state. Therefore, AI-based real-time monitoring procedures  
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and computational architectures arise as an attempt to 

guarantee the quality of the system’s response, in the face of 

any adverse situation or disturbances. However, sensor data 

measurement and processing of useful knowledge is a 

complex task since large amount of raw data from the 
sensors should be analyzed in real time and constantly 

updated (Fiol-Roig 2004). Accordingly, if the required time 

response of tasks and methods for quality monitoring is 

very challenging, a fast real-time updating of the 

information is required. In addition, high quality 

information from real time sensor data is needed. Therefore, 

there is clear tendency towards the use of alternative 

strategies such as those described below and reported in the 

literature. Artificial intelligence-based methods become an 

alternative to emulate the behavior of complex processes 

that require an accurate and complex knowledge 
representation (Turing 2009).  

Table 1 summarizes some of the relevant AI strategies, 

in which several sensors are applied to monitoring some 

complex processes, mainly in real-time. From this analysis 

and taken into account common characteristics, some new 

potential applications can emerge. However, the results of  

 

 

 

 

applying traditional strategies have not met some 

expectations but instead have generated many undesired 

results and false alarms since many times they are 

supported on exact mathematical models or linear models of 

the process such as differential equations, transfer functions 
and state equations. 

To further illustrate applications of AI techniques for 

monitoring micro manufacturing processes, Table 2 shows 

some reports specifying the type of microfabrication 

process and the specific modelled or monitored variable. In 

summary, the review is focused on computational 

intelligence techniques by analyzing its evolution from its 

beginnings to current trends. For example, in fuzzy logic- 

based approaches, the focus is on fuzzy clustering methods 

because of the worldwide and successful applications. 

Additionally, the review also considers some meta-heuristic 
search methods, such as simulated annealing and cross 

entropy methods essential for tuning some algorithms. The 

parametrization of AI-based methods is the main bottleneck 

for industrialization quality monitoring and control 

strategies. Other strategies have not been considered in this 

study due to the need of deterministic real time require- 

Table 1 AI-based strategies for quality monitoring and real-time systems 

Technique and application Author 

Probabilistic computing, bayesian networks 

Modelling and monitoring 
Ma et al. (2019), Wang et al. (2019), Constantinou et al. (2016), Zhang et al. (2019) 

Artificial Neural Networks (ANN) 
Modelling and monitoring 

Hoang and Kang (2019), Stetco et al. (2019), Yu and Xi (2009), 
Onat and Gul (2018), Mosavi et al. (2018) 

Fuzzy Logic (FL) 
Modelling and monitoring 

Zoroglu and Turkeli (2016) 

Hybrid neuro-fuzzy systems. 
Modelling and monitoring. 

Choi et al. (2016), Kothamasu and Huang (2007), Waewsak et al. (2010), Kamel et al. (2015), 
Zarkogianni et al. (2015), Dzakpasu et al. (2015), Azmi (2015), Gajate et al. (2010) 

Evolutionary algorithms, hybridization. 

Modelling and monitoring 
Di Francescomarino et al. (2018), Li et al. (2010), Beruvides et al. (2017) 

State machines and decision-making. 
Modelling 

Foukarakis et al. (2014) 

Smart embedded system 
(i.e., ANN, FL, among others). Supervision 

Silva Junior et al. (2015), Kryjak et al. (2018), La Fe-Perdomo et al. (2019) 

Real-time and runtime architectures. 
Supervision 

Treutterer et al. (2014), Haber et al. (2015), Flouri et al. (2012) 
 

Table 2 AI techniques in the supervision of micro manufacturing processes 

Modelling, monitoring and supervision Related to Authors 

ANFIS model for microplate and micromachining by EDM Surface quality Suganthi et al. (2013) 

ANFIS model for micro turning Tool and chip Palani et al. (2013) 

Artificial bee colonies for optimization of  
electro-chemical micromachining processes 

Tool, surface and chip Samanta and Chakraborty (2011) 

ANN propagation backward for prediction of EDM process Hole quality Rajesh Kumar et al. (2014) 

Fuzzy logic for optimizing the response of  
multiple processes in electro-chemical micromachining 

Chip and tolerance Alakesh (2012) 

Fuzzy-genetic system for modelling micro drilling process Thrust force Beruvides et al. (2014a, b, c) 

Estimated distribution functions for optimizing micro drilling process Thrust force Beruvides et al. (2016b) 

ANN to predict thrust force micro milling processes Burr Zhu et al. (2011) 
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Fig. 1 Flow chart of the main program of the monitoring 
system 

 

 

ments. For this reason, methods and computational 

architectures based on edge computing emerges as a 

potential solution with connectivity and distributed 

processing capabilities. 

 

 

3. Framework description for intelligent monitoring 
 
As it was already mentioned above, the main goal of this 

work is to monitor the final quality of the manufactured 

components or parts by estimating surface roughness from 

vibration signals and cutting parameters information. 

Surface roughness is an essential feature in quality control 

defined by the deviation in the direction of the normal 

vector of a real surface from its ideal form. Because the 

roughness measurement is an offline and post process 

procedure, being able to estimate this value online brings a 

series of benefits in terms of time and cost reduction in 

manufacturing lines, energy efficiency, unnecessary wear of 
tools and machines, etc.  

In addition, the challenge is to integrate AI-based model 

for predicting the surface roughness with other strategies 

such as cutting states detection and tool breakage 

prediction. The adjustment and synchronization of these 

strategies is not straightforward because they are cross-

correlated influencing on surface quality and should run 

simultaneously in real time with parallel threads. For 

example, early tool breakage detection is a very fast task 

(miliseconds in micro-scale mechanical machining) that is 

essential to surface quality and to avoid part damage and re-

manufacturing. 
Nowadays, there is not precise mathematical framework 

to estimate the surface roughness exactly and Artificial 

Intelligence has demonstrated to be an alternative tool for 

intelligent monitoring. In this section, the design and 

implementation of an intelligent monitoring system and the 

 

Fig. 2 Execution threads in parallel of the main loop 

 

 

corresponding framework, software and hardware, for 

quality control is proposed. 

 

3.1 Software architecture 
 

For the realization of the system, an application 

framework is developed in G-code and in high-level C 

language using the LabVIEW®  2017 graphic environment. 

The main program is implemented in the graphic 
environment, which includes the user interface, the signal 

acquisition from sensors via PXI-6259 acquisition card, the 

processing of data to feed the socket modules of decisions 

and estimation, and other associated tasks, such as reading 

vibration signals, screen refresh, store on disk and 

communication with Computerized Numerical Control 

(CNC) server. It is also important to highlight that the 

modules for decision-making on the cutting state and for the 

estimation of surface roughness have been developed in 

language C (see Sections 3.1.1 and 3.1.2). 

The main program is organized in a structure stacked in 
frames. Each frame contains a functional group of actions, 

and the frames are executed successively in a predefined 

order. After the last execution, the system returns to the 

beginning. In this way, the application runs continuously, 

allowing monitoring long micromachining operations. 

The main operating core of the program consists of a 

series of loops or threads that run in parallel (see Fig. 1). 

Each loop performs a different function, with an associated 

clock frequency according to the operations it performs. 

Information between loops is transmitted using FIFO (First 

In First Out) stack. This technology of data transfer between 

threads, allows access within a loop to the information 
generated in another, without loss of information and 

deterministically. 

Fig. 2 shows the main monitoring task, which 

constitutes the main operating core of the program and 

consists of a series of loops or threads running in parallel. 

The different wires are interconnected, either through data 

buse s,  digi ta l  signals,  event s and control  and 

synchronization signals. There is a thread in charge of 

program control and synchronization of the other threads, 

which includes the real-time clock. On the left side, we find 

the input wires that perform the acquisition and capture of 
data, both digital and analog signals. Then the methods,  
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Table 3 Time table of the threads 

Thread of execution  Priority 
Cycle time  
(x = 50 µs) 

Detection of cutting states  1500 5x 

Reading vibration signals 100 100x 

Roughness estimation 100 1000x 

Screen refresh 50 10000x 

Store on disk 25 1000x 

End monitoring 100 20000x 

Communication with CNC server 100 300x 
 

 

 

which are located at the center, are activated by event from 

other methods. In the particular case developed in this 

work, the methods that have been embedded in the software 

platform are the surface roughness estimation and cutting 

detection. Finally, user interface and database present the 

information to the user or persists the knowledge for future 

utilization. 
Table 3 lists the different threads of the main program. 

Its relative priority is detailed as well as the execution time 

of the cycle. The priority is used by the operating system 

when there are conflicting tasks in order to decide which 

thread runs first and which one is waiting to continue its 

execution. Cycle times are referred to a common time base 

of 50 microseconds and therefore, times in the table are 

multiples of this time base. 

In addition, it is important to highlight that functions 

implementing the model-based monitoring framework are 

encapsulated in Dynamic Link Libraries (DLL). The 
implementation of the embedded methods, model-based 

roughness estimation and the cutting states detection, will 

be as computationally efficient as possible in order to 

execute the framework in real-time. The two methods to be 

embedded are the following. 

 

 

3.1.1 Method for cutting monitoring and breakage 
detection in the micromachining process 

The monitoring of the cutting states and tool breakage 

detection constitutes one of the execution threads of the 

monitoring system. The design and implementation of the 
smart sensor is reported in Castaño et al. (2015a, 2017). 

This task is configured to have the highest priority in the 

whole system When the high precision requirements for 

monitoring cutting operations are specified. In addition, this 

enables determining precisely the changes that occur 

between the different states of the cutting operation and it 

will be enough accurate when each change of the average 

roughness value per operation is estimated. 

 

3.1.2 Method for predicting surface roughness 
The module for predicting surface roughness in micro 

milling operations is included in the monitoring system. 

During this loop, inputs that are defined for the roughness 

model are calculated (see Section 3) and the call to the 

function embedded in the DLL library is made. The model 

parameters are previously loaded, before the beginning of 

the state monitoring of the cutting operations. 

From the value estimated by the roughness model, the 

estimation error is calculated according to the average 

percentage error obtained during the roughness model 

training. This data is part of the configuration of the 

monitoring prototype. Both the estimated value and the 

error in the estimation are displayed in the user interface 
and stored on disk in case a subsequent analysis is 

necessary. 

 

3.2 Hardware implementation 
 
The hardware setting of the system for quality 

monitoring is equipped with the following devices, as 

shown in Fig. 3: 

• An industrial PC connected to the intranet of the  

 

 

 

Fig. 3 Global vision of the framework developed for real-time monitoring of complex processes 
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machine tool via Ethernet is responsible for executing real-

time monitoring programs. It is a state-of-the-art 

commercial platform, namely the national instrument PXI-

1050 platform with PXI-8187 processor. 

• A PXI-6259 data acquisition card is responsible for 
converting the analog signals of the sensors into digital 

signals. 

• The sensor is connected through the signal conditioner 

PZT482A22 via analog inputs to DAQ card that is 

responsible for preparing the signals of the vibrations. 

• The physical means of joining the output of the feeders 

and adapters of the sensors is through the BNC-2110 

junction box. 

• A Kern Evo high-precision micromachining center, 

which is equipped with a computer numerical control 

(CNC) iTNC530 from Heidenhain. 
• The two sensors recommended to meet the criteria of 

minimum possible sensory information: the vibration sensor 

for the Z axis (Bruel and Kjaer 4519-003 mono-axial 

accelerometer model) and the conductance smart sensor. 

 

 

4. Embedded computational intelligence methods 
 
For the design of the experimental models of 

representative variables of the microfabrication process, a 

proposal that consists of two AI-based modelling strategies 

have been chosen in advance precisely because they have 
characteristics and have good behavior for the problems that 

are considered in this work. In this particular 

implementation, the representative variable to be estimated 

is surface roughness that is a typical measurement in order 

to ensure the quality of the manufactured parts. The surface 

roughness is selected and specifically the average of the 

roughness profile, Ra, being one of the most used industrial 

indicators to evaluate the surface quality of the 

microfabrication process (Beruvides et al. 2017).  The 

vibration signal from Z-axis accelerometer and the feed- 

per-tooth value are used as input variables.  
 The first strategy of the study is the Hybrid 

Incremental Modeling (HIM) technique and in particular, as 

local model, a k-NN clustering technique is selected as the 

local model. The second method is a Generalized Fuzzy 

clustering algorithm C-Means (GFCM) with a neuro-fuzzy 

system. The proposal of both AI-based modelling strategies 

is shown in Fig. 4. 

 

4.1 Theoretical foundation 
 

In this section, the theoretical foundation of both 

strategies is presented. For HIM, this theoretical foundation 
can be found in the following previous works (Penedo et al. 

2012, Beruvides et al. 2016a). 

For GFCM, it is important to highlight that before all 

the possible variants in the literature on this algorithm, the 

technique that generalizes the fuzziness index is selected, 

adding an α parameter that allows, according to its value, to 

adopt different behaviors between the fuzzy c-means and 

the fuzzy c-means with enhanced fuzziness partitions (Zhu 

et al. 2009). Likewise, the option that modifies the fuzzy c-  
 

 

Fig. 4 The proposal of two AI-based modelling 

strategies for quality monitoring 

 

 

means algorithm has been considered, improving fuzziness 

partitions through a modification in the objective function 

(Höppner and Klawonn 2003).  

Therefore, this paper proposes an extended version of 

the c-means generalized fuzzy clustering algorithm with 

enhanced fuzzy partitions. Therefore, a new reward term is 

considered for membership to a single point of the sample xj 
in order to force sharper assignments (see Zhu et al. (2009) 

for more details). Taking these penalties into account, the 

objective function is as follows 

 

𝐽𝐺𝐼𝐹𝑃−𝐹𝐶𝑀 = ∑ ∑ 𝑢𝑖𝑗
2 𝑑2(𝑥𝑗,𝑣𝑖) −

𝑛

𝑗=1

𝑐

𝑖=1

∑ 𝑎𝑗

𝑛

𝑗=1

∑ 𝑢𝑖𝑗(1 − 𝑢𝑖𝑗
𝑚−1)

𝑐

𝑖=1

 (1) 

 

𝑎𝑗 = 𝛼 𝑚𝑖𝑛 {𝑑2(𝑥𝑗 , 𝑣𝑠) | 𝑠 ∈ {1, … , 𝑐}} (2) 

 

In this way, the λ parameter that is used by the 

generalized fuzzy clustering algorithm c-means is replaced 

by the parameter α for the reward of memberships. 

Based on the objective Eq. (1) and the restrictions 

imposed by the parameter α in Eq. (2), the membership of 

each data to each cluster i, as well as to the cluster center i, 

are given in the GIFP-FCM algorithm by the following 

equations. 

 

𝑢𝑖𝑗 =
1

∑ (
𝑑2(𝑥𝑗,𝑣𝑖)−𝛼𝑚𝑖𝑛1≤𝑠≤𝑐(𝑑2(𝑥𝑗,𝑣𝑠))

𝑑2(𝑥𝑗,𝑣𝑘)−𝛼𝑚𝑖𝑛1≤𝑠≤𝑐(𝑑2(𝑥𝑗,𝑣𝑠))
)

1

𝑚−1
𝑐
𝑘=1

 
(3) 

 

𝑣𝑖 =
∑ 𝑢𝑖𝑗

𝑚𝑥𝑗
𝑛
𝑗=1

∑ 𝑢𝑖𝑗
𝑚𝑛

𝑗=1

 (4) 

 

where m is the fuzziness index, n is the total number of 

data, c is the number of clusters, xj is the jth data or sample, 

uij is the membership of data j to cluster i, vi is the center of 

the cluster I and d indicate the mathematical distance used. 

In summary, the execution of the clustering algorithm 
GIFP-FCM is described in Fig. 5. 
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Fig. 5 Pseudocode with the steps of the GIFP-FCM 

algorithm 

 

 

Although this technique offers very good results in 
classification, the potential offered by this new clustering 

algorithm for modeling systems through a neuro-fuzzy 

system has not been yet fully exploited. For this reason, it 

has been decided to incorporate this clustering algorithm 

into a Mamdani neuro-fuzzy structure (Gajate et al. 2010). 

These types of systems use fuzzy membership functions to 

determine both the background and the consequences of the 

“if-then” rules. The application of a fuzzy clustering 

algorithm in the inference system serve to initially set fuzzy 

rules. In this work, it is assumed a fairly extended design 

condition, which consists in choosing the number of rules 
equal to the number of clusters obtained. One of the 

advantages of this type of system is that if the membership 

functions are derivable and supervised learning algorithms 

can be used for setting parameters (Beruvides et al. 2015). 

For that reason, the error backpropagation error is applied in 

this study. 

 

4.2 Model training 
 

The next step within the proposed method is the 

adjustment of the parameters of the two modelling 

strategies. For this, a dataset composed of 70 samples for 
training and 21 for validation was used. Specifically, the 

structure of the dataset has as output the average absolute 

surface roughness (Ra), expressed in nanometers (nm), and 

 

 

as inputs the quadratic value of the feed per tooth (fz)2 

normalized in relation to the radius of the tool (r), both 

expressed in nanometers (nm), and the mean quadratic 

vibration on the Z axis (Ac,rms) normalized in relation to its 

maximum value (Amax). 
For the first modelling strategy, the values of the HIM 

model parameters obtained in the optimal adjustment, using 

simulated annealing algorithm, were: A first order 

polynomial (m = 1), a neighbor k = 1 and a fuzziness 

coefficient p = 1.27. A more detailed description of the 

optimal adjustment of the parameters can be found in 

Castaño et al. (2015b). 

 In contrast, for the second model proposal, the values of 

the GFCM model parameters obtained in the adjustment by 

trial and error during a number of iterations IT = 400, using 

the supervised learning backpropagation error algorithm, 
were: a number of clusters c = 6, a threshold ε1 = 1, 

fuzziness index p = 1.2, parameter α = 0.9, number 

iterations IT = 1000, a learning rate of 0.056 and a threshold 

ε2 = 10-4. 

From the results can be remarked that although both 

models fairly accurately predict surface roughness, it is 

interesting to note that the absolute mean error is 9% for 

GFCM and therefore, much higher than that obtained with 

HIM (0.2%). 

Table 4 shows some previous AI-based models 

developed for quality control in some industrial processes 

and its performance results in comparative way. The 
comparison highlights the industrial process, the monitored 

or controlled variable, the AI-based modeling strategy and 

the prediction error obtained by each model. In addition, the 

computed error shown in this table corroborates the wide 

range of values most of them accepted in industrial setups 

and paves the way to determine which modeling technique 

between HIM and GFCM in estimating surface roughness is 

better according to the nowadays state-of-the-art. 

 

4.3 Model validation 
 
In addition, the two models were validated with 22 

experimental tests with other operating conditions and their 

performance was evaluated using the following figures of  

 
 

Table 4 Comparative study of different quality control AI-based models indicating variable, model and error 

Industrial  

process  

Components manufacturing 

of metal alloys 

Components manufacturing 

with additive substrates  

Sensor manufacturing 

(Castaño et al. 2019) 

Milling  

(Meso scale)  

(Beruvides et al. 2017) 

Milling  

(Micro scale) 

(Villalonga et al. 2020) 

Micro-drilling  

(Ranjan et al. 2020) 

Dry CNC turning  

(Marani Barzani 

et al. 2015) 

Variable to be 

controlled 

Data  

reliability 

Surface 

quality 

Hole 

roundness 

Surface 

roughness 

AI-based  

modelling strategy 
MLP k-NN SVM ANN BN HIM + SA MLP HIM + SVM ANFIS FL 

Error  

in prediction (%) 
18.7 11.4 4.42 10.41 13.05 2.68 40 33 8-10 5.4 

 

*Multi-layer perceptron (MLP), k-Nearest Neighbor (k-NN), Support Vector Machine (SVM), Artificial Neural Network (ANN), Bayesian 
Networks (BN), Hybrid Incremental Modelling (HIM), Simulated Annealing (SA), Adaptive Neuro Fuzzy Inference System (ANFIS) and 

Fuzzy Logic (FL) 
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Table 5 Comparison between the merit figures of both 

model proposals 

Performance indices  HIM GFCM 

SSE  52912.44 193454.35 

NSSE 16.60 31.74 

FPE in % 16.95 35.97 

ENV 33.55 67.72 

MRE in % 16.71 15.08 
 

 

 

merit (Table 5): Sum Square Error (SSE), Noise in the Sum 

of Square Errors (NSSE), Error of Final Prediction (FPE), 

Estimated Noise Variance (ENV) and Mean Relative Error 
(MRE). 

In Table 5, it can demonstrate that both models quite 

accurately predict surface roughness using the same 22 

samples for both kind of models. Therefore, it is difficult to 

make a decision on which of both model proposals should 

be embedded in the software platform. The ultimate goal is 

to verify the real-time execution of the roughness 

estimation, GFCM is initially chosen. Subsequently it is 

shown that this model has very good performance, in terms 

of ease of implementation and integration. 

 
 

5. Results of estimation of surface roughness. 
Viability of integration 
 

In this section the main issue is to assess real-time 

behavior of the subsystem that estimates surface roughness 

and that has been described previously in section 4.1 (model 

training) and in subsection 3.1.2 (method for prediction of 

surface roughness). As it was previously mentioned, the 

proper behavior of the system in real-time is very important 

and for this, an evaluation of the feasibility of integrating a 

method dedicated to online roughness estimation must be 
done, in parallel to the execution of other methods, such as 

the cutting state detection (see subsection 3.1.1). 

Of all the adjustments and evaluations performed, the 

validation of the system is conducted in the same 22 

different situations not known beforehand by the system is 

chosen, during the generation of roughness models in the 

training phases. The way to present the monitoring system 

the estimated roughness is depicted in two different 

pictures. Firstly, the result of the online estimation can be 

presented while the micro-milling operation itself is carried 

out, simply by observing the user interface of the program 
at runtime. Fig. 6 shows a screenshot of the graphical user 

interface of the developed system. The images correspond 

to a slot with a tool of 1800 µm in diameter, at a rotation 

speed of 15000 rev/min, 138 mm/min feed and an axial 

depth of 200 µm. In this regard, Fig. 6 illustrates the visual 

output of the process state and the current surface roughness 

value in two different operating conditions: (a) when the 

insertion of the tool into the workpiece is partial and (b) 

when the insertion of the tool into the workpiece is total. 

 Secondly, the result of the roughness estimation by the 

system can be stored in the warehouse of the system in 
order to generate a knowledge database. The first variable 

 

 
(a) Partial insertion of the tool into the workpiece 

 
(b) Total insertion of the tool into the workpiece 

Fig. 6 Display interface of the quality monitoring 

framework in a micro-milling operation 

 

 

 
(a) Value of Ra estimated for the entire operation 

 
(b) Its corresponding relative error obtained in the estimation 

Fig. 7 Results of the estimation of the surface roughness 

during a micro-milling operation 

 

 

storage is time, measured in milliseconds. The following are 

the inputs to the model that are the vibration, consisting of 

the normalized RMS value according to the maximum 

absolute value of the filtered signal in the considered 

interval, and the advance per square tooth divided by the 

radius of the tool. All in nanometers. The fourth is the 

output of the model, the estimated roughness, while the fifth 
is the error of that estimation. 

From the analysis of the 22 samples, an average surface 

roughness value of 160.48 nm is estimated with an error in 

the estimate of 24.07%. Fig. 7(a) shows the result of the  
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Fig. 8 (a) aerospace component manufactured;  

(b) assembly; (c) vibration sensor; and  

(d) workpiece mounted 
 

 

 
(a) Value of Ra estimated for the entire operation 

 
(b) Relative error obtained in the estimation 

Fig. 9 Estimation of surface roughness during a micro-

milling operation 

 

 

sample corresponding to a micro-milling operation. On the 

other hand, Fig. 7(b) shows the error of that estimation. 

Therefore, it can be determined that the real-time, modular, 

network and reconfigurable system is capable of estimating 

surface roughness online, in parallel to the execution of 

other real-time modules, such as the cutting state detection. 

 

 
6. Industrial application of the framework.  

Real-world evaluation 
 

The final step is to applied the developed framework for 

intelligent monitoring to industrial manufacturing process. 

The real-time evaluation of the supervision strategies in 

real-time was carried out by manufacturing a complex part 

corresponding to a critical aerospace component. The 

material of this piece, as in all the tests carried out in this 

work, is a tungsten-copper alloy (W22Cu78). 

The experimental platform was deployed in the 
headquarters of a real company. Fig. 8(b) shows the 

assembly of the monitoring framework in a Mori SEIKI 

Dura Vertical 5060 machining center with an MSX-504 III 

CNC model. 

The manufacturing process of this piece includes the 

performance of different micro-milling operations (slotting, 

planning, contouring, among others) in a continuous way. 

Fig. 8(a) illustrates the final finish of the work piece from 

the micromachining process. At first glance, it can see the 

complexity of the operations that were performed to obtain 

slot, contour, islands, planned and cashier profiles, among 

others. 
Initially, the configuration and adjustment of the 

parameters of the framework for intelligent quality 

monitoring is performed for the new machine and the 

specific process to which the intelligent supervision strategy 

is going to be applied. Once all parameters are set, the 

correct operation of the sensors and the entire system was 

checked. 

The results of the estimated surface roughness show that 

the monitoring framework is able to estimate on-line the Ra 

with very satisfactory results. Fig. 9(a) shows the result 

corresponding to a micro-milling operation, where a 
prediction in the Ra average value of 202.44 nm can be 

observed, during the whole manufacturing process of the 

piece. In contrast, the error of this estimation is shown in 

Fig. 9(b). An average error in the Ra prediction of 30.72% 

is observed. This error is relatively high for academic and 

theoretical studies but rather than realist and appropriate for 

industrial applications with high uncertainty, noise and very 

limited real-time sensor data is available (i.e., one non-

intrusive and low cost sensor for measuring the vibration in 

the Z axis). On the contrary, the feed per tooth remains 

constant at 300 mm/min. throughout the experimental study. 

 
 

7. Conclusions 
 

This paper presents a real-time, distributed, modular and 

networked framework for intelligent quality monitoring is 

designed and implemented. In addition, different 

computational methods were embedded for a parallel real-

time running such as a cutting detection procedure, 

interruptions calculations, and on-line surface roughness 

estimation in a microfabrication process. For this purpose, 

two computational intelligence-based modeling strategies 
for on-line estimating the surface roughness in 

micromachining processes are considered and reported in 

this paper. These two methods are HIM and GFCM. 

The embedded model-driven approach for a quality 

monitoring framework is evaluated at laboratory and 

industrial scale in micro manufacturing processes. All the 

embedded strategies developed are rigorously assessed in 

real-time, through simultaneous and parallel execution of all 

modules that compose the final system setup. In order to 

accomplish the evaluation, tests carried out in 

micromachining operations. Different figures of merit that 

consider the accuracy for estimating surface roughness and 
appropriate cutting state in micromachining operations are 

analyzed. The suitability and effectiveness of the 

framework for coping with the intrinsic complexity of 

micro-scale manufacturing processes is demonstrated, thus 

leading to a substantial improvement in their operation and 

efficiency. Finally, work will continue to refine and explore 

deep learning methods in cloud-based distributed 

monitoring systems.  
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