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1. Introduction 

 

The application range of vibration-based monitoring is 

very broad. It focuses not only on defect detection, but also 

is used to inspect and control construction quality, model 

calibration and verification of design factors, providing a 

stop warning for traffic, proposing maintenance plans and 

predicting serviceability of structures. Depending on the 
followed approach, a large number of sensors or a few 

sensors combined with a numerical model are needed 

(Peeters 2000). A benchmark or baseline FE model needs to 

be  generated by using dynamic properties from 

experiments. However, a mismatch always exists between 

the FE model based on as-built documents and experimental 

results due to various uncertainty sources. These sources 

can be due to (i) modelling of physical uncertainties, e.g., 

boundary conditions, geometric dimensions, material  
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properties, etc., (ii) numerical uncertainties, i.e., element 

types, mesh size, human mistakes, etc. and (iii) 

measurement errors, e.g., unsuitable sensor, noise, 

synchronization and data processing errors, etc. Therefore, 

after reducing uncertainties in simulation and testing, model 

parameters have to be updated in order to decrease the 

mismatch. Generally speaking, there are two types of model 

updating methods, namely direct methods and iterative 
methods. The dominant advantage of direct methods is 

computational efficiency because the system mass and 

stiffness matrices are directly updated (Carvalho et al. 2007, 

Cottin and Reetz 2006). However, the obtained matrices 

may have no physical meaning and cannot be suitable for 

engineering judgment. The iterative methods minimize the 

differences between numerical and experimental results by 

updating values of the most sensitivity parameters to the 

model outputs in an iterative process. The latter provides 

flexible choices for updating parameters that are utilized 

within an objective function. The efficiency of model 

updating can be improved when it is combined with 
optimization algorithms. Numerous researchers successfully 

applied several optimization techniques such as Genetic 

Algorithms (GA) and Particle Swarm Optimization (PSO) 

by Tran-Ngoc et al. (2018), improved PSO for a cable-
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Abstract.  Although model updating has been widely applied using a specific optimization algorithm with a single objective 
function using frequencies, mode shapes or frequency response functions, there are few studies that investigate hybrid 

optimization algorithms for real structures. Many of them did not take into account the sensitivity of the updating parameters to 
the model outputs. Therefore, in this paper, optimization algorithms and sensitivity analysis are applied for model updating of a 

real cable-stayed bridge, i.e., the Kien bridge in Vietnam, based on experimental data. First, a global sensitivity analysis using 
Morris method is employed to find out the most sensitive parameters among twenty surveyed parameters based on the outputs of 

a Finite Element (FE) model. Then, an objective function related to the differences between frequencies, and mode shapes by 
means of MAC, COMAC and eCOMAC indices, is introduced. Three metaheuristic algorithms, namely Gravitational Search 

Algorithm (GSA), Particle Swarm Optimization algorithm (PSO) and hybrid PSOGSA algorithm, are applied to minimize the 
difference between simulation and experimental results. A laboratory pipe and Kien bridge are used to validate the proposed 

approach. Efficiency and reliability of the proposed algorithms are investigated by comparing their convergence rate, 
computational time, errors in frequencies and mode shapes with experimental data. From the results, PSO and PSOGSA show 

good performance and are suitable for complex and time-consuming analysis such as model updating of a real cable-stayed 
bridge. Meanwhile, GSA shows a slow convergence for the same number of population and iterations as PSO and PSOGSA. 
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stayed bridge by Hoa et al. (2020) and PSO combined with 

orthogonal diagonalization for a truss bridge by Tran-Ngoc 

et al. (2020). Some authors combined them with a surrogate 

model, e.g., Kriging model by Qin et al. (2018) or response 

surface method by Deng and Cai (2010), Islam et al. (2018) 
and Ghiasi and Ghasemi (2018) to reduce the computational 

cost. A few studies utilized hybrid optimization for updating 

model parameters. Recently, some new optimization 

algorithms and their hybrid forms are proposed, namely 

Gravitational Search Algorithms (GSA) and combined 

PSOGSA. These algorithms demonstrated their validity for 

mathematical optimization problems thanks to cheap cost 

and accuracy compared with previous algorithms (Rashedi 

et al. 2009, Mirjalili et al. 2014). Khatir et al. (2018) used 

Particle Swarm Optimization (PSO) to calibrate the FE 

model of beam-like structures using experimentally 
measured natural frequencies. A comparison between 

Isogeometric Analysis (IGA) and Finite Element Method 

(FEM) based on measurements is considered by Khatir et 

al. (2019). A model updating based on Teaching-Learning-

Based Optimization Algorithm (TLBO) was presented by 

including vertical springs. More accurate results were 

obtained based on experimental data. Khatir et al. (2019) 

presented an application for model updating using Cuckoo 

Search algorithm (CS) based on measured data. The 

parameters considered for this application were the IGA 

parameters, which were based on NURBS order and 

discretization in two-dimensional space. Furthermore, 
Khatir et al. (2020) also applied a hybrid TLBO-PSO-ANN 

for fast damage identification in steel beam structures using 

IGA. A novel meta-heuristic optimization algorithm, 

namely Balancing Composite Motions (BCMO) was 

developed by Le-Duc et al. (2020). It is worth mentioning 

that no algorithm-specific parameter is required in 

constructing the algorithm. Therefore, the implementation 

of BCMO is easy and simple for solving varieties of 

optimization problem. The application of BCMO in several 

benchmark problems and especially in three real 

engineering design problems, proved its effectiveness and 
robustness. Besides the traditional model updating method 

based on FEM, it becomes very interesting when artificial 

neural networks and adaptive collocation strategy for an 

inverse acoustics problem are used (Anitescu et al. 2019). 

The obtained results with good accuracy proved that this 

method could be successfully applied for stochastic 

analysis, for both forward and inverse problems. However, 

the application of these algorithms on bridge structures is 

uncommon. Hence, it is necessary to investigate the 

application of these optimization techniques for real 

structures. Some popular objective functions that are often 

widely used, make use of natural frequencies, mode shapes 
by mean of MAC index and frequency response functions 

(Lin and Ewins 1994). In this paper, another direct usage of 

mode shape, COMAC or enhanced COMAC (known as 

eCOMAC), is investigated. The obtained results are 

compared with those obtained by more traditional objective 

functions. 

Besides that, in model updating, choosing the right 

updating parameters from the FE model is extremely 

important. Sometimes, this depends on experience of 

engineers or based on engineering judgment (Altunisik and 

Alemdar 2017). Updating parameter selection is not an easy 

task, especially in complex structures because of the 

uncertainties in boundary conditions, real values of material 

properties, variances of geometric dimensions, etc. A good 
selection not only achieves a superior match between 

experimental and numerical data, but also reduces 

significantly the computational time. Hence, it is necessary 

to use a reliable sensitivity measure to identify updating 

parameters among various uncertainties. One of the 

common purposes of sensitivity analysis is to determine the 

most influential factors on the outputs. In other words, 

sensi t i vi ty analysi s helps engineer s to have a 

comprehensive view about input-output relationship. In 

general, sensitivity analysis can be classified by several 

specifications. For instance, based on the manner of 
variation of parameters, global sensitivity analysis, and 

local sensitivity analysis are defined. In comparison with 

local sensitivity analysis, the global sensitivity analysis 

methods are independent of linearity of relationship 

between inputs and outcomes. Consequently, a wide 

applicability is the advantage of these methods. Sobol and 

Morris’ method can be referred to as global sensitivity 

analysis. Sobol (2001) developed a new global sensitivity 

analysis approach by utilizing Monte Carlo based 

integration to estimate the impact of every single input 

parameter, as well as all input parameters on model results. 

The first index is the first-order effect sensitivity index. 
This index reveals the effect of individual inputs on the 

change in model outputs. The second index is the total 

effect sensitivity index, which measures the shift of outputs 

due to the interaction between inputs. Many subsequent 

studies used Sobol method effectively. Wan and Ren (2015) 

combined Gaussian process meta-model and Sobol 

approach to identify important parameters in a steel plate 

and in a real arch bridge. The obtained results revealed the 

reliability and feasibility of the proposed approach. 

However, in order to achieve an affordable accuracy of 

sensitivity indices, authors used a high number of sample 
size N for Monte Carlo discretization. It means that this 

method is very time-consuming. The number of required 

simulation runs is calculated as t = N  2  (p + 1) with p is 

number of input parameters. There is another common 

method for sensitivity analysis, namely Morris method also 

known as Element Effects (EE) method. In EE method, the 

effect of each input is calculated by dividing the variance of 

output by variance of one input. The method, which was 

derived from one at a time method, was developed by 

Morris (1991). According to the obtained sample points 

from a good trajectory, the calculation of a group of EEs is 

a good step to achieve a global result. In this method, two 

indices are determined for ranking model parameters based 

on the output. The first factor is the mean value, , which 

represents the level of influence of an input on the model 

output. The second factor is the standard deviation, , 
which represents the level of independence of an input’s 

influence on other inputs. The number of required runs for 

model evaluation of this method is t = r  (p + 1), where the 

number of parameters is p and the number of trajectories is 

r. Campolongo et al. (2007) proposed a modified mean  
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Fig. 1 Methodology flowchart 
 

 

index, *, with absolute values of EEs to overcome the 

limitation of a monotonic model. Updating parameters of a 

heritage structure was chosen by Boscato et al. (2015) using 

Morris method. The obtained results confirmed the validity 

and reliability of the method. Menberg et al. (2016) 

conducted a comparative study on computational costs and 

extractable information between Morris method, linear 

regression analysis and Sobol method. It was found that the 

computational cost of Morris method was much lower than 

that of Sobol method. A combination of Morris method and 

Sobol index was carried out and applied to a composite 
beam by Feng et al. (2019). They only used the modified 

mean index * for comparison purpose with their proposed 

index because of its reality. A toolbox for uncertainty and 

sensitivity analysis methods was developed by Vu-Bac et 

al. (2016). In this toolbox, the authors combined three 

components: sampling methods of input parameters, 

surrogate model, and implementing Sobol’s method for 

sensitivity analysis. The study was applied successfully to 

computationally expensive models. Hamdia et al. (2017) 

proposed a methodology for stochastic analysis of the 

fracture in polymer nanocomposites. Based on sensitivity 

analysis using Sobol’ method, they constructed a 

polynomial chaos expansion surrogate model of six input 
parameters. The two significant parameters, the maximum 

allowable principal stress and Young’s modulus of the 

epoxy matrix, were determined from the obtained results. A 

comparison study of sensitivity and uncertainty analysis for 

a pure flexoelectric beam and a composite beam was 

conducted by Hamdia et al. (2018). In this study, the 

authors used three sensitivity analysis methods, namely 

Morris One-at-a-time, PCE-Sobol’ and extended Fourier 

amplitude sensitivity test. From the results, they not only 

indicated the most dominant parameters, but also showed 

the significant interaction effects of the material properties. 

For a practical and complex structure as the surveyed Kien 
bridge, computational costs should be considered. 

Therefore, in this paper, Morris method is employed for 

sensitivity analysis and * index is used to rank the model 

factors based on their importance. 

A metaheuristic algorithm is applied to build a baseline 

model for the Kien bridge. The proposed approach consists 

of two successive steps. In the first step, a global sensitivity 

analysis method is used to identify the important parameters 

for the model outputs. In the second step, the reliability and 
effectiveness of three optimization algorithms are 

investigated by mean of objective functions. Dynamic 

responses of the benchmark model are compared with the 

real behaviour of the bridge. The methodology followed in 

this paper is illustrated by the flowchart shown in Fig. 1. 

 

 

2. Morris screening method for sensitivity analysis 
 

The more uncertain input parameters in the FE model, 

the more uncertain output parameters are. Therefore, in 
order to increase credibility, as well as, accuracy of 

numerical results, Morris method for sensitivity analysis is 

indispensable. Some parameters should be chosen before 

conducting the sensitivity analysis process. The value of 

sampling step, , for each input parameter should remain 

the same between [0-1] regardless the different magnitudes 

of individual inputs. The choice of  is related to the 

number of levels p, i.e.,  = p/[2  (p - 1)] with p an even 

value. However, the choice of p is dependent on the choice 

of sampling size r. Many previous studies found that values 

of p = 4 and r = 10 can create superior results. In his 

experiments, Morris used r = 4, a minimum value that could 

generate reliable results (Saltelli 2004). Hence, when p = 4 

and  = 2/3, the selection probability of each level (0, 1/3, 

2/3, 1) is similar. Assuming that with the number of 

variables is k, in order to calculate k element effects, an 

input space (k + 1) by r or (k + 1)  r sample points should 

be constructed. 

The method begins with a set X = {0, 1/(p - 1), 2/(p - 1), 
…, 1}. Then a random starting points x* is chosen from 

space X. These points x* are used to form other sampling 

points, i.e., xi

j
, i  (1, 2, …, k) and j  (1, 2, …, k + 1) by 

adding randomly  to at least one component of x*. The 

trajectory is closed until all sampling points xk+1 are 

generated. Note that the difference between two successive 

sampling points is only located in one component jth of a 

trajectory. After evaluating the model at all points in each 

trajectory, the EE for each input variable k is calculated as 

 

EEi
l=

f(xi + Δ) − f(xi)

Δ
 if  is an increase value of 𝑥𝑖 (1) 

 

EEi
l=

f(xi) − f(xi+Δ)

Δ
 if  is a decrease value of 𝑥𝑖 (2) 

 

where f(xi + ) and f(xi) are corresponding outputs of input 

variables (xi + ) and (xi), respectively. 

Modified mean index, 𝜇𝑖
∗ , for assessing the overall 

effect of an input on output of ith variable through r 

trajectory can be estimated as 

 

μi
*=

∑ |EEi
l|r

l=1

r
 (3) 
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Fig. 2 Step-by-step Morris method 

 

 

Standard deviation index , for estimating the 

interaction with other inputs is calculated as 

 

𝑖=√
1

𝑟
∑(𝐸𝐸𝑖

𝑙 − 𝜇𝑖
∗)2

𝑟

𝑙=1

 (4) 

 

The implementation of Morris method is shown in Fig. 

2. For details of the implementation procedure of the 

method, the interested reader may consult Saltelli (2004). 

 

 
3. Theory of metaheuristic algorithms 

 

3.1 Particle swarm optimization algorithm (PSO) 
 

The starting point of PSO is derived from natural social 

behaviour as well as dynamic moving of birds, fish or 

insects. Kennedy and Eberhart (1995) proposed an 

evolutionary technique for optimization problems. Self-

experiences and social experiences are combined in the 

technique. To look for the best solution (or the best 

particle), a swarm movement (or flying) is generated around 

multi-dimensional search space (possible solutions) by 
using a number of particles (or candidate solutions). During 

the process of evolution, particle’s experience is 

accumulated with shifted position, speed, and move forward 

to promising space to achieve the global maximum (or 

minimum). It means that each particle (or agent) self-

regulates its moving based on its self-experience with 

regard to other particles’ experience. By mean of updating 

the current position, as well as, current velocity after each 

iteration, the personal best of each particle (pbest) and the 

global best of all particles (gbest) are obtained. Dominant 

advantages of PSO are its simple programmability and quite 
low computational cost. Mathematic equations of PSO or 

particle update rules for velocity and position of each 

particle are as follows 

vi(t +1) = ω × vi(t) + cc × rand(0-1) × [pbesti(t)

− xi(t)] + cs × rand(0-1) × [gbesti(t) − xi(t)] 
(5) 

 

xi(t + 1) = xi(t) + vi(t + 1) (6) 
 

where, vi(t + 1) is velocity of particle i at iteration (t + 1), 

which can be identified based on exploration ability   

vi(t), particle’s memory cc  rand(0-1)  [pbesti(t) – xi(t)] and 

collaboration of particles cs  rand(0-1)  [gbesti(t) – xi(t)]. 

The first part keeps each particle flying in the same original 

direction. The second part returns to the particle’s personal 

best position in the search space. The last part causes 

particle to fly to the global best in the multi-dimension 

search space. The value of the inertial coefficient  varies 

often from 0.8 to 1.2. The cognitive coefficient cc and the 

social coefficient cs lie between [0-2], but close to 2. 

Random values rand(0-1) are uniformly distributed in a range 

of [0-1]. Firstly, PSO is kicked off by a random set of 
particles’ positions in search the region. The velocity of 

each particle is calculated in every single iteration. Then 

positions of particles are identified based on their updated 

velocities. After identifying the updated positions of 

particles, fitness of each particle relevant to the objective 

function is calculated. The changing process of particles’ 

position continues until termination criteria is met (max 

iteration or small deviation between two successive values 

of objective function). 

 

3.2 Gravitational search algorithm (GSA) 
 

In 2009, inspired by the Newton law of gravity as well 

as mass interactions between agents in universe, Rashedi et 

al. (2009) developed a new heuristic optimization method, 

namely Gravitational Search Algorithm (GSA). Gravity 

force causes agents to interact with the other according to 

their mass. Following Newton law, the gravity causes a 

lighter mass to move towards heavier mass. In other words, 

the heavier the agent, the slower its motion and the larger 

gravity force. The heaviest agent can be considered as 

representative of the global optimum value or the best 

optimal solution. According to the law of gravity, at a 
specific time t, with a Euclidian distance Rij(t) between two 

agents and their random positions xj(t), xi(t) in search space, 

 is a small constant, the attraction force applied on agent i 

from agent j can be identified as 
 

Fij(t) = G(t) ×
Mpi(t) × Mai(t)

Rij(t)+ε
× (xj(t) − xi(t)) (7) 

 

where 
 

Rij(t) + ε  ≈ norm (xj(t) − xi(t)) (8) 

 

where Mpi and Maj are a passive and active gravitational 

mass of i and j agents, respectively. Mass of agent i is 

determined using the best, worst and current values of 

fitness 
 

Mi(t)=
mi(t)

∑ mj(t)N
j=1

 (9) 
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mi(t)=
fitnessi(t) − worst(t)

best(t) − worst(t)
 (10) 

 

The gravitational constant G(t) at time t is calculated 

based on an initial value G0 and reducing coefficient  as 

 

G(t)=G0 × 𝑒(−α 
current − iteration

max − iteration
)  (11) 

 

Assuming that with N agents (masses) in a system, the 

total gravitational force on agent i, is calculated using a 

random sum of components of forces from other agents 

with the condition j  i 
 

Fi(t)= ∑ rand × Fij(t)

N

j=1, j≠i

 (12) 

 

According to the law of motion, when gravity force is 

applied to agent, it moves with acceleration according to the 

magnitude of force and mass of agent. Therefore, the 

acceleration of agent i, at time t is given by 
 

ai(t)=
Fi(t)

Mi(t)
 (13) 

 

Same as for PSO, during the search process, each agent 

updates its velocity and position until an end criterion is 

met. The new velocity of the agent is identified by the 

current velocity and acceleration. Similarly, the next 

position is calculated using the current position and the next 

velocity 
 

vi(t  +1) = rand  × vi(t) + ai(t) (14) 
 

xi(t + 1) = xi(t) +vi(t + 1) (15) 

 

3.3 Hybrid optimization algorithm PSOGSA 
 

From the idea of a co-evolutionary algorithm, Mirjalili 
et al. (2014) proposed a new hybrid PSOGSA, combining 

two algorithms PSO and GSA. In this hybrid algorithm, 

both algorithms PSO and GSA run simultaneously to find 

out the best solution. Therefore, social thinking and local 

search ability in PSO and GSA, respectively, are associated. 

The foundation of PSOGSA relies on GSA. It starts with the 

calculation of gravitational forces, then acceleration of 

agents (particles). After identifying the best fitness so far in 

every iteration, Mirjalili et al. (2014) updated velocities of 

agents (particles) using the following equation 
 

vi(t + 1) = ω × vi(t)+cc × rand(0-1) × ai(t) 

+ cs × rand(0-1) × [gbesti(t) − xi(t)] 
(16) 

 

In the above equation, the acceleration of agent 

(particle) i at time t, ai(t) is used to replace [pbesti(t) – xi(t)] 

in Eq. (5), while other parameters remain the same. Then, 

agent’s (particle’s) positions are calculated after each 

iteration using the same equation as PSO and GSA 
 

xi(t + 1) = xi(t) + vi(t + 1) (17) 

 

 

Fig. 3 General view of Kien cable stayed bridge 

 
 

The update of velocity and position of all agents 

(particles) is stopped when the termination condition is 

satisfied. 

 

 

4. Measurements on Kien bridge 
 
4.1 Introuction to Kien bridge 
 
In the framework of the VLIR-UOS research project 

VN2018TEA479A103, the vibration measurement 
campaign of Kien bridge was carried out in November 

2018. Kien bridge carries a two-lane traffic road (No. 10 

Highway) and two lanes for both pedestrians and cyclists 

over the Cam river in Vietnam. The main structure system is 

a cable-stayed bridge with a 3-span continuous pre-stressed 

concrete box girder spanning over 85 m + 200 m + 85 m. 

The main cable-stayed bridge was constructed by using a 

balanced cantilever method from 2001 to 2003 in a 

Vietnam-Japan joint project. The approach bridge consists 

of 12 simply supported pre-stressed concrete spans, each of 

which has 34 meters (see Fig. 3). The entire width of the 
bridge is 16.7 m for the main bridge and 15.1 m for the 

approach bridge. The cross-section of the main bridge is a 

3-cell box girder with a constant height of 2.2 m, while the 

approach bridge consists of six pre-stressed concrete I-

beams. 

The bridge includes two cable planes, which are 17.6 m 

far from each other. The height of the H-pylon with a solid 

rectangle cross-section is 51.5 m from the deck and 59.5 m 

from the top of the pile cap. From these pylons, 72 cables 

are stretched down diagonally to both sides and support the 

box girder. The stay cables in Kien bridge are arranged in a 

fan configuration. The inclined angle of the cable ranges 
from 30.44° to 50.37°. The length of stay cables varies from 

20 m at the pylon to 103 m at mid-span and 95 m at the 

approach piers. A tendon consists of 37 to 48 strands of 15.2 

mm diameter. Quality of strand satisfies the requirements of 

AASHTO M203 (ASTM416M). The stay cable was 

stressed using strand-by-strand cable installation with the 

allowance tensile stress of 0.55 fpu during construction. 

The objectives of measurements are: (i) to identify the 

modal parameters of the bridge under ambient load and (ii) 

to achieve a suitable numerical model as a baseline model 

for further study and future structural health monitoring 
activities. 

 

4.2 On-site measurement campaign 
 

Based on the obtained results from the initial FE model,  
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(a) Recording time response 

 
(b) Sensor placement 

Fig. 4 Instrumentation for data acquisition in the field 

 

 

 

Fig. 5 Placement of measurement points on Kien bridge 
(red: reference nodes, blue: roving nodes,  

: transversal, : vertical, →: longitudinal) 

 

 

a measurement plan was set up. Excitation, instrumentation, 

measurement setups, and data acquisition are presented in 

this section (Fig. 4). 

Excitation source during the vibration measurement is 

the passing traffic and wind. Eight one-dimensional 

accelerometers of PCB with high sensitivity from 1054 to 

1083 mV/m/s2, were employed. The acquisition time for 
each setup is at least 30 minutes with a sampling frequency 

of 1651 Hz. Because of the limitation in number of sensors 

and to obtain the global vibration modes of the bridge, a 

measurement grid consisting of 9 setups was conducted to 

cover 46 measurement points on the top of deck bridge and 

along the bridge (see Fig. 5). However, to scale and 

combine these different setups, some reference points need 

to be chosen. The data quality at reference nodes 

significantly contributes to the accuracy of the system 

identification in the data processing step. Consequently, the 

locations of the reference nodes should be placed at the 

positions where modes of interest evidently appear. In other 
words, these points should not be placed at positions where 

modal displacements of relevant mode shapes are zero. 

Other roving points were spread over the bridge. Quick 

deployment, accessibility on-site and wire length are 

important factors in order to plan measurement setups. For 

this reason, measurement points are placed on the 

sidewalks; covering longitudinal, vertical, transversal 

directions (also see Fig. 5). 

 

4.3 Data processing and feature extraction 
 
A toolbox in MATLAB, namely MACEC (Reynders et  

 
(a) Time domain 

 
(b) Frequency domain 

Fig. 6 Acceleration under ambient excitations at one sensor 

 

 
al. 2014), is employed to process the measured data. The 

step-by-step signal processing procedure is performed as 

follows. 

 

4.3.1 Data pre-processing 
• To remove the offsets from the measured data due to 

Direct Current (DC) components, “REMOVE OFFSET” 

function is selected with “ALL CHANNELS” options 

before press “APPLY”. 

• Low-frequency noise also needs to be removed from 

the data by using a “FILT-FILT” function. By entering a 

value of 0.1 Hz, the high-pass filter only passes signals with 
a frequency higher than a frequency value of 0.1 Hz. 

• “TIME WINDOW” function is selected to extract only 

the expected pure data by defining the time window from 0 

s to 1200 s, equivalent to 20 minutes of measurement. 

• To save processing time, to reduce the data and to 

facilitate the “System Identification”, “DECIMATE” 

function is chosen to resample the data. In general, the 

frequency range of interest in bridge engineering often lies 

between 0-20 Hz, especially the fundamental frequency 

values in cable-stayed bridge are quite low. By entering a 

decimation factor of 160, the Nyquist frequency is reduced 
from 800 Hz to 5 Hz. 

• Using “DELETE CHANNEL” function, all data of bad 

signals are deleted from setup (if any). 

Fig. 6(a) illustrates the time-domain response of a 

representative sensor. Then, Fast Fourier Transform (FFT) 

technique is made by transferring time-domain response to 

frequency-domain response as shown in Fig. 6(b). The 

achieved peaks in frequency domain can correspond to the 

natural frequencies of the bridge. 

 

4.3.2 System identification 
• Stochastic Subspace Identification (SSI) algorithm is 

employed to perform system identification for the output-

only (also operational) Modal Analysis (OMA) of 

structures. By comparing two algorithms, data-driven (SSI-

data) and covariance (SSI-cov), the second algorithm has 

some advantages: More straightforward, computationally 
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Fig. 7 Representative stabilization diagram of the bridge 

in an interval 0.4-2 Hz 

 

 

computationally less time with a similar accuracy 

(Reynders et al. 2008). Therefore, SSI-COV is chosen to 

perform system identification. Details of SSI method can be 

found in Peeters (2000), Peeters and De Roeck (2001), 

Casciati et al. (2016) and Huang and Chen (2017).  
• To kick off building of the Hankel matrix and 

projection matrix of measured data, an expected system 

order, i = 100, is entered and system matrices are calculated 

with system orders: 2:2:200. 

 

4.3.3 Modal analysis 
The dynamic characteristics are estimated by a 

stabilization diagram. Several stabilization criteria are 

sketched: 1% for frequency, 5% for damping factor and 1% 

for modal vectors. The stabilization diagrams are 

constructed from the state space system identified with SSI-

COV as mentioned above. In Fig. 7, for a clearer view, the 
stabilization diagram consisting of vertical lines is shown in 

the interval between 0 and 2 Hz. The mode shapes of the 

first five modes are shown in Fig. 8. 

 

 

5. FE model updating 
 

In this section, the proposed algorithms are applied for a 

simple pipe first and then to the Kien bridge, considering 

several objective functions. The obtained results are used to 

compare between the different methods. 
 

5.1 Small-scale structure 
 

The efficiency of three optimization algorithms is 

assessed by applying them to a pipe tested in the laboratory. 

Based on a report of vibration analysis of a real steel pipe 

conducted by Bui (2011) at KU Leuven University, the 

authors utilized these data to build a suitable numerical 

model. At first, the obtained results of numerical model are 

compared with measured data. Then, optimization 

techniques are applied to minimize the difference between 
simulation and measurement. Several scenarios with regard 

to the number of population (agents) are investigated.  

 
(a) Identified 1st bending mode at 0.452 Hz 

 
(b) Identified 2nd bending mode at 0.766 Hz 

 
(c) Identified 3rd bending mode at 1.106 Hz 

 
(d) Identified 4th bending mode at 1.292 Hz 

 

(e) Identified 5th-bending mode at 1.691 Hz 

 
(f) MAC values 

Fig. 8 Measured vertical bending modes from (a) to (e) 

and MAC values of the first five modes (f) 

 

 

Convergence rate and CPU-time are used to evaluate the 

proposed algorithms. 

 

5.1.1 Test descriptions 
To reduce natural frequency values, two masses are  
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Fig. 9 Schematic drawing of experimental pipe and 

sensor placement (dimension in mm) (Bui 2011) 

 

 

 
(a) The first mode 

 

(b) The second mode 

Fig. 10 Measured and simulated mode shapes of plain 
pipe based on 10 measurement points 

 

 

Table 1 Dimensions and material properties of the pipe 

Elastic modulus E (N/m2) Density ρ (kN/m3) Poisson’s Ratio  

2.1×1011 7800 0.3 
 

 
 

Table 2 Dimensions and material properties of the pipe 

L (mm) rout (mm) rin (mm) Thickness d (mm) 

4800 161.925 149.225 12.7 
 

 

 
attached at both ends of the pipe. The pipe is hanging on 

two flexible springs. The stiffness of the “supports” is 

negligible in comparison with pipe’s rigidity. Thus, free-free 

conditions are generated. Twenty accelerometers are placed 

along the pipe, both on the top and side of the pipe (Fig. 9). 

The pipe is excited by two rotating masses placed at one 

pipe end. The first two vertical bending modes are 

identified at 34.56 Hz and 100.43 Hz. Mode shapes of plain 

pipe are shown in Fig. 10. 

 

5.1.2 Numerical FE model 
A FE model is built with free-free boundary condition 

using beam element type 189 in ANSYS (2016), which is 

employed to perform a dynamic analysis of the pipe. Pipe’s 

dimensions are L = 4800 mm length, d = 12.7 mm thickness 

and out-diameter dout = 323.85 mm (see Fig. 9). The 

material properties of the pipe used in the simulation are 

listed in Tables 1 and 2. The first two modes of simulated 

model are obtained and shown as Fig. 10. The first two 

natural frequencies and the difference in results between 

simulation and measurement are listed in Table 3. 

From the results, it can be seen that the simulated 

frequencies are higher than the measured ones. It means that  

Table 3 Comparison of frequency values 

Mode 
Natural Frequencies (Hz) 

Deviation 
Experiment Simulation 

1 34.56 35.81 -3.6% 

2 100.43 105.84 -5.4% 
 

 

 

Table 4 Variation of updating parameters in the FE model 

No Updating parameters Initial value Variation 

1 Elastic modulus (MPa) 2.1×1011 10% 

2 Mass density (kg/m3) 7800 10% 
 

 

 

the stiffness of the FE model is overestimated. In order to 

decrease the error between experimental and simulated 

frequencies, two parameters, elastic modulus (E) and mass 

density () are chosen for model updating. Sensitivity 

analysis of input parameters is not considered because of 

the simplicity of the model. 

 

5.1.3 Model updating 
Elastic modulus and mass density are assigned a 

possible change of ± 10% as listed in Table 4. Then PSO, 

GSA, and hybrid algorithms PSOGSA are used to identify 

the improved material properties. Several objective 

functions considering variation of frequencies, MAC, 

COMAC and eCOMAC values of the first two modes, are 

introduced to minimize the frequency deviation as follows 
 

Objective 1 = ∑ |1 −
𝑓𝑠𝑖𝑚

𝑗
× 𝑓𝑒𝑥

𝑗

(𝑓𝑒𝑥
𝑗 )

2 |

𝑚

𝑗=1

 (18) 

 

Objective 2 = ∑ |1 −
𝑓𝑠𝑖𝑚

𝑗
× 𝑓𝑒𝑥

𝑗

(𝑓𝑒𝑥
𝑗 )

2 |

𝑚

𝑗=1

 

                          + ∑ (1 − MACj)
𝑚

𝑗=1
 

(19) 

 

Objective 3 = ∑ |1 −
𝑓𝑠𝑖𝑚

𝑗
× 𝑓𝑒𝑥

𝑗

(𝑓𝑒𝑥
𝑗 )

2 |

𝑚

𝑗=1

 

                          + ∑ (1 − COMACi)
𝑛

𝑖=1
 

(20) 

 

Objective 4 = ∑ |1 −
𝑓𝑠𝑖𝑚

𝑗
× 𝑓𝑒𝑥

𝑗

(𝑓𝑒𝑥
𝑗 )

2 | + ∑ eCOMACi

𝑛

𝑖=1

𝑚

𝑗=1

 (21) 

 

where fsim, fex are simulated and experimental frequencies, 

respectively, m is the number of identified modes and MACj 

is modal assurance criterion of jth mode pairs between 

measured and simulated data. MACj compares 

displacements of all nodes in each mode shape j via 

correlation coefficient 

 

MACj = 
|∑ (φi

ex)𝑇 × φi
sim𝑛

𝑖=1 |2

{∑ (φi
ex)T × φi

ex𝑛
𝑖=1 } × {∑ (φi

sim)T × φi
sim𝑛

𝑖=1 }
 (22) 
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Fig. 11 Representative fitness maps of some case studies 

 

 

COMAC uses at each node the displacements of all 

modes for comparison. It can be determined as 
 

COMAC i= 
(∑ |φj,i

ex × φj,i
sim|m

j=1 )
2

∑ (φj,i
ex)

2m
j=1  × ∑ (φj,i

sim)
2m

j=1

 (23) 

 

where i is node number and COMAC is co-ordinate modal 

assurance criterion at each node, φ
j,i
ex, φ

j,i
sim  are measured 

and simulated modal vectors of jth mode at ith node.  

High values of MAC and COMAC indicate good 

correlation in mode pairs. Eq. (23) can be used effectively 

when data of mode pairs are on a similar scale. If not, a 

Modal Scale Factor (MSF) is suggested to scale data of 

mode shapes. MSF coefficient is a factor related to a pair of 

two-mode shapes. It is used to normalize all mode shapes of 

the same vibration mode to a common level. For instance, 

in order to scale simulated mode shapes to experimental 

mode shapes, MSFj(ex, sim) of jth mode can be calculated as 

 

MSFj(ex, sim)=
∑ φi,j

ex  × (φi,j
sim)conjn

i

∑ φi,j
sim  × (φi,j

sim)conjn
i

 (24) 

 

where n is the total number of nodes (DOFs) and conj 

implies conjugate values of mode shape data.  

Therefore, the scaled value of jth simulated mode shape 

at ith node is determined by 

 

φ̅i,j
sim = MSFj(ex,sim) × φi,j

sim  (25) 

 

Nevertheless, COMAC parameter has inherent 
limitations due to scaling or polarity errors in measured data  

 
(a) Using frequencies 

 
(b) Using frequencies + MAC 

 
(c) Using frequencies + COMAC 

 
(d) Using frequencies + eCOMAC 

Fig. 12 Frequency differences between simulation and 

measurement using three optimization 

algorithms 
 

 

or depends on a number of identified modes that can 

contribute to correlation. Consequently, an enhanced  
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(a) Using frequencies 

 
(b) Using frequecies + MAC 

 
(c) Using frequecies + COMAC 

 
(d) Using frequecies + eCOMAC 

Fig. 14 MAC values between simulation and 

measurement before and after updating for 

different objective functions 

 

 

COMAC (eCOMAC) is proposed by Hunt (1992) to 

overcomes the drawbacks of COMAC and is calculated by 

using the mean of the difference of modal amplitudes of all 

modes for each node Chen and Ni (2018) 

 

eCOMACi  = 
 ∑ |φi,j

ex − φ̅i,j
sim|m

j

2.m
 (26) 

 

• Different pairs in the number of population (agents) 

and iteration (CS1: 20 and 20, CS2: 40 and 20, CS3: 80 and 

20) are utilized to evaluate the feasibility of each algorithm 

based on updated frequencies, convergence rate, and CPU-
time. Some initial parameters of these algorithms are set as 

follows. PSO’s parameters are w = 0.9, cc = cs = 2. GSA’s 

factors are   = 20, G0 = 100. PSOGSA’s parameters are set 

to cc = 0.5, cs = 1.5,  = 20, G0 = 1. The maximum 

discrepancies in frequencies after updating significantly 

reduce under 2.2% for GSA, 1.5% for PSO and PSOGSA, 

especially when using only frequency or a combination of 

frequency and eCOMAC/COMAC as shown in Fig. 12. 

The convergence of these algorithms is shown in Fig. 11 

related to the changes in number of agents (particles) as 

well as objective functions as mentioned above. From the 

obtained fitness maps, PSO and PSOGSA show their 

potential and effectiveness in estimating the updating 

parameters thanks to their good convergence. Both 
algorithms show similar computational costs associated 

with variance of population (number of particles/agents) 

(Fig. 13). Although GSA reveals a slight inferior 

performance, it also improves its convergence at a higher 

population. 

It is obvious that the updated frequencies are much 

closer to the measured frequencies than the initial values. 

Besides that, from the graphs, PSO and PSOGSA show 

stable and superior performance in comparison with GSA, 

when they are applied to predict the updating parameters. 

MAC values between mode pairs are increased slightly 

when a combination of frequency and MAC is considered, 
while other functions obtain lower values of MAC (see Fig. 

14). 

From the obtained results, PSO and PSOGSA are good 

algorithms for updating uncertain values of material in the 

FE model by minimizing the difference between 

experimental and numerical data. The higher exploitation of 

PSOGSA and PSO compared to GSA is because PSOGSA, 

PSO have social components. This allows PSOGSA, PSO 

to exploit around the best obtained mass so far. In GSA, the 

heavy masses have better values of fitness function. After 

finding a promising solution, these masses gather around 
the solution for exploitation. In the final steps of iterations, 

when masses gather around the promising solution, they  

 

Fig. 13 General layout of Kien Bridge with fan-shaped stay cable arrangement, unit is in m 

12@3412@34 8520085
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(a) Typical cross-section of bridge 

 
(b) Cross-section of bridge at pylon 

Fig. 15 Cross section of main girders. Unit is in m 

 

 

have almost the same weights. Due to this reason, 

gravitational forces of approximately same intensity attract 

each other. For this reason, GSA does not achieve good 

results as the other algorithms. Besides, it seems that GSA 

can be trapped in local minima instead of searching a global 
minimum. This can be seen in Fig. 11. The fitness values 

obtained by GSA change negligibly and almost vary in the 

vicinity of the first value. 

From the obtained results above, PSO and PSOGSA are 

good algorithms for updating uncertain values of material in 

the FE model by minimizing the difference between 

experimental and numerical data. However, their potential 

still has to be investigated in a real structure. Besides that, 

multiple-objective function of frequency and MAC (OF2) 

shows its efficiency when used to update the FE model. 

Results of both frequency and MAC values are improved 
while other choices of objective function achieved only an 

improvement in frequencies (see Figs. 12 and 14). 

 

5.2 Large-scale Kien cable-stayed bridge 
 
5.2.1 Initial model 
The main cable stayed Kien bridge having three spans 

(85 m + 200 m + 85 m) is modelled using ANSYS (2016). 

The obtained results of the initial FE model are used as a 

reference to plan the measurement setups. Only the main 

box-girder bridge is used to build a FE model for 

comparison with measured data. 
• Main girder: The main box girder is modelled using 

3D 8-node solid elements. Eight nodes are used to define 

the element. Each node has three degrees of freedom 

(DOFs): translations in the nodal X, Y and Z directions. 

Fig. 15. non-structural elements like handrail, asphalt 

pavement are defined on the element faces as added mass. 

The concrete parapets and barriers are modelled with solid 

elements as part of the box girder (see Fig. 16). 

• Pylon: Pylon is also modelled with 3D-8 node solid 

elements as the main girder. The upper pylon cross-section  

 

Fig. 16 A typical segment model in ANSYS 

 
 

 

Fig. 17 General layout of the pylon and pylon model. 

Unit is in mm 

 

 

has a slight change in the vertical direction and is divided 

into 9 elements at the cable anchoring points. The division 

of the upper pylon is to facilitate modelling of the cables. 

The pylon section changes from 5.5 m at the bottom to 

2.5 m at the top. To simplify, an averaged value at 4 m is 
used to model the axial dimension of pylon. For further 

study, the pylon will be modelled with the real dimension in 

as-built drawings (see Fig. 17). 

• Cables: Boundary conditions: Kien bridge consists of 

72 cables on both sides. Cables of the bridge are modelled 

by link 180 elements. The element is a uni-axial tension-

compression element with three degrees of freedom at each 

node: translations in the nodal X, Y and Z directions. Each 

cable is modelled by one element and is rigidly connected 

with pylon and main girder. Tension-only function is chosen 

for modelling cables. The parameters of the cable are listed 
in Table 5. 

The pylon leg is completely fixed (Fig. 18). Steel-

laminated rubber bearings are supporting the bridge at the 

end-span and at the pylon. They are modelled with 3D-8 

nodes solid elements using orthotropic properties as 

presented in Table 5. 

• Results of FE model: Based on as-built drawings, 

initial values of material properties and boundary 

conditions, free vibration of the bridge is analyzed by 

ANSYS. The first eight modes are extracted, including six 

vertical bending modes, one horizontal bending mode, and 

one torsion mode. Mode shapes and the corresponding  
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Table 5 List of 20 parameters and their variation ranges  

 % 

Parameter Symbol Initial value 

Main girder -  = 5% 

1. Young modulus of concrete E-beam 36,057 

2. Density of concrete,  = 10% Density-beam 2,700 

3. Poisson's ratio of concrete Pr-beam 0.2 

Pylon -  = 5% 

4. Young modulus of concrete E-pylon 31,975 

5. Density of concrete Density-pylon 2,500 

6. Poisson's ratio of concrete Pr-pylon 0.2 

Cable stay -  = 5% 

7. Young modulus of cable E-cable 197,000 

8. Density of cable Density-cable 7,850 

9. Poisson’s ratio of cable Pr-cable 0.3 

10. Sectional area of stay type 1 r1-cable 0.00672 

11. Sectional area of stay type 2 r2-cable 0.00518 

Bearings -  = 5% 

12. Young modulus - x direction E-bearing-x 189,000 

13. Young modulus - y direction E-bearing-y 1,890 

14. Young modulus - z direction E-bearing-z 1,890 

15. Shear modulus - x direction G-bearing-x 71,370 

16. Shear modulus - y direction G-bearing-y 64,233 

17. Shear modulus - z direction G-bearing-z 60,665 

18. Poisson’s ratio - x direction Pr-bearing-x 0.25 

19. Poisson’s ratio - y direction Pr-bearing-y 0.3 

20. Poisson’s ratio - z direction Pr-bearing-z 0.35 
 

 

 

 
(a) At the end-span 

 
(b) At the pylon 

 
(c) Pylon leg 

Fig. 18 Boundary conditions 

 

 
frequencies are shown in Fig. 19. Discrepancies of 

frequencies between experiment and simulation are listed in 

Table 6 with the maximum deviation up to 13.09%. 

  
(a) Mode 1 (0.477 Hz) (b) Mode 2 (0.806 Hz) 

  
(c) Mode 3 (1.022 Hz) (d) Mode 4 (1.252 Hz) 

  
(e) Mode 5 (1.373 Hz) (f) Mode 6 (1.589 Hz) 

  
(g) Mode 7 (1.887 Hz) (h) Mode 8 (2.522 Hz) 

Fig. 19 Simulated mode shapes extracted from the FE 

model - Kien cable-stayed bridge 

 

 

Table 6 The first five bending natural frequencies 

Mode Measured Initial – FE model Deviation 

1 0.452 0.477 5.60% 

2 0.766 0.806 5.22% 

3 1.107 1.252 13.09% 

4 1.293 1.373 6.22% 

5 1.691 1.589 -6.06% 
 

 

 

5.2.2 Calibrated model 
The deviation in frequencies between measured and 

extracted from the initial FE model varies from -6.06% to 

13.09%. To achieve a better result, the FE model needs to 

be calibrated. The effects of approach piers, as well as 
successive spans to the dynamic behaviour of the cable-

stayed bridge are considered. In order to achieve results that 

are closer to the behaviour of bridge, the initial FE model is 

modified by modelling asphalt layers on top of deck with 

real depth. The approach piers and spans are added in the 

new model. Moreover, local components like hollow 

diaphragms between two girder segments are also simulated 

as shown in Figs. 20-22. These changes can contribute to 

total stiffness of the bridge. 

Based on the changes above, new frequencies are 

calculated by ANSYS as shown in Table 7. It is observed 
that the obtained frequencies of the calibrated FE model are 

closer to the experimental ones than those of the initial FE 

model. The highest discrepancy is only 9.2% in the third  
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(a) Using equivalent load in initial FE model 

 

(b) Modelling real depth of asphalt layers 

Fig. 20 Effects of asphalt layers 
 

 

 
(a) Ignoring diaphragms 

 
(b) Modelling hollow diaphragms 

Fig. 21 Effects of hollow diaphragms 

 

 

 
(a) Without approach piers 

 
(b) Simulating approach piers and spans 

Fig. 22 Effects of approach piers and spans 

 

 

Table 7 Comparison between experimental and calibrated 

FE model 

Mode Measured Calibrated FE model Deviation 

1 0.452 0.464 2.57% 

2 0.766 0.765 -0.19% 

3 1.107 1.209 9.20% 

4 1.293 1.345 4.00% 

5 1.691 1.574 -6.90% 
 

 

 

mode. 

As there are many parameters in FE model that can 

influence the accuracy of outputs, a proper selection of 

updating parameters is indispensable. For this reason, a 

sensitivity analysis is carried out hereinafter to identify the 

most effective parameters that can be used in the updating 

procedure. As mention above, due to dominant 

computational burden, Morris method is used to determine 
the most important updating parameters. 

 

5.2.3 Sensitivity analysis (SA) 
In a large, long-span structure as a cable-stayed bridge, 

the identified frequencies under the ambient excitation, e.g. 

vehicle, wind, earthquake, etc., reach often low values 

(Reynders and Roeck 2008). These low modes often 

represent the global behaviour of the structure. The first few 

modes are most often used for model updating. 

For a real, complex structure, many uncertain 

parameters can affect the outputs of a FE model, e.g., 
frequencies and mode shapes. The modified mean 

sensitivity index, *, from Morris screening method 

examines the contribution of each input parameter to the 

outputs of interest in the FE model. The higher value of the 

index, the more significant impact of the parameter is. 

These values are then used to exclude parameters with 

negligible effect from the set of updating parameters based 

on explicit calculation instead of engineering’s experience. 

A reasonable number of updating parameters compared to 

the number of error values in the fitness function can 

guarantee the accuracy and the uniqueness of the solution of 

model updating process.  

For sensitivity analysis, the effect of each input 
parameter on each separate part of the objective functions 

was investigated. The obtained results reveal the number of 

the key input parameters and how much impact they have 

on each error in the objective function. Therefore, on one 

hand, local effects of these parameters to each frequency are 

investigated. On the other hand, to generate a fundamental 

base for updating procedure, influences of them are 

considered with regard to four objective functions as 

follows 

 

OF1 = ∑ |1 −
𝑓𝑠𝑖𝑚

𝑗
× 𝑓𝑒𝑥

𝑗

(𝑓𝑒𝑥
𝑗 )

2 |
𝑚

𝑗=1
 (27) 

 

OF2 = ∑ (1 − MACj)
𝑚

𝑗=1
 (28) 

 

OF3 = ∑ (1 − COMACi)
𝑛

𝑖=1
 (29) 

 

OF4 = ∑ eCOMACi

𝑛

𝑖=1
 (30) 

 

A random set of input parameters from the considered 

variation is generated in the first step. Then, forming a m-

by-k sampling matrix with k = 20 input variables, m = k + 1 
= 21 runs (simulations) are required. According to Morris’ 

experiments, number of variables (or number of level) p = 

4, number of trajectory r = 4 and variation size (or 

sampling step)  = p/[2(p - 1)] = 2/3 are chosen.  

From the changes in input parameters, outputs of the  
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(a) Using frequencies 

 
(b) Using objective functions 

Fig. 23 Normalized sensitivity of 20 updating parameters 

 

 

Table 8 List of updating factors after sensitivity analysis 

Updating 
parameters 

Initial 
value 

Upper 
allowance 

Lower 
allowance 

E-beam 36,057 37,859 34,254 

Density-beam 2,700 2,970 2,430 

E-pylon 31,975 33,574 30,377 

Density-pylon 2,500 2,625 2,375 

E-cable 197,000 206,850 187,150 

r1-cable 0.00672 0.007056 0.006384 

r2-cable 0.00518 0.005439 0.004921 
 

 

 

simulation are calculated associated with separate 

objectives. The obtained values of modified mean 

sensitivity index * of each factor are revealed in Fig. 23. 

In order to facilitate the readers having a simple and visual 

view of the important role of each input parameter, the 

normalized values of sensitivity indices are shown. 

From the sensitivity magnitudes of factors related to 
corresponding objectives, it is obvious that seven 

parameters can be chosen as updating parameters: the three 

Young moduli of concrete main girder, pylon and steel 

cable, the two concrete densities of main girder and pylon, 

and the diameters of 2 stays. The 20 factors are shortened to 

7 parameters as shown in Table 8. The step-by-step 

updating procedure is described in the next section. 

 

5.2.4 Model updating 
From the results of sensitivity analysis, seven 

parameters are chosen for model updating based on the first  

 
(a) Using frequencies (OF1) 

 

(b) Using frequencies + MAC (OF2) 

 
(c) Using frequencies + COMAC (OF3) 

 
(d) Using frequencies + eCOMAC (OF4) 

Fig. 24 Fitness with respect to different objective 

functions and optimization algorithms 

 

 

four modes. These parameters are considered by applying 

PSO, GSA and hybrid algorithm PSOGSA in combination 

with different objective functions. For the large-scale 

bridge, four fitness functions are calculated. The first 

objective function is only based on the frequencies, while 

the three others use a combination between frequencies and 

MAC or COMAC or eCOMAC values. These objective 
functions (case studies – CS) are shown in Eqs. (18) to (21). 

The normalized values of mode shapes fall in a range [0-1], 

using the Modal Scale Factors (MSF) as presented in Eq. 

(24).  

The cable-stayed bridge in the study is a typical 

representative of a computationally demanding analysis 

because almost all components of the bridge are modelled 

by 3D-solid elements. Therefore, a maximum number of 

iterations of 25 and a number of particles of 25 are set in the 

optimization procedure. 
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Fig. 25 Comparison of frequencies between the first 

four updated modes with regard to optimization 

algorithms and objective functions 

 

 

Table 9 Summarization of error of frequency between 

measurement and simulation (%) 

Mode 
PSO 

OF1 OF2 OF3 OF4 

1 -0.77 0.14 2.99 -0.09 

2 -4.11 4.90 3.35 -4.19 

3 4.70 -4.63 -5.14 4.82 

4 -0.22 -0.66 -0.02 0.19 

Mode GSA 

1 -1.82 0.69 2.22 -0.02 

2 -3.99 3.40 3.53 -2.46 

3 5.06 -5.57 -5.06 6.44 

4 -0.27 -1.05 -0.03 1.33 

Mode PSOGSA 

1 -0.96 0.14 3.86 -0.02 

2 -4.27 5.22 3.35 -3.89 

3 4.86 -4.39 -4.75 5.12 

4 -0.12 -0.46 0.58 0.48 
 

 

 

Table 10 MAC values obtained using PSOGSA associated 

with the 4 objective functions 

Mode Initial OF1 OF2 OF3 OF4 

1 0.995 0.996 0.996 0.996 0.996 

2 0.982 0.988 0.991 0.987 0.990 

3 0.965 0.987 0.985 0.989 0.988 

4 0.925 0.905 0.935 0.911 0.929 
 

 

 

The input parameters of optimization algorithms are the 
same as those used in the plain pipe example. The 

computational costs of twelve simulation runs of three 

algorithms and four objective functions are plotted in Fig. 

24. 

• The convergence rate of individual algorithms is 

different with respect to each objective function. PSO and  

Table 11 MAC values obtained using PSO associated with 

the 4 objective functions 

Mode Initial OF1 OF2 OF3 OF4 

1 0.995 0.996 0.996 0.996 0.996 

2 0.982 0.989 0.991 0.986 0.990 

3 0.965 0.984 0.985 0.985 0.987 

4 0.925 0.916 0.935 0.896 0.927 
 

 
 

Table 12 MAC values obtained using GSA associated with 

the 4 objective functions 

Mode Initial OF1 OF2 OF3 OF4 

1 0.995 0.996 0.996 0.996 0.996 

2 0.982 0.988 0.989 0.988 0.989 

3 0.965 0.928 0.988 0.989 0.989 

4 0.925 0.901 0.922 0.908 0.920 
 

 
 

PSOGSA, especially PSO, continue to perform better than 

GSA, with faster convergence and a smaller value of 

fitness. Explanation of these results is similar to that 

mentioned above in the results of the small-scale structure 

example. From Fig. 24, the first and the second objective 

functions have a quick convergence in comparison with the 

two others. This is because the first function only uses data 

of frequencies and the second function uses data of 

frequency and five values of MAC. Besides using data of 

frequencies, functions 3 or 4 have to employ data of 

COMAC or eCOMAC at 16 points along the bridge. 
Therefore, it is understandable why they take more time for 

convergence. 

• Fig. 25 illustrates the error of frequencies between 

simulation and experiment with respect to different 

objective functions. Details of the error in percentage are 

listed in Table 9. 

• After updating, the distance between computed and 

experimental frequencies is decreased from maximum error 

at 9.2% (Table 7) to under 6.44% in the third mode. The 

errors in frequencies of the first and the fourth mode are 

reduced significantly. The second mode is not well 
predicted. Frequencies with respect to PSO and PSOGSA 

(maximum error of |5.14%|, |5.12%|, respectively) are closer 

to the measured frequency than GSA (maximum error of 

|6.44%|). 

• From the Table 9, almost the smallest deviation of 

frequencies can be achieved by using COMAC, and 

eCOMAC in the objective function. Tables 10, 11, 12 

indicate that the use of MAC, and eCOMAC in the 

objective function can achieve better value of MAC. In 

other words, the correlation between the mode shapes of 

simulation and experiment was improved when using MAC, 

and eCOMAC. In general, among these indices, eCOMAC 
has a superior performance related to improving both 

frequencies and mode shapes. Using only frequencies in 

objective function is not able to achieve good results for 

both frequencies and mode shapes. 

• In comparison with the mode shapes from the initial 

model, the updated mode shapes of the first three modes are  
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(a) The 1st vertical bending mode 

 
(b) The 2nd vertical bending mode 

 
(c) The 3rd vertical bending mode 

 
(d) The 4th vertical bending mode 

Fig. 26 Comparison between simulated mode shapes 

and measured mode shapes for the first four 

vertical bending modes 

 

 

improved significantly. Although the obtained shape of the 

fourth mode is ameliorated, the level of enhancement is 

negligible. Fig. 26 is used to perform the visual correlation 
of pairs of mode shapes between measurement and  

Table 13 Comparison of required time for each run for 

different objective functions and algorithms 

Algorithms 
Runtime in hour 

OF1 OF2 OF3 OF4 

PSO 30.44 30.69 30.25 30.94 

GSA 30.18 30.55 30.33 31.84 

PSOGSA 30.49 30.94 30.25 31.01 
 

 

 

simulation. For correlation quantification, MAC is used to 

determine the similarity of two mode shapes. A value of one 

shows a perfect match. In this study, MAC values for the 

first four vertical bending modes after updating are shown 
in Tables 10-12. It can be seen that the first three modes 

provide a superior match between calculated and simulated 

mode shapes. MAC values of these modes are over 0.985. 

The fourth mode shows a worse value than other modes, 

however, this value is still acceptable in practical 

applications. In this measurement, because of the limitation 

of accelerometers, 9 setups, each setup consists of eight 

sensors, were used to cover all measurement points along 

the bridge. Besides ambient effects, the time delay and 

synchronization between two setups can cause this 

mismatch. Moreover, in this four-day measurement 
campaign, sensors were removed after each day. 

Reinstallation of sensors on the bridge in the next day, 

especially at reference points (indispensable points to 

combine two successive setups), can contribute to the error. 

To improve the results, measurement grid should be 

increased by using a larger number of accelerometers, and 

thus reducing the number of setups.  

• Objective function based on frequency and MAC or 

eCOMAC index shows better results in term of frequencies 

and mode shapes than the others although these approaches 

need more time for simulation runs than the others need 

(see Table 13). 
 

 

6. Conclusions 
 

This paper investigated the effectiveness and reliability 

of three metaheuristic optimization techniques using several 

objective functions for a small-scale laboratory pipe and the 

Kien cable-stayed bridge.  

• The application of sensitivity analysis into the model 

updating of the Kien bridge reveals a comprehensive view 

of the influence of updating parameters on the FE results. It 
contributes to a significant reduction of CPU-time by 

eliminating 13 less important parameters from 20 surveyed 

parameters, so finally retaining 7 updating parameters for 

model updating. 

• PSO demonstrates efficiency and reliability due to its 

convergence rate and accuracy when applied to real 

complex structures like the Kien bridge, representing 

computationally demanding FE model updating problem. 

• The fitness between the simulation and the 

measurement is improved by applying objective functions 

which include MAC, COMAC and eCOMAC. The errors of 

the frequencies and the mode shapes between simulation 
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and measurement are minimized.  

• The good results of objective functions show the great 

potential of applying COMAC and eCOMAC indicators in 

the assessment of structural damage by a modal-based 

approach. 
The obtained results could be utilized to build the 

baseline FE model for the Kien cable-stayed bridge. Based 

on this model, some activities will be conducted in the 

future for structural health monitoring e.g., predicting 

dynamic behaviour, detecting and locating potential defects, 

and making a decision on maintenance based on vibration 

responses. 
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