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1. Introduction 

 

Structures made of composite materials have been 

widely used to satisfy high performance demands. In such 

structures, stress discontinuities may occur at the interface 

between two different materials. In contrast, in FG 

structures the smooth and continuous variation of the 

properties from one surface to the other eliminates abrupt 

changes in the stress and displacement distributions (Udupa 

et al. 2014). Nowadays, structures made of FGMs have a 

great potential for practical applications in engineering and 

industrial fields (Beldjelili et al. 2016, Fourn et al. 2018, 

Karami et al. 2018, Zaoui et al. 2019). 

The linear vibration of FG beams, plates and shells has 

been extensively investigated by using different methods 

(Hosseini et al. 2011, Damanpack et al. 2013a, Houari et al. 

2016, Tounsi et al. 2016, Tufekci et al. 2016, Belabed et al. 

2018, Bourada et al. 2019). Fundamental frequency analysis 

of FG beams using different higher-order beam theories was 

investigated by Şimşek (2010). Based on the first-order 

shear deformation theory, Hosseini et al. (2011) presented 

an exact closed-form solution for free vibration of 

moderately thick rectangular FG plates. Kamarian et al. 

(2016) studied the natural frequency of non-uniform 

nanocomposite beams with surface-bonded piezoelectric 

layers. The equation of motion was derived employing 

Hamilton’s principle. The generalized differential 

quadrature technique was used to analyze the free vibration 

of the structures. Bouafia et al. (2017) investigated the free 
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flexural vibration behaviors of FG nano-beams using a 

nonlocal quasi-3D theory. The nonlocal elastic behavior is 

described by the differential constitutive model of Eringen. 

The governing equations were derived using the principal of 

minimum total potential energy. Belabed et al. (2018) 

developed a hyperbolic plate theory for the free vibration 

analysis of FG sandwich plates. The equation of motion for 

the FG sandwich plates was obtained based on Hamilton’s 

principle. The closed form solutions were derived by using 

the Navier technique. The fundamental frequencies are 

found by solving the eigenvalue problems. The vibration 

characteristics of rotating FG cylindrical shell resting on 

Winkler and Pasternak elastic foundations have been 

investigated by Hussain et al. (2018a). Shell dynamical 

equations were derived by using the Hamilton variational 

principle and the Langrangian functional. The wave 

propagation approach in standard eigenvalue form has been 

employed in order to derive the characteristic frequency 

equation describing the natural frequencies of vibration in 

rotating FG cylindrical shell. The wave propagation 

approach was used (Hussain et al. 2018b, Hussain and 

Naeem 2019a) to analyze the vibration of rotating FG 

cylindrical shells and zigzag and chiral rotating FG carbon 

nanotubes. The governing shell equations were obtained 

from Love’s shell theory. Vibrations of rotating zigzag and 

chiral FG carbon nanotubes with ring supports have been 

performed by Hussain and Naeem (2019b). To discretize the 

governing equations of the developed model, Galerkin’s 

method was utilized for frequency equations of single-

walled carbon nanotubes. The unknown axial functions 

have been assumed by characteristic beam functions, which 

fulfill boundary conditions applied at the tube ends. 

Berghouti et al. (2019) studied the dynamic behavior of FG 

porous nano-beams using a nonlocal nth-order shear 
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deformation theory. The adopted theory takes into account 

the effect of shear deformation without considering shear 

correction factors. Mahmoudi et al. (2019) developed a 

refined quasi-three-dimensional shear deformation theory 

for thermo-mechanical analysis of FG sandwich plates 

resting on a two-parameter elastic foundation. The theory 

takes into account the stretching effect due to its quasi-

three-dimensional nature. The boundary conditions in the 

top and bottom surfaces of the sandwich FG plate are 

satisfied and no correction factor was required. The 

governing equations and boundary conditions were derived 

using the principle of virtual displacements. Belbachir et al. 

(2019) described the response of anti-symmetric cross-ply 

laminated plates subjected to a uniformly distributed 

nonlinear thermo-mechanical loading. The principle of 

virtual work was used to obtain the governing equations and 

boundary conditions. Bourada et al. (2019) investigated the 

free vibration analysis of simply supported perfect and 

imperfect (porous) FG beams using a high order 

trigonometric deformation theory. This theory has a 

parabolic shear deformation distribution across the 

thickness. The Hamilton’s principle was applied to 

determine the equations of motion. Balubaid et al. (2019) 

examined the free vibrational behavior of simply supported 

FG nano-plate using nonlocal refined plate theory. The 

equations of motion of the system were determined and 

resolved via Hamilton’s principle and Navier procedure. 

Boutaleb et al. (2019) studied the dynamic analysis of the 

FG rectangular nano-plates. The theory of non-local 

elasticity based on the quasi 3D high shear deformation 

theory has been employed to determine the natural 

frequencies. The theory of nonlocal elasticity was utilized 

to examine the impact of the small scale on the natural 

frequency of the FG rectangular nano-plate. The equations 

of motion were deduced by implementing Hamilton’s 

principle. Addou et al. (2019) investigated the effect of 

Winkler/Pasternak/Kerr foundation and porosity on the 

dynamic behavior of FG plates using a simple quasi-3D 

hyperbolic theory. The used theory was demonstrated to be 

simple and easy to apply because it considers only four-

unknown variables to determine the four coupled vibration 

responses. 

To obtain a more accurate and reliable structural 

analysis and design, the geometrical nonlinearity of FG 

structures becomes very important and should be taken into 

consideration. In these years, the research effort committed 

to making sense of the nonlinear behaviors of FG structures 

had attracted increasing attention. 

Yaghoobi and Yaghoobi (2013) proposed an analytical 

investigation on the buckling analysis of symmetric 

sandwich plates with FG face sheets. The sandwich plates 

are considered resting on a nonlinear elastic foundation and 

subjected to mechanical, thermal, and thermo-mechanical 

loads. Many authors (Ke et al. 2010, Daouadji and Tounsi 

2013, Sofiyev et al. 2016) studied the vibration of FG 

beams including the linear and nonlinear analyses. Euler-

Bernoulli beam theory and Hamilton’s principle was used 

while the rotary inertia of the cross section was neglected. 

Ke et al. (2010) investigated the nonlinear free vibrations of 

FG beams based on Euler-Bernoulli beam theory and von 

Kármán geometric nonlinearity. The governing equation 

was solved by direct numerical integration. The effects of 

material property distribution and different end supports on 

nonlinear dynamic behavior were discussed. Ansari et al. 

(2011) studied the vibration of a finite Euler-Bernoulli 

beam traversed by a moving load. The solution was 

obtained using the Galerkin method in conjunction with the 

Multiple Scales Method. Nonlinear active control of 

dynamic response of FG beams with rectangular cross-

section subjected to mechanical and thermal loadings was 

presented by Bodaghi et al. (2012). The first-order shear 

deformation theory and the von Kármán geometrical 

nonlinearity were used to derive the nonlinear equations of 

motion of the beam. The nonlinear differential equations 

were solved based on the generalized differential quadrature 

technique together with the Newmark-beta scheme. 

Damanpack et al. (2013b) addressed an active control of 

geometrically nonlinear dynamic response of sandwich 

beams impacted by blast pulses with integrated 

piezoelectric sensor/actuator patches. The first-order shear 

deformation theory was used for the face sheets and 

piezoelectric patches, and the extended high-order sandwich 

theory was used for the flexible core. The von Kármán 

geometrical nonlinearity and Hamilton’s principle was 

employed in the analysis. The nonlinear equations were 

solved by Newmark and the modified Newton-Raphson 

methods for dynamic analysis. The geometrically nonlinear 

static and dynamic analysis of FG beams under thermal 

fields and mechanical excitations was investigated by 

Bodaghi et al. (2014). The von Kármán type geometric 

nonlinearity, the first-order shear deformation theory and 

the Hamilton principle were used to formulate the 

governing equations of motion. The solution of nonlinear 

differential equations was obtained using the hybrid 

generalized differential quadrature method-Newmark 

algorithm-Newton-Raphson iterative scheme. Ansari et al. 

(2015) developed an exact solution for the nonlinear forced 

vibration of FG nano-beams in thermal environment based 

on surface elasticity theory. Abdelghany et al. (2015) 

obtained the nonlinear dynamic response of an axially FG 

Euler-Bernoulli simply supported beam. The beam is 

subjected to moving load and rested on a nonlinear visco-

elastic foundation. The influences of power index, linear 

and non-linear stiffness of foundation and the velocity of 

passing load on free vibration and nonlinear dynamic 

response were studied. Duc et al. (2015) developed an 

analytical approach on the nonlinear response of thick FG 

circular cylindrical shells surrounded by elastic foundations. 

The shell is subjected to mechanical and thermal loads. The 

amplitude-time curves for nonlinear dynamic analysis of the 

circular cylindrical shells were obtained. Nonlinear 

vibration of FG beams based on the Euler-Bernoulli beam 

theory and von Kármán’s geometric nonlinearity was 

studied by Ding et al. (2018). Ali et al. (2018) investigated 

the nonlinear free and forced vibration responses of 

sandwich nano-beams with three various FG patterns of 

reinforced carbon nanotubes. The sandwich nano-beam is 

resting on nonlinear visco-elastic foundation and is 

subjected to thermal and electrical loads. The nonlinear 

governing equations of motion were derived for an Euler-
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Bernoulli beam based on Hamilton principle and von 

Kármán nonlinear relation. Nonlinear buckling and post-

buckling of imperfect piezoelectric FG circular cylindrical 

shells with metal-ceramic-metal layers in thermal 

environment using Reddy’s third-order shear deformation 

shell theory were studied by Khoa et al. (2019). 

Exact solution for nonlinear deferential equation is very 

limited. For this reason, approximate methods are inevitable 

to solve nonlinear deferential equations. He and Wu (2007) 

described a new kind of analytical technique for nonlinear 

problems called Variational Iteration Method (VIM). They 

reviewed trends and developments in the use of the VIM 

and its applications to nonlinear problems arising in various 

engineering applications. Rafei et al. (2007) applied the 

VIM to nonlinear oscillators with discontinuities and 

showed that the VIM is an effective and convenient method 

leading to high accuracy solutions in the first iteration. 

Yazdi (2013) used the Homotopy perturbation method to 

analyze the geometrically nonlinear vibrations of thin 

rectangular laminated FG plates. He investigated the effect 

of initial deflection, aspect ratio and material properties on 

frequency ratio. Şimşek (2015) proposed a novel size-

dependent beam model for nonlinear free vibration of a FG 

nano-beam based on the nonlocal strain gradient theory and 

Euler-Bernoulli beam theory in conjunction with von 

Kármán geometric nonlinearity. The partial nonlinear 

differential equation describing the nonlinear vibration of 

FG nano-beam was reduced to an ordinary nonlinear 

differential equation with cubic nonlinearity, and a closed-

form solution was obtained. 

Praveen and Reddy (1998) analyzed the nonlinear 

dynamic response of FG plates subjected to pressure loads 

and thickness varying temperature fields by using the first-

order shear deformation plate theory and the finite element 

method. Sundararajan et al. (2005) studied the nonlinear 

free vibration of both rectangular and skew FG plates by 

using finite element method. The variation of nonlinear 

frequency ratio with amplitude was highlighted considering 

various parameters such as gradient index, temperature, 

thickness, aspect ratio, and skew angle. Ganapathi and 

Prakash (2006) investigated the thermal buckling of a 

simply supported FG skew plate using first order shear 

deformation theory in conjunction with a finite element 

approach. The effects of aspect and thickness ratio, gradient 

index, and skew angle on the critical buckling temperature 

are brought out. 

Approximate methods for studying nonlinear vibrations 

of beams are important for investigating and designing 

purposes. In recent years, some promising approximate 

methods have been suggested, such as Frequency 

Amplitude Formulation (Fereidoon et al. 2011), Variational 

Iteration (Barari et al. 2008, Fouladi et al. 2010), Homotopy 

Analysis (Pirbodaghi et al. 2009), Homotopy-Perturbation 

(Moeenfard et al. 2011), Parametrized-Perturbation (He 

2006), Max-Min (Ganji et al. 2011, Ibsen et al. 2010), 

Differential Transform (Ganji et al. 2012), Classical 

Balance (Lee et al. 2012), Multiple Time-Scale (Younesian 

et al. 2014), Incremental Harmonic Balance method (Huang 

et al. 2011), etc. 

The approximate methods have their own limitations. 

For example, the perturbation methods, which are the most 

extensively used analytical techniques, are generally 

restricted to the case of weak nonlinearity and are 

implemented on the basis of a single small parameter in the 

equation. Most of nonlinear problems, especially those 

having strong nonlinearity, have no small parameters at all 

(Pirbodaghi et al. 2009). As second example of limitation, 

the Harmonic Balance methods are extremely time 

consuming to construct higher order analytical 

approximations (Leung et al. 2010). 

From the literature review, it is clear that most of the 

researchers are interested in the free and forced nonlinear 

vibrations of FG beams with more focus on free vibration, 

however, to the best of the authors’ knowledge, there is no 

reported work on the exact solution for nonlinear vibration 

of FG buckled beams. 

This paper seeks to address this research gap by 

obtaining the closed form exact solution, instead of 

approximate solutions, to the problem of nonlinear 

vibrations of clamped-clamped FG buckled beams. A 

detailed analysis of the influence of the material property 

distribution, the beam slenderness ratio, the vibration 

amplitude and the magnitude of axial load on the nonlinear 

behavior of FG beams is carried out. 
 

 

2. Governing equations 
 

Consider a straight Euler-Bernoulli FG beam of length 

L, width b and thickness h (Fig. 1). 

The volume fractions of the constituents of FG beam are 

assumed to vary from the bottom (z = -h/2) to the top 

surface (z = h/2) of the beam according to exponential-law 
 

{
𝐸(𝑧) = 𝐸0𝑒

𝛽𝑧

𝜌(𝑧) = 𝜌0𝑒
𝛽𝑧

 (1) 

 

where the subscript 0 denotes the midplane (z = 0) and 𝛽 

is a constant characterizing the distributions of material 

properties. 𝛽 = 0  corresponds to an isotropic 

homogeneous beam. The Material property (E, 𝜌) at the top 

and bottom surfaces of the FG beam are assumed to be (E1, 

𝜌1) and (E2, 𝜌2), respectively. The Poisson’s ratio is taken 

constant. 

According to the Euler-Bernoulli beam theory, the axial 

and transverse displacements of an arbitrary point in the 

beam (Aydogdu and Taskin 2007), denoted by �̃�(𝑥, 𝑧, 𝑡) 
 

 

 

Fig. 1 Geometry of FG beam 

363



 

Abdellatif Selmi 

and �̃�(𝑥, 𝑧, 𝑡) respectively, can be expressed as 
 

{
�̃�(𝑥, 𝑧, 𝑡) = 𝑈(𝑥, 𝑡) + 𝑧

𝜕𝑊

𝜕𝑥
�̃�(𝑥, 𝑧, 𝑡) = 𝑊(𝑥, 𝑡)

 (2) 

 

Where t is time, 𝑈(𝑥, 𝑡)  and 𝑊(𝑥, 𝑡)  are the 

displacement components in the mid-plane along x and z 

direction, respectively. 

The von Kármán type nonlinear strain-displacement 

relationship gives (Ke et al. 2010) 
 

𝜀𝑥 =
𝜕𝑈

𝜕𝑥
+ 𝑧

𝜕2𝑊

𝜕2𝑥
+
1

2
(
𝜕𝑊

𝜕𝑥
)2 (3) 

 

The normal stress 𝜎𝑥  is given by linear elastic 

constitutive law as 
 

𝜎𝑥 =
𝐸(𝑧)

1 − 𝜈2
[
𝜕𝑈

𝜕𝑥
+ 𝑧

𝜕2𝑊

𝜕2𝑥
+
1

2
(
𝜕𝑊

𝜕𝑥
)2] (4) 

 

In terms of beam notations, the total induced axial force 

N and bending moment M are related to the stress resultants 

as follows 
 

𝑁 = 𝑏𝐴11 [
𝜕𝑈

𝜕𝑥
+
1

2
(
𝜕𝑊

𝜕𝑥
)2] + 𝑏𝐵11

𝜕2𝑊

𝜕2𝑥
 (5) 

 

𝑀 = 𝑏𝐵11 [
𝜕𝑈

𝜕𝑥
+
1

2
(
𝜕𝑊

𝜕𝑥
)2] + 𝑏𝐷11

𝜕2𝑊

𝜕2𝑥
 (6) 

 

Where 𝐴11, B11  and  D11 are the stiffness components 

defined as 
 

{𝐴11, 𝐵11, 𝐷11} = ∫
𝐸(𝑧)

1 − 𝜈2

ℎ/2

−ℎ/2

{1, 𝑧, 𝑧2}𝑑𝑧 (7) 

 

By using Hamilton’s principle, the equations of motion 

can be derived as 
 

𝐼1
𝜕2𝑈

𝜕𝑡2
−
𝜕𝑁

𝜕𝑥
= 0 (8) 

 

𝐼1
𝜕2𝑊

𝜕𝑡2
+
𝜕2𝑀

𝜕𝑥2
−𝑁

𝜕2𝑊

𝜕𝑥2
= 0 (9) 

 

Where 𝐼1 is the inertia related term defined as 
 

𝐼1 = 𝑏∫ 𝜌(𝑧)
ℎ/2

−ℎ/2

𝑑𝑧 (10) 

 

It is assumed that the in-plane inertia and damping are 

negligible and the distributed axial force is zero. It follows 

from Eq. (9) that the induced axial force N is a constant. 

Substituting Eqs. (5)-(6) into Eqs. (8)-(9), one can obtain 
 

𝜕

𝜕𝑥
{𝑏𝐴11 [

𝜕𝑈

𝜕𝑥
+
1

2
(
𝜕𝑊

𝜕𝑥
)2] + 𝑏𝐵11

𝜕2𝑊

𝜕𝑥2
} = 0 (11) 

 

𝐼1
𝜕2𝑊

𝜕𝑡2
+
𝜕

𝜕𝑥
{𝑏𝐵11 [

𝜕2𝑈

𝜕𝑥2
+
𝜕𝑊

𝜕𝑥

𝜕2𝑊

𝜕𝑥2
] + 𝑏𝐷11

𝜕3𝑊

𝜕𝑥3
} (12) 

−
𝜕2𝑊

𝜕𝑥2
{𝑏𝐴11 [

𝜕𝑈

𝜕𝑥
+
1

2
(
𝜕𝑊

𝜕𝑥
)2] + 𝑏𝐵11

𝜕2𝑊

𝜕2𝑥
} = 0 (12) 

 

Integrating Eq. (11) with respect to the spatial 

coordinate, x, one can obtain 
 

𝐴11 [
𝜕𝑈

𝜕𝑥
+
1

2
(
𝜕𝑊

𝜕𝑥
)2] + 𝐵11

𝜕2𝑊

𝜕𝑥2
+ 𝑐1(𝑡) = 0 (13) 

 

which can be rewritten as 
 

𝜕𝑈

𝜕𝑥
= −

1

2
(
𝜕𝑊

𝜕𝑥
)2 −

𝐵11
𝐴11

𝜕2𝑊

𝜕𝑥2
−

1

𝐴11
𝑐1(𝑡) = 0 (14) 

 

Integrating Eq. (14) once more yields 
 

𝑈 = −
1

2
∫(
𝜕𝑊

𝜕𝑥
)2 𝑑𝑥 −

𝐵11
𝐴11

𝜕𝑊

𝜕𝑥
 

        −
1

𝐴11
𝑐1(𝑡)𝑥 + 𝑐2(𝑡) = 0 

(15) 

 

For beams with immovable ends (i.e., 𝑈 = 0, at 𝑥 = 0 

and L) subjected to an external compressive axial load, P, 

applied at x = L, Eq. (15) yields 
 

𝑐2(𝑡) = 𝑎 (16) 

 

𝑐1(𝑡) =
𝑃

𝑏
−
𝐴11
𝐿
∫ (

1

2
(
𝜕𝑊

𝜕𝑥
)2

𝐿

0

−
𝐵11
𝐴11

𝜕2𝑊

𝜕𝑥2
)𝑑𝑥 (17) 

 

Where a is a constant. 

Substituting Eq. (17) into Eq. (14) and differentiating 

the obtained equation with respect to x yields 
 

𝜕2𝑈

𝜕𝑥2
= −

𝜕𝑊

𝜕𝑥

𝜕2𝑊

𝜕𝑥2
−
𝐵11
𝐴11

𝜕3𝑊

𝜕𝑥3
 (18) 

 

Then, from Eq. (12), the following equation is obtained 
 

𝐼1
𝜕2𝑊

𝜕𝑡2
+ 𝑏(𝐷11 −

𝐵11
2

𝐴11
)
𝜕4𝑊

𝜕𝑥4
 

+[𝑃 − 𝑏
𝐴11
𝐿
∫ (

1

2
(
𝜕𝑊

𝜕𝑥
)2

𝐿

0

−
𝐵11
𝐴11

𝜕2𝑊

𝜕𝑥2
)𝑑𝑥]

𝜕2𝑊

𝜕𝑥2
= 0 

(19) 

 

Introducing the following quantities 
 

{
  
 

  
 �̃� = 𝑏(𝐷11 −

𝐵11
2

𝐴11
)

�̃� = 𝑏
𝐴11
𝐿

�̃� =
𝐵11
𝐴11

 (20) 

 

Eq. (19) can be rewritten as 
 

�̃�
𝜕4𝑊

𝜕𝑥4
+ 𝐼1

𝜕2𝑊

𝜕𝑡2
− �̃�∫

1

2
(
𝜕𝑊

𝜕𝑥
)2

𝐿

0

𝑑𝑥
𝜕2𝑊

𝜕𝑥2
 

+𝑃
𝜕2𝑊

𝜕𝑥2
+ �̃��̃� ∫

𝜕2𝑊

𝜕𝑥2

𝐿

0

𝑑𝑥
𝜕2𝑊

𝜕𝑥2
= 0 

(21) 

 

For nonlinear vibration analysis, the transverse 
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displacement is assumed to be in the following form 

 

𝑊(𝑥, 𝑡) = 𝑎𝜑(𝑥)𝜓(𝑡) (22) 

 

Where 𝜓(𝑡) is an arbitrary function of time and is 

𝜑(𝑥) is the linear fundamental vibration mode. 

The linear modes shape of fixed-fixed beam is 
 

𝜑(𝑥) = 𝑐𝑜𝑠(
𝛾𝑥

𝐿
) − 𝑐𝑜𝑠ℎ(

𝛾𝑥

𝐿
) 

              +𝑅 [𝑠𝑖𝑛(
𝛾𝑥

𝐿
) − 𝑠𝑖𝑛ℎ(

𝛾𝑥

𝐿
)] 

(23) 

 

Where a is an arbitrary constant that represents the 

amplitude of the deflection The first mode has a value of 

𝛾 = 4.73 and R = (sin(γ) + sinh(γ)) / (cos(γ) – cosh(γ)). 

Inserting 𝑊(𝑥, 𝑡) into Eq. (21) and applying Galerkin’s 

procedure yields a second order nonlinear ordinary 

differential equation 
 

�̈� + 𝜒1𝜓 + 𝜒2𝜓
2 + 𝜒3𝜓

3 = 0 (24) 

 
where a super dot denotes differentiation with respect to 

time, and 
 

𝜒1 = (
�̃�

𝐼1
)𝛷4 + (

𝑃

𝐼1
)𝛷2,   𝜒2 =

�̃��̃�𝑎

𝐼1
𝛷1𝛷2,  

 𝜒3 = −
�̃�𝑎2

2𝐼1
𝛷2𝛷3 

With 

{
 
 

 
 𝛷1 = ∫ 𝜑′′𝑑𝑥

𝐿

0
,          Φ2 =

∫ 𝜑′′𝜑𝑑𝑥
𝐿
0

∫ 𝜑2𝑑𝑥
𝐿
0

,  

 𝛷3 = ∫ (𝜑
′)2𝑑𝑥

𝐿

0
,    Φ4 =

∫ 𝜑(4)𝜑𝑑𝑥
𝐿
0

∫ 𝜑2𝑑𝑥
𝐿
0

, 

Eq. (24) contains a quadratic nonlinear term due to the 

presence of bending-extension coupling effect in FG beams. 

This term, however, vanishes and Eq. (24) reduces to a 

Duffing equation for homogeneous beams and clamped-

clamped FGM beams because 𝜒2 = 0 in both cases. The 

parameters 𝜒1  and 𝜒3  are regrouped regrouped in the 

following way 
 

{
𝑝2 = 𝜒1 + 𝜒3

 𝑘2 =
𝜒3
2𝑝2

 (25) 

 

Integrating Eq. (24) with respect to time, with the initial 

conditions at t = 0, 𝜓 = 1 and 
𝑑𝜓

𝑑𝑡
= 0 gives 

 

(
𝑑𝜓

𝑑𝑡
)
2

= 𝜒1(1 − 𝜓
2) +

𝜒2
2
(1 − 𝜓4) (26) 

 

which can be written as follow 
 

(
𝑑𝜓

𝑑𝑡
)
2

= 𝑝2(1 − 𝑘2 − (1 − 2𝑘2)𝜓2 − 𝑘2𝜓4) (27) 

 

and it reduces to 
 

(
𝑑𝜓

𝑑(𝑝𝑡)
)
2

= (1 − 𝜓2)(𝑘2𝜓2 − 𝑘2 + 1) (28) 

Assuming 𝜓 = 𝑐𝑜𝑠(𝜙) we can obtain Jacobi elliptic 

function (Byrd and Friedman 1971) with the modulus k 

 

𝑝𝑡 = ∫
𝑑𝜙

√1 − 𝑘2 𝑠𝑖𝑛2𝜙

𝜙

0

 (29) 

 

From the inversion of Eq. (29), the solution for 𝜓 can 

be obtained as follow 

 

𝜓 = 𝑐𝑛[𝑝𝑡, 𝑘] (30) 

 

The period of the function 𝑐𝑛[𝑝𝑡, 𝑘] is 4 K defined by 

the complete elliptic integral 

 

4𝐾 = 4∫
𝑑𝜙

√1 − 𝑘2 𝑠𝑖𝑛2𝜙

𝜋/2

0

 (31) 

 

The corresponding frequency of the nonlinear problem 

is defined by using the following equation 

 

𝜔𝑛𝑙 =
𝜋√𝜒1 + 𝜒3

2𝐾
 (32) 

 

Then, the solution of the free vibration of a buckled 

beam with fixed end restrains can be expressed as follow 

 

𝑊(𝑥, 𝑡) = 𝑎 {
𝑐𝑜𝑠(

𝛾𝑥

𝐿
) − 𝑐𝑜𝑠ℎ(

𝛾𝑥

𝐿
)

+𝑅 [𝑠𝑖𝑛(
𝛾𝑥

𝐿
) − 𝑠𝑖𝑛ℎ(

𝛾𝑥

𝐿
)]
} 𝑐𝑛[𝑝𝑡, 𝑘] (33) 

 

 

3. Validation of the analysis 
 

For the purpose of validation of the proposed method, 

the dimensionless linear frequency �̄�𝑙 = 𝜔√𝐷0/𝐼10  for 

clamped-clamped FG beams is compared with solutions 

given by Ke et al. (2010) and Yang and Chen (2008). 𝐷0 =
𝐷110 − 𝐵110

2 /𝐴110. A110, B110, D110 and I10 denote the values 

of A11, B11, D11 and I1 of an isotropic homogeneous beam of 

material properties (E1, ν1, ρ1). The material properties 

change exponentially along beam thickness as described in 

Eq. (1) with E1 = 70 GPa, ν1 = 0.33, ρ1 = 2780 kg/m3, L/h = 

20. The Young’s modulus ratio is taken E2/E1 = 0.2, 1.0 and 

5.0. 

Table 1 shows that the results delivered by the 

developed method are close to the results given by other 

methods. 
 

 

 

 

Table 1 Comparison of dimensionless fundamental 

frequencies of FG beams 

E2/E1 Present Ke et al. (2010) Yang and Chen (2008) 

0,2 5,255 5,255 5,25 

1 5,593 5,5933 5,59 

5 5,255 5,255 5,25 
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4. Influence of axial load, vibration amplitude, 
beam slenderness ratio and Young’s modulus 
ratio on the nonlinear behavior of FG beams 
 
In this section, the effects of various parameters such as 

axial load, vibration amplitude, Young’s modulus ratio (rE = 

E2/E1) and beam slenderness ratio (L/h) on the nonlinear 

behavior are examined. 

We consider a FG beam with bottom surface made of 

epoxy: Young’s modulus E1 = 4.2 GPa, Poisson’s ratio ν1 = 

0.34, and mass density ρ1 = 1272 kg/m3. The beam 

thickness and width are assumed to be 5 mm and 30 mm, 

respectively. 
 

4.1 Influence of the axial load 
 

In order to explain the axial load effect, we consider a 

beam slenderness ratio L/h = 20. 

Figs. 2(a)-(c) show the evolution of the dimensionless 

nonlinear frequency ωnl/ωl (the nonlinear frequency 

normalized by the linear natural frequency) as a function of 

the dimensionless axial load P/Pcr (Pcr is the buckling load 

of the clamped-clamped FG beam calculated as 𝑃𝑐𝑟 =
−�̃�𝛷4/𝛷2). In each figure, going from the innermost curve 

to the outermost one, the dimensionless amplitude a/r (r is 

the radius of gyration defined as 𝑟 = √𝐼/𝐴 where I is the 

moment of inertia and A is the cross-section area) increases 

from 0 to 2. From one figure to another, it is the Young’s 

modulus ratio which varies from 1 to 20. 
 

 

 

 

One property in common for all Young’s modulus ratios, 

namely that increasing the vibration amplitude leads to 

swelling of the curve. The swelling is clearly visible for rE = 

20 and a/r = 2. 

Going from a/r = 0 to 2, the space between the 

represented curves widens in the same manner. 

From Figs. 2(a)-(c), it can be seen that the slope at the 

end is equal to zero for various Young’s modulus ratios and 

dimensionless amplitudes. 

 

4.2 Influence of the vibration amplitude 
 

Several FG beams with slenderness ratio L/h = 20 and 

different Young’s modulus ratios are studied. The 

dimensionless amplitude effect on the dimensionless 

nonlinear frequency is depicted in Figs. 3(a)-(c). From one 

figure to another, it is the Young’s modulus ratio which 

varies from 1 to 20. For each chosen Young’s modulus ratio 

a set of dimensionless axial loads are considered. 

It can be noted from these figures that there is a clear 

dependence of the dimensionless nonlinear frequency on 

dimensionless amplitude. All beams exhibit typical 

hardening behavior, i.e., the nonlinear frequency ratio 

increases as the vibration amplitude is increased. Here, only 

positive vibration amplitudes are investigated because the 

quadratic nonlinear term representing the coupling effect 

vanishes (𝜒2 = 0). 

The plots (Figs. 3(a)-(c)) of pre-buckled state (P < Pcr) 

and post-buckled state (P > Pcr) are separated by a straight 
 

 

 

 

   

(a) rE = 1 (b) rE = 10 (c) rE = 20 

Fig. 2 Dimensionless nonlinear frequency versus dimensionless axial load for L/h = 20 

   

(a) rE = 1 (b) rE = 10 (c) rE = 20 

Fig. 3 Dimensionless nonlinear frequency versus dimensionless amplitude for L/h = 20 
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Fig. 4 Dimensionless nonlinear frequency versus beam 

slenderness ratio for rE = 2 and a/r = 2 
 

 

line that represents the case where the axial load is equal to 

the buckling load. It is clearly seen that the variation of the 

dimensionless nonlinear frequency as a function of the 

dimensionless amplitude is parabolic. The parabolic 

branches change the concavity before and after the straight 

line. It is also shown that the branches look similar to those 

of linear vibration. 

 

4.3 Influence of the beam slenderness ratio 
 

In this subsection, we consider a Young’s modulus ratio 

rE = 10 and study the dimensionless frequency for 

dimensionless amplitude a/r = 2. 

Fig. 4 plots the evolution of the dimensionless nonlinear 

frequency as a function of the beam slenderness ratio for 
 

 

 

 

various values of dimensionless axial loads. 

In linear vibration analysis, one can expect that the 

natural frequency of the beam increases with increasing the 

slenderness ratio L/h (Selmi 2019). This proportionality is 

because the increase of the slenderness ratio results in the 

decrease of the shear deformation effect of the beam, which 

positively correlates to the flexibility of the beam. However, 

the relationship of the nonlinear frequency and the beam 

slenderness ratio does not follow the same pattern. It is 

demonstrated (Fig. 4) that the dimensionless nonlinear 

frequency drops as the increase of slenderness ratio, and 

presents a horizontal asymptote from L/h = 90. It is worth 

noting that the curves plotting the variation of 

dimensionless nonlinear frequency as a function of the 

beam slenderness ratio for a given value of dimensionless 

axial load converge to the same value. 
 

4.4 Influence of Young’s modulus ratio 
 

The effect of the Young’s modulus ratio on the 

dimensionless nonlinear frequencies (the nonlinear 

frequency normalized by the linear natural frequency of 

homogeneous beam made of epoxy) of FG beams in the 

pre-buckled and post-buckled stages are investigated in this 

subsection. The beam slenderness ratio and the 

dimensionless amplitude are taken equal to 20 and 2, 

respectively. 

It can be demonstrated from Figs. 5(a)-(c) that there is a 

clear dependence of dimensionless nonlinear frequency on 

the Young’s modulus ratio. For pre-buckled state, the 

normalized nonlinear frequency increases rapidly then 
 

 

 

 

   

Fig. 5 Dimensionless nonlinear frequency versus Young’s modulus ratio for a/r = 2 and L/h = 20 

   

(a) rE = 1 (b) rE = 10 (c) rE = 20 

Fig. 6 Phase trajectory plot for pre-buckling stage (P/Pcr = 0.5) for L/h = 20 
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decreases with the Young’s modulus ratio while a rapid 

decrease then an increase is seen for post-buckled state. 

When the axial load is equal to the buckling load, the 

normalized nonlinear frequency is independent on the 

Young’s modulus ratio. 

It is worth noting that in the pre-buckled state, the 

curves corresponding to high values of dimensionless axial 

load are below those corresponding to low values of 

dimensionless axial load. The opposite trend is observed in 

the post-buckled state. 
 

 

5. Phase trajectory 
 

The phase trajectory plots expose the velocity with 

respect to the displacement at a selected location. For 

different values of dimensionless amplitudes, the phase 

trajectory plots for pre-buckling stage (P/Pcr = 0.5) 

corresponding to the point located at x = 0.5 L, are shown 

in Figs. 6(a)-(c). From one figure to another, it is the 

Young’s modulus ratio which varies from 1 to 20. Figs. 

7(a)-(c) show the phase trajectory plots for post-buckling 

stage (P/Pcr = 1.15) corresponding to the same location and 

same material constituents as that taken for pre-buckling 

stage. In this section, the beam slenderness ratio is L/h = 20. 

For rE = 1, 10 and 20, typical phase trajectory plots for L/h 

= 20 and a/r = 2 are depicted in Fig. 8(a) for pre-buckling 

stage and in Fig. 8(b) for the post-buckling one. 

In pre-buckled stage, the phase trajectory plot is a closed 

 

 

 

 

 

symmetric curve which is more like an ellipse. In the post-

buckled stage, the phase diagram has also a close trajectory 

which tends to be elliptic for high Young’s modulus ratio. 

From Figs. 7(a)-(c), 8(a)-(c) and 8(a)-(b), it is noted that the 

phase trajectory plots of the studied FG beams are strongly 

dependent on the vibration amplitude. In the pre- and post-

buckling stages, for the considered Young’s modulus ratios, 

increasing vibration amplitude leads to swelling of phase 

trajectory plot. For the pre-buckling stage, the swelling is 

important for homogeneous beam and increases 

significantly when the Young’s modulus ratio gets small 

(Fig. 8(a)). On the opposite, the swelling increase with 

increasing Young’s modulus ratio for post-buckling stage 

(Fig. 8(b)). 
 

 

6. Conclusions 
 

Exact solution for nonlinear behavior of FG buckled 

beams with fixed-fixed boundary conditions are obtained 

using the Euler-Bernoulli beam theory and von Kármán’s 

geometric nonlinearity. The nonlinear solution for buckled 

beams was derived through the elliptic function. The effects 

of the Young’s modulus ratio, the beam slenderness ratio, 

the vibration amplitude and the magnitude of axial load on 

the nonlinear behavior are examined. Numerical results 

prove that (i) the increase of the vibration amplitude leads 

to swelling of the curve showing the variation of the 

dimensionless nonlinear frequency as a function of the 

   

(a) rE = 1 (b) rE = 10 (c) rE = 20 

Fig. 7 Phase trajectory plot for post-buckling stage (P/Pcr = 1.15) for L/h = 20 

  

(a) Pre-buckling stage (P/Pcr = 0.5) (b) Post-buckling stage (P/Pcr = 1.15) 

Fig. 8 Variation of phase trajectory plot with Young’s modulus ratio for L/h = 20 
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dimensionless axial load; (ii) the nonlinear frequency ratio 

increases with an increase in the vibration amplitude and a 

decrease in the beam slenderness ratio; (iii) the monotony 

of the normalized nonlinear frequency depends on the 

Young’s modulus ratio. 
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