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1. Introduction 

 

Due to the never-ending attitude of technology (Chen et 

al. 2020, Shen et al. 2016, Wang and Chen 2020, Wang et 

al. 2017, Xu and Chen 2014, Xu et al. 2019, Zhao et al. 
2014, 2019) for improving the mechanical properties and 

operation of the structures, GPL reinforcement gains the 

attention of scientists for providing an enthusiastic 

enhancement in the design of the applicable composite 

structures (Habibi et al. 2019a, c, Hashemi et al. 2019, 

Safarpour et al. 2020). Sun and Zhao (2018) compared the 

fracture behavior of the Functionally Graded (FG) 

cemented carbide reinforced with and without the GPLs. 

They claimed that the  property of  GPLs in the 

nanocomposites is worked as a stopper for micro cracks. In 

addition, with the aid of an experimental study, Rafiee et al. 

(2009) reported that the polymer matrix composite which is 
reinforced by GPL is much stranger than the reinforced 

structures with Single-Walled Carbon Nanotube (SWCNT), 

Double-Walled Carbon Nanotube (DWCNT) and Multi- 
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Walled Carbon Nanotube (MWCNT). In recent years it was 

notable that the nano pants fortified by GPLs are much 

more useful in engineering applications, based on this 

matter the dynamic behavior of the nanostructures 

reinforced with GPL is a momentous field of study. In the 
mentioned field of study, Yang et al. (2017) investigated the  

stability and instability responses of the FG nanobeams 

reinforced with GPLs. They showed that the GPLs can 

make a positive contribution to the buckling and post-

buckling behavior of the nanostructure. In the other paper, 

Feng et al. (2017) focused on the nonlinear bending 

behavior of the composite smart beams reinforced with 

GPLs. They claimed that the beam with a higher volume 

fraction of the GPLs with symmetric distribution in such 

way is less sensitive to the nonlinear deformation.  

The high strength and stiffness of GPLs and CNTs make 

them as the applicable reinforcements in comparison with 
conventional fibers used in compositionally shell, beam, 

and plate. In the mentioned field of study, Yas et al. (2013) 

conducted a study on free vibration of CNTs reinforced FG 

nanocomposite panel employing Generalized Differential 

Quadrature (GDQ) method into governing equations 

established based on the 3D elasticity theory. Shen et al. 

(2017, 2018a, b) conducted a study on nonlinear dynamic 

response and bending behavior of the FG-GPLRC 

laminated cylindrical shell and exposed to thermal 

environment using shear deformation theory. They 

 
 
 

Influence of imperfection on the smart control frequency characteristics of  
a cylindrical sensor-actuator GPLRC cylindrical shell using  

a proportional-derivative smart controller 
 

Reza Zare1, Neda Najaafi2, Mostafa Habibi3,4, Farzad Ebrahimi5 and Hamed Safarpour5 

 
1Department of Electrical Engineering, Shahid Beheshti University, Tehran, Iran 

2Iran Industrial Design Company, Tehran, Iran 
3Institute of Research and Development, Duy Tan University, Da Nang, 550000, Vietnam 

4Faculty of Electrical–Electronic Engineering, Duy Tan University, Da Nang, 550000, Vietnam 
5Mechanical Engineering department, Faculty of Engineering, Imam Khomeini International University, Qazvin, Iran 

 
 

(Received December 4, 2019, Revised May 31, 2020, Accepted July 12, 2020) 

 
Abstract.  This is the first research on the smart control and vibration analysis of a Graphene nanoplatelets (GPLs) Reinforced 

Composite (GPLRC) porous cylindrical shell covered with piezoelectric layers as sensor and actuator (PLSA) in the framework 
of numerical based Generalized Differential Quadrature Method (GDQM). The stresses and strains are obtained using the First-

order Shear Deformable Theory (FSDT). Rule of the mixture is employed to obtain varying mass density and Poisson’s ratio, 
while the module of elasticity is computed by modified Halpin-Tsai model. The external voltage is applied to sensor layer and a 

Proportional-Derivative (PD) controller is used for sensor output control. Governing equations and boundary conditions of the 
GPLRC cylindrical shell are obtained by implementing Hamilton’s principle. The results show that PD controller, length to 

radius ratio (L/R), applied voltage, porosity and weight fraction of GPL have significant influence on the frequency 
characteristics of a porous GPLRC cylindrical shell. Another important consequence is that at the lower value of the applied 

voltage, the influence of the smart controller on the frequency of the micro composite shell is much more significant in 
comparison with the higher ones. 
 

Keywords:  sensor and actuator; PD controller; imperfection; cylindrical shell; frequency characteristics 

 

469



 
Reza Zare, Neda Najaafi, Mostafa Habibi, Farzad Ebrahimi and Hamed Safarpour 

considered nonlinearity effect with the aid of von Kármán 

model and solved the mathematical problem based on the 

two-step perturbation. Wang et al. (2018) presented the free 

vibrational behavior of the FG-GPLRC doubly curved 

shallow shells by employing Navier technique on the basic 
equations extracted from Hamilton principle. Kumari and 

Kar (2019) used Pagano’s technique and modified 

Kantorovich approach to obtain an analytical solution to 

static problem of composite shell panel with applied 

arbitrary boundary conditions at each edge. Free vibration 

and buckling behavior of initially stressed FG-GPLRC 

cylindrical shell using state-space technique within the 

framework of three-dimensional elasticity was probed by 

Liu et al. (2018). 

It is worth mentioning, in all of these studies, the 

porosities’ effect in composite materials was ignored. Due 
to porosities occurring inside composites during 

manufacture process, it is necessary to consider porosities’ 

phenomena in vibration analysis of structures. The porous 

materials are composed of two elements: One element is 

solid (body) and the other is either gas or liquid that is 

frequently found in nature, such as dust layers, stone, and 

wood. In the past years, material of porous structures, such 

as shells, plates, and beam, has been widely discussed in 

design of structural problems. Some researchers (Alimirzaei 

et al. 2019, Hashemi et al. 2019) investigated the vibration 

of porous composite structures.      

Piezoelectric materials produce electric potential and 
elastic deformations as response to mechanical pressure and 

imposed electric field. The most usage of piezoelectric 

layers is found in smart structures for distributed sensors 

and actuators to control deformations and noise as well as 

suppress vibrations. On the other hand, applications of 

piezoelectric materials in operational environments with 

converse conditions resulted in advent of new branch of 

advanced inhomogeneous composite materials known as 

Functionally Graded Materials (FGMs). In FGMs, 

properties continuously vary through the specific directions 

according to a designated function. This distinctive 
characteristic allows such composite materials to have 

higher thermal and corrosion resistance and hinder stress 

concentrations caused by interface-mismatch between 

properties of dissimilar materials (Koizumi 1993). 

Accordingly, combination of FGMs and piezoelectric 

materials provided a fantastic opportunity to present an 

innovative class of smart materials. For these reasons, the 

investigation of mechanical response of FG and also FG 

laminated piezoelectric structures has drawn considerable 

attention to research which some of the related references 

are briefly described as follows. Many researches showed 

the advantage of various deformation theory (Addou et al. 
2019, Boukhlif et al. 2019, Boulefrakh et al. 2019, Boutaleb 

et al. 2019, Khiloun et al. 2019, Mahmoudi et al. 2019, 

Zaoui et al. 2019, Zarga et al. 2019). Ebrahimi and Rastgoo 

(2008a) studied the vibrational responses of the FG circular 

plate which is actuated with the aid of the piezoelectric 

layer. They modeled two directs FG plate based on the 

classical plate theory. In the other work, they focused on the 

dynamic responses of the annular FG plate actuated with 

piezo materials (Ebrahimi and Rastgoo 2008b), employing 

the high order deformation theory is necessary for modeling 

the thick structures (Abualnour et al. 2019, Belbachir et al. 

2019, Bourada et al. 2019, Chaabane et al. 2019, Hellal et 

al. 2019, Meksi et al. 2019, Tlidji et al. 2019). Duc and Van 

Tung (2010) considered the von Karman effect for serving 
the nonlinear geometric in the mathematical modeling of 

the FG panels. Stability and instability of the size dependent 

structure are presented in Refs (Alimirzaei et al. 2019, 

Bedia et al. 2019, Berghouti et al. 2019; Boutaleb et al. 

2019, Draoui et al. 2019, Hussain et al. 2019, Karami et al. 

2019a, b, c, Medani et al. 2019; Semmah et al. 2019, Tlidji 

et al. 2019). Alibeigloo (2013) focused on the bending 

characteristics of a CNT reinforced FG plate which is 

covered with piezoelectric actuator and sensor. In addition, 

they considered a mechanical load along the length of the 

structures and solve the problem with the aid of 3D 
elasticity theory.  

In the field of vibration control of the smart structures, 

Hajmohammad et al. (2018) focused on the control and 

vibrational behavior of the laminated conical nanoshell. The 

nanostructure is covered with piezoelectric sensor and 

actuator then the dynamic response of the nanocomposite is 

improved by using a PD controller. In addition, they 

modeled a PD controller for serving a smart controller on 

the deflection of the structure. They presented that 

consideration the PD controller can contribute to decrease 

the maximum displacement and time of the instability of the 

structure. Chuaqui et al. (2018) presented the vibrational 
behavior of an Al-beam covered with piezoelectric sensor 

and actuator. Mehrvarz et al. (2018) investigated the smart 

vibration control of a microbeam with the aid of strain 

gradient theory, and they derived governing equations and 

boundary conditions using Hamilton’s principle. Vatankhah 

et al. (2015) focused on the investigation of the vibro smart 

control of the cantilever micro beam by employing the 

piezoelectric sensor and actuator and robust linear 

controller. They solved the PDE equations of the problem 

using the Galerkin method. They showed that the stability 

of the nano smart structures improves by using robust linear 
controller. In the field of dynamics response of the porous 

structures, some researchers showed that this parameter 

decrease the frequency of the structures (Addou et al. 2019, 

Alimirzaei et al. 2019, Berghouti et al. 2019, Medani et al. 

2019). In addition, in the resent year we can see that some 

research (Chen et al. 2020, Ghabussi et al. 2019, Moayedi 

et al. 2018, 2019, Moayedi and Hayati 2018a, b, Moayedi 

and Rezaei 2019, Shen et al. 2016, Wang and Chen 2020, 

Wang et al. 2017, Xu and Chen 2014, Xu et al. 2019, Zhao 

et al. 2014, 2019) are presented on the soft computing 

methods for prediction the behavior of different structures. 

To the best of authors’ knowledge, smart control and 
frequency analysis of a porous GPLRC cylindrical shell 

covered with piezoelectric  layers as sensor and actuator has 

not been issued in the published literature. In this study, 

modified Halpin-Tsai micromechanics is employed to 

approximate effective elastic properties. Numerical solution 

to differential governing equations is presented in the case 

of various boundary conditions. Special attentions are given 

to explore the effects of PD controller, length to radius ratio 

(L/R), applied voltage and weight fraction of GPL on the 
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Fig. 1 Schematic of a porous GPLRC cylindrical shell 

integrated with sensor and actuator layers 

 

 

frequency characteristics of a smart porous GPLRC 

cylindrical shell covered with PLSA. 

 

 

2. Theory and formulation 
 
A GPLRC cylindrical shell integrated with sensor and 

actuator layers is shown in Fig. 1. In addition, a PD 

controller is used for vibration control of the structure. As 

depicted in the Fig. 1, four patterns are considered for 

modeling the GPLRC materials for reinforcement of the 

structures. The volume fraction functions for each diagram 

are expressed as (Song et al. 2017) 

 

𝑈 − 𝐺𝑃𝐿𝑅𝐶: 𝑉𝐺𝑃𝐿(𝑘) = 𝑉𝐺𝑃𝐿
∗  (1) 

 

𝑋 − 𝐺𝑃𝐿𝑅𝐶: 𝑉𝐺𝑃𝐿(𝑘) = 2𝑉𝐺𝑃𝐿
∗ |2𝑘 − 𝑁𝐿 − 1|/𝑁𝐿 (2) 

 
𝑂 − 𝐺𝑃𝐿𝑅𝐶: 𝑉𝐺𝑃𝐿(𝑘) = 2𝑉𝐺𝑃𝐿

∗ [1 − (|2𝑘 − 𝑁𝐿 − 1|/𝑁𝐿)] (3) 

 

𝐴 − 𝐺𝑃𝐿𝑅𝐶: 𝑉𝐺𝑃𝐿(𝑘) = 2𝑉𝐺𝑃𝐿
∗ (2𝑘 − 1)/𝑁𝐿 (4) 

 

The parameters that are used in Eqs. (1)-(4) are given in 

Song et al. (2017) in detail. The relation between 𝑉𝐺𝑃𝐿
∗   

and its weight fraction gGPL can be obtained by 

𝑉𝐺𝑃𝐿
∗ =

𝑔𝐺𝑃𝐿
𝑔𝐺𝑃𝐿 + (𝜌𝐺𝑃𝐿/𝜌𝑚)(1 − 𝑔𝐺𝑃𝐿)

 (5) 

 

in which  𝜌GPL and 𝜌m are the mass densities of the GPL 

and polymer matrix. The effective modulus of elasticity of 

GPLRC shell is estimated using modified Halpin-Tsai 

micromechanics (De Villoria and Miravete 2007). 

 

𝐸 =

(

 
 

3

8
(
1 + 𝜉𝐿𝜂𝐿𝑉𝐺𝑃𝐿
1 − 𝜂𝐿𝑉𝐺𝑃𝐿

) +

5

8
(
1 + 𝜉𝑊𝜂𝑊𝑉𝐺𝑃𝐿
1 − 𝜂𝑊𝑉𝐺𝑃𝐿

)
)

 
 
× 𝐸𝑀 

𝜉𝐿 = 2
𝐿𝐺𝑃𝐿
𝑡𝐺𝑃𝐿

, 𝜉𝑊 = 2
𝑤𝐺𝑃𝐿
𝑡𝐺𝑃𝐿

 

𝜂𝐿 =
(
𝐸𝐺𝑃𝐿

𝐸𝑀
) − 1

(
𝐸𝐺𝑃𝐿

𝐸𝑀
) + 𝜉𝐿

, 𝜂𝑊 =
(
𝐸𝐺𝑃𝐿

𝐸𝑀
) − 1

(
𝐸𝐺𝑃𝐿

𝐸𝑀
) + 𝜉𝑊

 

(6) 

 

Finally, by using the rule of mixture, mass density ρc 
and Poisson's ratio 𝜈c  of the GPL/polymer micro 

composite are expressed as 

 

𝜈 = 𝜈𝐺𝑃𝐿𝑉𝐺𝑃𝐿 + 𝜈𝑀𝑉𝑀 
 𝜌 = 𝜌𝐺𝑃𝐿𝑉𝐺𝑃𝐿 + 𝜌𝑀𝑉𝑀 

(7) 

 

The mechanical properties of the porous FG-GPLRC 

cylindrical shell with different types of porosity 

distributions can be obtained by Sahmani et al. (2018) 

 

𝐸𝑒𝑓𝑓 = �̄�[1 − 𝛤𝑃𝑆(𝑧)]  

𝜌𝑒𝑓𝑓 = �̄�[1 − 𝛤𝑚𝑆(𝑧)]  

𝜈𝑒𝑓𝑓 = 0.221 (1 −
𝜌𝑒𝑓𝑓
�̄�
) + �̄�

[
 
 
 1 + 0.342(1 −

𝜌𝑒𝑓𝑓
�̄�
)
2

−1.21 (1 −
𝜌𝑒𝑓𝑓
�̄�
)

]
 
 
 

 

(8) 

 

where  

 

𝑆(𝑧) =

{
 
 

 
 𝑐𝑜𝑠(

𝜋𝑧

2ℎ
+
𝜋

4
)    for porosity distribution 1

𝑐𝑜𝑠(
𝜋𝑧

ℎ
)    for porosity distribution 2

1 − 𝑐𝑜𝑠(
𝜋𝑧

ℎ
)    for porosity distribution 3

 (9) 

 

It is noted that, Eq. (8) is modelled for the porous 

structure with two-dimensional stress-strain relationship. 

Based on the Gaussian random field scheme (Roberts and 

Garboczi 2001), the coefficient of mass density (𝛤𝑚) can be 

defined as a function of 𝛤𝑚  as follows 

 

𝛤𝑚 = 1.121[1 − (1 − 𝛤𝑝𝑆(𝑧))
1/2.3]/𝑆(𝑧) (10) 

 

2.1 Mathematical modeling of the structure 
 
With the aid of the First-order Shear Deformation 

Theory (FSDT) (Alimirzaei et al. 2019, Draiche et al. 2019, 

Draoui et al. 2019, Medani et al. 2019, Semmah et al. 
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2019), the displacement fields of the core (cylindrical shell) 

are expressed by the following equations 

 

𝑢(𝑥, 𝜃, 𝑧, 𝑡) = 𝑢0(𝑥, 𝜃, 𝑡) + 𝑧𝜓𝑥(𝑥, 𝜃, 𝑡) 
𝑣(𝑥, 𝜃, 𝑧, 𝑡) = 𝑣0(𝑥, 𝜃, 𝑡) + 𝑧𝜓𝜃(𝑥, 𝜃, 𝑡) 
𝑤(𝑥, 𝜃, 𝑧, 𝑡) = 𝑤0(𝑥, 𝜃, 𝑡) 

(11) 

 

where displacement fields in Eq. (11) are discussed in detail 

in Esmailpoor Hajilak et al. (2019). Constitutive equations 

for nanocomposite core and piezoelectric layers. 

The 3D stress-strain relation of the GPLRC core can be 

obtained as below 
 

[
 
 
 
 
𝜎𝑥𝑥
𝜎𝜃𝜃
𝜎𝑥𝜃
𝜎𝑥𝑧
𝜎𝜃𝑧 ]

 
 
 
 

=

[
 
 
 
 
 
�̄�11 �̄�12 0 0 0

�̄�21 �̄�22 0 0 0

0 0 �̄�66 0 0

0 0 0 �̄�55 0

0 0 0 0 �̄�44]
 
 
 
 
 

[
 
 
 
 
𝜀𝑥𝑥
𝜀𝜃𝜃
𝜀𝑥𝜃
𝜀𝑥𝑧
𝜀𝜃𝑧 ]

 
 
 
 

 (12) 

 

2.2 Piezoelectric layers 
 

According to the FSDT, displacement fields of the 

piezoelectric layers are assumed as follows 
 

 𝑢𝑖𝑝(𝑥, 𝜃 , 𝑧, 𝑡) = 𝑢
𝑖
0𝑝(𝑥, 𝜃 , 𝑧) + 𝑧𝑢

𝑖
1𝑝(𝑥, 𝜃 , 𝑧) 

𝑣𝑝(𝑥, 𝜃 , 𝑧, 𝑡) = 𝑣
𝑖
0𝑝(𝑥, 𝜃 , 𝑧) + 𝑧𝑣

𝑖
1𝑝(𝑥, 𝜃 , 𝑧) 

𝑤𝑖
𝑝(𝑥, 𝜃 , 𝑧, 𝑡) = 𝑤

𝑖
0𝑝(𝑥, 𝜃 , 𝑧, 𝑡) 

(13) 

 

The relationships between the stress and strain for the 

piezoelectric layers (sensor and actuator) are written as 

below 
 

{
 
 

 
 
𝜎𝑥𝑥
𝜎𝜃𝜃
𝜎𝑥𝜃
𝜎𝜃𝑧
𝜎𝑥𝑧}

 
 

 
 

=

[
 
 
 
 
𝑐11 𝑐12 0 0 0
𝑐12 𝑐22 0 0 0
0 0 𝑐66 0 0
0 0 0 𝑐55 0
0 0 0 0 𝑐44]

 
 
 
 

.

[
 
 
 
 
𝜀𝑥𝑥
𝜀𝜃𝜃
𝜀𝑥𝜃
𝜀𝜃𝑧
𝜀𝑥𝑧 ]

 
 
 
 

 

               −

[
 
 
 
 
 
0 0 𝑒𝑖31
0 0 𝑒𝑖32
0 0 0
0 𝑒𝑖24 0

𝑒𝑖25 0 0 ]
 
 
 
 
 

{

𝐸𝑖𝑥
𝐸𝑖𝜃
𝐸𝑖𝑧

} −

[
 
 
 
 
𝛽𝑖
11

𝛽𝑖
22

0
0
0 ]

 
 
 
 

𝛥𝑇 

(14) 

 

{

𝐷𝑖𝑥
𝐷𝑖𝜃
𝐷𝑖𝑧

} = [

0 0 0 0 𝑒𝑖15
0 0 0 𝑒𝑖24 0

𝑒𝑖31 𝑒𝑖32 0 0 0

] .

[
 
 
 
 
𝜀𝑥𝑥
𝜀𝜃𝜃
𝜀𝑥𝜃
𝜀𝜃𝑧
𝜀𝑥𝑧 ]

 
 
 
 

 

         +[

𝑠𝑖11 0 0

0 𝑠𝑖22 0

0 0 𝑠𝑖33

] {

𝐸𝑖𝑥
𝐸𝑖𝜃
𝐸𝑖𝑧

}+ [

𝑝𝑖
1

𝑝𝑖
2

𝑝𝑖
3

] 𝛥𝑇, 

          𝑖 = 𝑎, 𝑠 

(15) 

 
So 
 

𝐷𝑖𝑥 = 𝑒15𝜀𝑥𝑧 + 𝑠11𝐸𝑥   

        = 𝑒15 ((𝜓𝑥 +
𝜕𝑤𝑖

0

𝜕𝑥
)) − 𝑠11 (𝑠𝑖𝑛(𝛽)

𝜕𝜙𝑖

𝜕𝑥
) 

(16) 

𝐷𝑖𝜃 = 𝑒24𝜀𝜃𝑧 + 𝑠22𝐸𝜃 = 𝑒24(𝜓𝜃 +
1

𝑅

𝜕𝑤𝑖
0

𝜕𝜃
−
𝑣𝑖0
𝑅
) 

            − 𝑠22 (
1

𝑅 + 𝑧
𝑠𝑖𝑛(

𝜋(𝑧 − 𝑡𝑐/2

𝑡𝑡
)
𝜕𝜙𝑖

𝜕𝜃
) 

𝐷𝑖𝑧 = 𝑒31𝜀𝑥𝑥 + 𝑒32𝜀𝜃𝜃 + 𝑠33𝐸𝑧 = 𝑒31 (
𝜕𝑢𝑖0
𝜕𝑥

+ 𝑧
𝜕𝑢𝑖1
𝜕𝑥

) 

            + 𝑒32 (
1

𝑅

𝜕𝑣𝑖0
𝜕𝜃

+
𝑧

𝑅

𝜕𝑣𝑖1
𝜕𝜃

+
𝑤𝑖

0

𝑅
) 

            −𝑠33 (𝑐𝑜𝑠(
𝜋(𝑧 − 𝑡𝑐/2

𝑡𝑡
)(
𝜋

𝑡𝑡
𝜙𝑖) +

𝑉0
𝑡𝑡
) 

 
In Eqs. (15) and (16), cijkl, emij, din, pi, βij and sim are the 

elasticity matrix, piezo-electric, pyro-electric constants, 

thermal module, and dielectric constants, respectively. 

Other parameters are discussed in Safarpour et al. (2019a, 

b) in detail. The electric and magnetic field strength which 

are used in Eqs. (15) and (16), can be expressed as below 

 

𝐸𝑖𝑥 = −
𝜕𝛷𝑖

𝜕𝑥
, 𝐸𝑖𝜃 = −

1

𝑅 + 𝑧

𝜕𝛷𝑖

𝜕𝜃
 

 𝐸𝑖𝑧 = −
𝜕𝛷𝑖

𝜕𝑧
 

(17) 

 

Hajmohammad et al. (2018) investigated that the 

potential of electric along sensor and actuator directions can 

be assumed as 

 

𝛷𝑎(𝑥, 𝜃, 𝑧, 𝑡) = 𝑠𝑖𝑛(
𝜋(𝑧 − 𝑡𝑐/2

𝑡𝑡
)𝜙𝑎(𝑥, 𝜃, 𝑡) +

(𝑧 − 𝑡𝑐/2)𝑉0
𝑡𝑡

 

𝛷𝑠(𝑥, 𝜃, 𝑧, 𝑡) = 𝑠𝑖𝑛(
𝜋(−𝑧 − 𝑡𝑐/2

𝑡𝑏
)𝜙𝑠(𝑥, 𝜃, 𝑡) 

(18) 

 

It is noted that the current smart structure is only 

polarized along the direction of thickness. 𝜙𝑎 and 𝜙𝑠 are 

the initial external electric along with actuator and sensor 

layers, respectively. Moreover, 𝜙𝑖(𝑥, 𝜃, 𝑡)  is a spatial 

variation of the electric potential in x and θ directions, 

respectively. Also, V0 is the initial external electric 

potential. Now by substituting Eq. (18) into Eq. (17), we 

have 

 

𝐸𝑎𝑥 = −𝑠𝑖𝑛(
𝜋(𝑧 − 𝑡𝑐/2

𝑡𝑡
)
𝜕𝜙𝑎

𝜕𝑥
 

𝐸𝑎𝜃 = −
1

𝑅 + 𝑧
𝑠𝑖𝑛(

𝜋(𝑧 − 𝑡𝑐/2

𝑡𝑡
)
𝜕𝜙𝑎

𝜕𝜃
 

𝐸𝑎𝑧 = −𝑐𝑜𝑠(
𝜋(𝑧 − 𝑡𝑐/2

𝑡𝑡
)(
𝜋

𝑡𝑡
𝜙𝑎)−

𝑉0
𝑡𝑡

 

𝐸𝑠𝑥 = −𝑠𝑖𝑛(
𝜋(−𝑧 − 𝑡𝑐/2

𝑡𝑏
)
𝜕𝜙𝑠

𝜕𝑥
 

𝐸𝑠𝜃 = −
1

𝑅 + 𝑧
𝑠𝑖𝑛(

𝜋(−𝑧 − 𝑡𝑐/2

𝑡𝑏
)
𝜕𝜙𝑠

𝜕𝜃
 

𝐸𝑠𝑧 = −𝑐𝑜𝑠(
𝜋(−𝑧 − 𝑡𝑐/2

𝑡𝑏
)(−

𝜋

𝑡𝑏
𝜙𝑠) 

(19) 

 
2.3 Compatibility equations 
 

It assumes perfect bonding between the core and the 

piezoelectric layer, 𝑧𝑝 = − ℎ𝑝/2 are as follow (Eyvazian 

et al. 2019, Motezaker and Eyvazian 2020a, b) 
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𝑢𝑐(𝑧𝑐 = ℎ𝑐/2) = 𝑢
𝑎
𝑝(𝑧

𝑎
𝑝 = −ℎ

𝑎
𝑝/2) 

𝑣𝑐(𝑧𝑐 = ℎ𝑐/2) = 𝑣
𝑎
𝑝(𝑧

𝑎
𝑝 = −ℎ

𝑎
𝑝/2) 

𝑤𝑐(𝑧𝑐 = ℎ𝑐/2) = 𝑤
𝑎
𝑝(𝑧

𝑎
𝑝 = −ℎ

𝑎
𝑝/2) 

𝑢𝑐(𝑧𝑐 = −ℎ𝑐/2) = 𝑢
𝑠
𝑝(𝑧

𝑠
𝑝 = ℎ

𝑠
𝑝/2) 

𝑣𝑐(𝑧𝑐 = −ℎ𝑐/2) = 𝑣
𝑠
𝑝(𝑧

𝑠
𝑝 = ℎ

𝑠
𝑝/2) 

𝑤𝑐(𝑧𝑐 = −ℎ𝑐/2) = 𝑤
𝑠
𝑝(𝑧

𝑠
𝑝 = ℎ

𝑠
𝑝/2) 

(20) 

 

To obtain the equations of motion and boundary 
conditions, Hamilton’s principle is utilized, so, it can be 

written as (Habibi et al. 2019, Moayedi et al. 2020) 

 

∫ (𝛿𝑇1 + 𝛿𝑇2 − 𝛿𝑈1 − 𝛿𝑈2 + 𝛿𝑊1 + 𝛿𝑊2)𝑑𝑡 = 0
𝑡2

𝑡1

 (21) 

 

Strain energy: The strain energy of GPLRC cylindrical 

shell with piezoelectric layers can be divided as follows. 

Strain energy of the piezoelectric layers is 

 

𝑈1 =
1

2
∭ (𝜎𝑖𝑗𝜀𝑖𝑗)𝑑𝑉𝑝𝑖𝑒𝑧𝑜𝑙𝑎𝑦𝑒𝑟

𝑉𝑝𝑖𝑒𝑧𝑜𝑙𝑎𝑦𝑒𝑟

 

−∭ (𝐷𝑥𝛿𝐸𝑥 + 𝐷𝜃𝛿𝐸𝜃 +𝐷𝑧𝛿𝐸𝑧)𝑑𝑉𝑝𝑖𝑒𝑧𝑜𝑙𝑎𝑦𝑒𝑟
𝑉𝑝𝑖𝑒𝑧𝑜𝑙𝑎𝑦𝑒𝑟

 

−𝐷𝑎𝑥(𝑠𝑖𝑛(
𝜋(𝑧 −

𝑡𝑐

2

𝑡𝑡
)
𝜕𝛿𝜙𝑎

𝜕𝑥
)− 𝐷𝑎𝜃 (

1

𝑅 + 𝑧
 

𝑠𝑖𝑛(
𝜋(𝑧 −

𝑡𝑐

2

𝑡𝑡
)
𝜕𝛿𝜙𝑎

𝜕𝜃
) + 𝐷𝑎𝑧(𝑐𝑜𝑠(

𝜋(𝑧 −
𝑡𝑐

2

𝑡𝑡
) 

(
𝜋

𝑡𝑡
𝛿𝜙𝑎)) − 𝐷𝑠

𝑥(𝑠𝑖𝑛(
𝜋(−𝑧−

𝑡𝑐

2

𝑡𝑏
)
𝜕𝛿𝜙𝑠

𝜕𝑥
)  

−𝐷𝑠
𝜃 (

1

𝑅 + 𝑧
𝑠𝑖𝑛(

𝜋(−𝑧 −
𝑡𝑐

2

𝑡𝑏
)
𝜕𝛿𝜙𝑠

𝜕𝜃
)  

+𝐷𝑠
𝑧 (𝑐𝑜𝑠(

𝜋(−𝑧− 𝑡𝑐/2

𝑡𝑏
)(
𝜋

𝑡𝑏
𝛿𝜙𝑠)) 

(22a) 

 

In Eq. (22) 𝜀𝑖𝑗  and 𝜎ij represent the components of the 

strain and stress tensors and presented as follow. 

Strain energy of the core is  

 

𝑈1 =
1

2
∭ (𝜎𝑖𝑗𝜀𝑖𝑗)𝑑𝑉𝐶𝑜𝑟𝑒

𝑉𝐶𝑜𝑟𝑒

 (22b) 

 

Kinetic energy: The kinetic energy for each layer can be 

defined as below 
 

𝛿𝐾 = (1 − 𝜇2𝛻2)∫∬ 𝜌

{
 
 
 
 
 

 
 
 
 
 (
𝜕𝑢𝜆

𝜕𝑡
+ 𝑧

𝜕𝜓𝜆
𝑥

𝜕𝑡
) ×

(
𝜕

𝜕𝑡
𝛿𝑢𝜆 + 𝑧

𝜕

𝜕𝑡
𝛿𝜓𝜆

𝑥
)

+(
𝜕𝑣𝜆

𝜕𝑡
+ 𝑧

𝜕𝜓𝜆
𝜃

𝜕𝑡
) ×

(
𝜕

𝜕𝑡
𝛿𝑣𝜆 + 𝑧

𝜕

𝜕𝑡
𝛿𝜓𝜆

𝜃
)

+(
𝜕𝑤𝜆

𝜕𝑡
)
𝜕

𝜕𝑡
𝛿𝑤𝜆

}
 
 
 
 
 

 
 
 
 
 

𝐴𝑍

𝑑𝑉 (23) 

Work done: The first variation of the work done 

corresponding to the external electric applied force of the 

sensor layer 
 

𝛿𝑊1 =∬ [
(𝑁1

𝑃𝑠)𝑤,𝑥𝛿𝑤,𝑥
+(𝑁2

𝑃𝑠)𝑣,𝑥𝛿𝑣,𝑥
]

𝐴

𝑅𝑠𝑒𝑛𝑠𝑜𝑟𝑙𝑎𝑦𝑒𝑟𝑑𝑥𝑑𝜃 (24) 

 

where Nip is external electric loads. The electric loads could 

be obtained as follows.  
 

𝑁1
𝑃 = 𝑁2

𝑃 = −2(𝑒31 −
𝑐13𝑒33
𝑐33

)𝜙0  (25) 

 

Governing equations for a GPLRC cylindrical shell 

coveredwith Piezoelectric sensor actuator based on the 

FSDT by substituting Eqs. (22), (23) and (24) into Eq. (21) 

than integrating by parts can be obtained. It should be noted 
that, based on Eq. (20) the numbers of unknown variables 

are decreased from 15 to 9. So, the total number of 

unknowns in the face sheets and core are reduced to 9. 

 

 

3. Solution procedure 
 

At this stage, a numerical technique (Chen et al. 2020, 

Wang et al. 2017, Xu et al. 2019) with the aids of GDQM 

method is introduced to investigate the vibrational 

characteristics of a circular microplate. In this 

computational technique, the nth order derivatives of an 
adequately smooth function f with respect to corresponding 

discrete points within the overall domain can be estimated 

as a weighted linear sum of the function values at all the 

discrete mesh points in the whole domain as follows (Shu 

2012) 

 

𝜕𝑛𝑓

𝜕𝑟𝑛
= ∑ 𝐶(𝑛)𝑗,𝑚𝑓𝑚,𝑘

𝑀

𝑚=1

 (26) 

 

where 𝐶(𝑛)  are weighting coefficients for the nth-order 

derivative along the radius direction. As it can be noticed 

from Eq. (26), the key part of DQM lies in computing the 

weighting coefficients. For this purpose, two types of DQM 

composed of GDQM are adopted in this study to 

approximate the nth order derivatives of function along 

radius direction. In addition, 𝐶(𝑛) are calculated as below 

from the first-order derivative 
 

𝐶𝑖𝑗
(1) =

𝑀(𝑥𝑖)

(𝑥𝑖 − 𝑥𝑗)𝑀(𝑥𝑗)
𝑖, 𝑗 = 1,2, . . . , 𝑛 and 𝑖 ≠ 𝑗 

𝐶𝑖𝑗
(1)
= − ∑ 𝐶𝑖𝑗

(1)

𝑛

𝑗=1,𝑖≠𝑗

𝑖 = 𝑗 

(27) 

 

where 
 

𝑀(𝑥𝑖) = ∏ (𝑥𝑖 − 𝑥𝑗)

𝑛

𝑗=1,𝑗≠𝑖

 (28) 

 

In addition, the weighting coefficients for higher-order 
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derivatives are developed by the following relations. 

 

𝐶𝑖𝑗
(𝑟) = 𝑟 [𝐶𝑖𝑗

(𝑟−1)𝐶𝑖𝑗
(1) −

𝐶𝑖𝑗
(𝑟−1)

(𝑥𝑖 − 𝑥𝑗)
] 

𝑖, 𝑗 = 1,2, . . . , 𝑛, 𝑖 ≠ 𝑗   and   2 ≤ 𝑟 ≤𝑛−1 

𝐶𝑖𝑖
(𝑟) = − ∑ 𝐶𝑖𝑗

(𝑟)

𝑛

𝑗=1,𝑖≠𝑗

 

𝑖, 𝑗 = 1,2, . . . , 𝑛   and   1 ≤ 𝑟 ≤𝑛−1 

(29) 

 

In the present study, a non-uniform set of seeds is 

chosen along x and 𝜃 directions as follows. 

 

𝑟𝑖 =
𝐿

2
(1 − 𝑐𝑜𝑠 (

(𝑖 − 1)

(𝑁𝑖 − 1)
𝜋)) 𝑖 = 1,2,3, . . . , 𝑁𝑖 (30) 

 

Rearranging the quadrature analogs of field equations 

and boundary conditions inside the fabric of a generalized 

eigenvalue problem yield 

 

{
 

 [
[𝑀𝑑𝑑] [𝑀𝑑𝑏]

[𝑀𝑏𝑑] [𝑀𝑏𝑏]
]𝜔2

+[
[𝐾𝑑𝑑] [𝐾𝑑𝑏]

[𝐾𝑏𝑑] [𝐾𝑏𝑏]
]
}
 

 
{
𝛿𝑑
𝛿𝑏
} = 0 (31) 

 

in which the subscripts b and d refer to the boundary and 

domain grid points, respectively. By applying a PD 
controller, the following relation for the sensor output can 

be written as follows 

 

𝜙𝑎 = 𝐺𝑑𝜙
𝑠 + 𝐺𝑣𝜙

𝑠 (32) 

 

where Gd and Gv are proportional and derivative control 

coefficients, respectively. Finally, with setting Eq. (31) to 

 

 

zero, we can obtain natural frequency of the structure. In 

addition, dimensionless critical voltage is defined as follows 

(Wang and Reddy 2014) 
 

�̄� =
10 × 𝜙

√
𝐴11

𝑋33

 

𝑋33 = ∫ {𝑠33𝑒}(𝛽 𝑠𝑖𝑛( 𝛽𝑧))
2

ℎ/2

−ℎ/2

𝑑𝑧 

(33) 

 
 

4. Results section 
 
4.1 Convergency 
 
The sufficient number of grid points is necessary to 

achieve accurate results in GDQM. The convergence 

studies are conducted for different boundary conditions as 

well as different materials. Moreover, it can be seen that the 

structure with Clamped-Clamped (C-C) boundary 

conditions is stiffer than the structure with Simply-Simply 

(S-S) boundary conditions which will lead to a smaller 

natural frequency. Also, GPLRC cylindrical shell, due to the 

addition of GPL reinforcing nanofillers has a higher natural 

frequency in comparison to pure epoxy.  According to 

Table 1, for results convergence, eleven grid points are 

suitable. 
 

4.2 Validation 
 

To assess validity and accuracy of the approaches in this 

study for frequency analysis, numerical results are 

compared with those of Ref. (Wang et al. 2014) in Table 2 

for a piezoelectric cylindrical shell and for different mode 

reported from the table which implies that the maximum 

 
 

Table 1 The effect of the number of grid points on the results convergence for the natural frequency (GHz) of the GPLRC 

shell with respect to different patterns and Boundary Conditions (B. Cs) when L/R = 10, h/R = 0.1, l = R/3 and  

h/hp = 10 

Analytical results N = 13 N = 11 N = 9 N = 7 N = 5 Material B. Cs 

0.60015788945 0.600157 0.600157 0.600154 0.600494 0.586990 Pure epoxy 

S-S 

0.77092377091 0.770923 0.770923 0.770919 0.771359 0.753884 Pattern 1 

0.77048629174 0.770486 0.770483 0.770482 0.770921 0.753446 Pattern 2 

0.77165393069 0.771653 0.771649 0.771649 0.772089 0.754608 Pattern 3 

0.77095861186 0.770958 0.770958 0.770954 0.771394 0.753915 Pattern 4 

- 0.990481 0.990481 0.989878 0.988214 1.015471 Pure epoxy 

C-S 

- 1.280673 1.280673 1.280044 1.277954 1.315586 Pattern 1 

- 1.280250 1.280250 1.279621 1.277527 1.315153 Pattern 2 

- 1.281631 1.281631 1.281002 1.278919 1.316584 Pattern 3 

- 1.280815 1.280815 1.280175 1.278088 1.315836 Pattern 4 

- 1.521473 1.521473 1.521102 1.520517 1.690101 Pure epoxy 

C-C 

- 1.979982 1. 979982 1.979007 1.978261 2.203252 Pattern 1 

- 1.979009 1.979009 1.978537 1.977791 2.202765 Pattern 2 

- 1.980847 1.980847 1.980378 1.979634 1.204738 Pattern 3 

- 1.979550 1.979550 1.979085 1.978344 2.203561 Pattern 4 
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Table 2 Comparison of the natural frequencies (GHz) of 

piezoelectric cylindrical nanoshells for various 

circumferential wave numbers (n) with m = 1,  

L/R = 12, R/h = 50, and l = 0 

n Ke et al. (2014a, b) Present Error (%) 

1 0.7188 0.70794 1.51 

2 0.4101 0.4080 0.51 

3 0.8003 0.78697 1.67 

4 1.4793 1.46632 0.87 

5 2.3723 2.35491 0.73 

6 3.4695 3.44352 0.74 

7 4.7685 4.72918 0.82 

8 6.2687 6.20995 0.93 

9 7.9694 7.88407 0.11 

10 9.8707 9.74973 0.12 
 

 

 

discrepancy between the results is approximately 1%. As 

well as this, it can be seen that by increasing the mode 

number, the natural frequency tends to decrease and then 

increase. As another validation, Table 3 compares the 

results for dimensionless natural frequency of a cylindrical 

shell with different distribution patterns, between the 

reported results with those obtained by Liu et al. (2018), for 

different geometrical parameters. The static and dynamic 

gains of the PD controller are obtained by Matlab software 

as Gd = 0.455 and Gv = 0.6, respectively.   
 

4.3 Material properties 
 

In the current study, the GPLRC structure with a 

thickness of hGPL =1.5 nm, length of aGPL = 2.5 nm and 

Radius of RGPL = 0.75 nm is modeled. The mechanical 

properties of the GPL and epoxy are given in Table 4. In 

addition, the material properties of the piezoelectric layers 

are given in Safarpour et al. (2019a, b).  

 

4.4 Results and discussion 
 

Fig. 2 illustrates the effects of the smart controller and 

applied voltage through the thickness of the piezoelectric 

sensor and actuator on the vibrational behavior of the 

structure for S-S and C-C boundary conditions. As an 

astonishing and applicable result for having a suitable 

prediction about the behavior, control, and operation of the 

composite structure which can be seen from Fig. 2 is that, at 

the lower value of the applied voltage, the influence of the 

smart controller on the frequency of the nanocomposite 

 

 

 

Table 4 Material properties of the epoxy and GPL  

(Wu et al. 2017) 

Material properties Epoxy GPL 

Young’s modulus (GPa) 3 1010 

Density (kg m-3) 1200 1062.5 

Poisson’s ratio 0.34 0.186 
 

 

 

 

Fig. 2 The effects of the smart controller and applied 
voltage on the natural frequency for different 

boundary conditions 

 

 

shell is much more significant in comparison with the 

higher ones. By having more attention to this figure, at the 

higher value of the applied voltage, the positive effect of the 

employing smart piezoelectric sensor and actuator 

controller has appeared for both C-C and S-S boundary 

conditions. It is obvious that not only can see an 

improvement from a smart piezoelectric sensor and actuator 

controller on the stability of the structure but also this 
phenomenon is much more remarkable for S-S in 

comparison with C-C boundary condition. Figs. 3, 4 and 5 

show the influence of nonlocal parameter (𝜇/𝑅), PD smart 

controller, and 𝑔GPL  on the natural frequency of the 

GPLRC smart shell with C-C, C-S and S-S boundary 

conditions. 

The more common result which these figures confirm is 

that, for all boundary conditions and different values of the 

𝑔𝐺𝑃𝐿 , by increasing the 𝜇/𝑅 parameter, the natural 
frequency of  the  GPLRC smart  shel l  decreases 

exponentially. According to these figures, the remarkable 

result is that by increasing the value of the 𝑔𝐺𝑃𝐿 encounters 

us with an improvement in the dynamic responses of the 

smart structure. In addition, when the controller is  

 

 

 

Table 3 Comparison of the dimensionless natural frequency of GPLRC nanoshells, considering different parameters 

mπL/lGPL Epoxy 
Epoxy present 

(Liu et al. 2018) 
GPL-UD 

(Liu et al. 2018) 
GPL-UD present 

GPL-A 
(Liu et al. 2018) 

GPL-A present 

2 0.9659 0.9365985 2.3674 2.303659 2.2517 2.242659 

5 2.6997 2.6698544 6.6185 6.486598 5.4878 5.463265 

10 5.6503 5.6265987 13.8540 13.80756 9.6421 9.635698 
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Fig. 3 The effects of the smart controller, nonlocal 

parameter, and gGPL on the natural frequency of 

the GPLRC smart shell for S-S boundary 

conditions 
 

 

 

Fig. 4 The effects of the smart controller, nonlocal 
parameter and gGPL on the natural frequency of 

the GPLRC smart shell for the C-S boundary 

conditions 

 

 

 

Fig. 5 The effects of the smart controller, nonlocal 

parameter and gGPL on the natural frequency of 

the GPLRC smart shell for the C-C boundary 

conditions 

 

 

considered, the improvement of the stability of the smart 

shell from increasing the 𝑔𝐺𝑃𝐿 is less than the condition 

which there is not considered the controller. In other words,  
 

 

Fig. 6 The effects of the applied voltage and different 

porosity coefficients on the natural frequency of 

the GPLRC smart shell for the S-S boundary 

conditions 

 

 

 

Fig. 7 The effects of the applied voltage and different 

porosity coefficients on the natural frequency of 

the GPLRC smart shell for the C-S boundary 

conditions 

 

 

 

Fig. 8 The effects of the applied voltage and different 

porosity coefficients on the natural frequency of 

the GPLRC smart shell for the C-C boundary 

conditions 

 

 

by considering the controller the positive effect of 𝑔𝐺𝑃𝐿  on 

the frequency is not remarkable in comparison without 
controller. The best result from these fingers is that, when 

the boundary condition changes from S-S to C-C, the  
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Fig. 9 The effects of the smart controller, applied 

voltage, and GPL reinforcement on the natural 

frequency of the GPLRC smart shell for the S-S 

boundary condition 

 
 

 

Fig. 10 The effects of the smart controller, applied 
voltage, and GPL reinforcement on the natural 

frequency of the GPLRC smart shell for the C-S 

boundary condition 

 
 

 

Fig. 11 The effects of the smart controller, applied 

voltage, and GPL reinforcement on the natural 
frequency of the GPLRC smart shell for the C-C 

boundary condition 

 

 

affirmative effect of the smart controller and 𝑔𝐺𝑃𝐿 on the 

frequency decreases. For more comprehensive, by 

increasing the rigidity at boundary domains (changing 

boundary conditions from S-S to C-C), the effect of 

controller and GPL reinforcement on the frequency 

decrease. Figs. 6, 7 and 8 encounter us with a presentation 

about the effects of the applied voltage and different 

porosity coefficients (𝛼𝑝) on the natural frequency of the 

smart GPL reinforced shell for C-C, C-S and S-S boundary 

conditions. 

According to the above figures, the main result is that 

increasing the porosity coefficient leads to a decrease the 

critical applied voltage of the GPLRC smart shell for all 

boundary conditions and these phenomena are intensified 

when the boundary conditions of the structure change from 

S-S to C-C. Figs. 9, 10 and 11 encounter us with a 

presentation about the effects of the smart controller, 
applied voltage, and GPL reinforcement on the natural 

frequency of the smart shell for C-C, C-S and S-S boundary 

conditions 

Possessed in common result is that when the core of the 

structure changes from pure epoxy to GPLRC, the dynamic 

stability or natural frequency of the structure and critical 

dimensionless voltage increase simultaneously, due to 

adding a little bit of GPL into pure epoxy as a 

reinforcement. The main result which comes up from Figs. 

9, 10 and 11 is that considering the smart controller causes 

to increase in the critical applied voltage and frequency of 
the system for both pure epoxy and GPLRC shell. As an 

astonishing result for the literature, for a specific value of 

the dimensionless voltage, the natural frequency of the pure 

epoxy shell integrated with piezoelectric sensor and 

actuator and GPLRC shell without controller is equaled so 

that this matter proves that by employing the smart 

controller can design a simple structure (pure epoxy shell) 

for the desired application instead of the complex composite 

(GPLRC) shell. 

 

 

5. Conclusions 
 

This study focused on presenting a numerical solution 

for control vibration analysis of a GPLRC porous 

cylindrical shell covered with sensor and actuator layers. 

Governing differential motion equations were solved using 

Hamilton’s principle. Validation of the obtained results was 

examined by comparing them with those published in the 

available literature. The results show that the PD controller, 

applied voltage and gGPL have a significant influence on the 

frequency characteristics of the porous GPLRC cylindrical 

shell.  The numerical results revealed that: 
• At the lower value of the applied voltage, the influence 

of the smart controller on the frequency of the micro 

composite shell is much more significant in comparison 

with the higher ones. 

• The results demonstrate that the natural frequency of 

the structure goes up when the PD controller is considered. 

• The best result from these fingers is that, when the 

boundary condition changes from S-S to C-C, the 

affirmative effect of the smart controller and 𝑔𝐺𝑃𝐿 on the 

frequency decreases. 

• Increase in the porosity coefficient leads to a decrease 
in the critical applied voltage of the GPLRC smart shell for 

all boundary conditions and these phenomena are 
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intensified when the boundary conditions of the structure 

change from S-S to C-C. 
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