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1. Introduction 

 

The past decade has witnessed the successful 

development of micro/nano-electro-mechanical systems 

(MEMS/NEMS) like piezoelectric-gated diodes, resonators 

(Tanner et al. 2007), generators (Wang 2006), mechanical 

sensors (Lao et al. 2007, Zhang et al 2015) and energy 

harvesters according to demand of high precision and 

wireless NEMS devices. Using these applications of 

piezoelectric and piezomagnetic nano structures, 

necessitates scholars to have a profound understanding of 

the electro-mechanical and magneto-mechanical coupling 

behaviors of piezoelectric and piezomagnetic materials at 

the nano/micro-scale. The magnetoelectric effect is electric 

polarization due to an external magnetic field and 

magnetization due to the electric field. By using this 

important effect, scientists are able to control magnetic 

properties of a material by using electric field and vice 

versa. So, moving the borders of knowledge about 
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magnetoelectric structures seems to be essential. For this 

reason, as an example, Kiran and Kattimani (2018) 

researched on Free vibration of FGSMEE plates. They used 

finite element model to investigate the effect of power-law 

gradient, thickness ratio, boundary conditions and aspect 

ratio on the free vibration and static response characteristics 

of FGSMEE plate. As another attempt, Mahesh et al. (2019) 

addresses the coupled free vibration problem of skew 

magneto-electro-elastic plates (SMEE). They consider the 

temperature-moisture dependent material properties in their 

study and reveal that the external environment as well as the 

geometrical skewness has a significant influence on the 

stiffness of the SMEE plates. 

Piezoelectricity serves the linear response of 

polarization to mechanical strain and vice versa. This 

phenomenon is possible only in non-centrosymmetric 

materials. Beside piezoelectric, the flexoelectric is a 

coupling between polarization and strain gradient, rather 

than between polarization and homogeneous strain. Having 

a perfect understanding of this frail difference is necessary 

to understand advantages and the limitations of 

flexoelectricity relative to piezoelectricity. As another 

expression, piezoelectricity represents the linear coupling 

between electrical and mechanical variables while, 

 
 
 

Magneto-electro-elastic vibration analysis of modified couple stress-based 
three-layered micro rectangular plates exposed to multi-physical fields 

considering the flexoelectricity effects 
 

Mohammad Khorasani 1, Arameh Eyvazian 2, Mohammed Karbon 2, 

Abdelouahed Tounsi3,4, Luca Lampani 1 and Tamer A. Sebaey 5,6 
 

1 Department of Mechanical and Aerospace Engineering, Sapienza University, Via Eudossiana 18, 00184, Rome, Italy 
2 Department of Mechanical and Industrial Engineering, Qatar University, P.O. Box 2713, Doha, Qatar 
3 Department of Civil and Environmental Engineering, King Fahd University of Petroleum & Minerals, 

31261 Dhahran, Eastern Province, Saudi Arabia 
4 Material and Hydrology Laboratory, University of Sidi Bel Abbes, Faculty of Technology, Civil Engineering Department, Algeria 

5 Department of Mechanical Design and Production, Faculty of Engineering, Zagazig University, P.O. Box 44519, Zagazig, Sharkia, Egypt 
6 Department of Engineering Management, College of Engineering, Prince Sultan University, Riyadh, Saudi Arabia 

 
 

(Received December 31, 2019, Revised April 10, 2020, Accepted April 11, 2020) 

 
Abstract.  In this paper, based on the CPT, motion equations for a sandwich plate containing a core and two integrated face-sheets 

have derived. The structure rests on the Visco-Pasternak foundation, which includes normal and shear modules. The piezo-magnetic 

core is made of CoFe2O4 and also is subjected to 3D magnetic potential. Two face sheets at top and bottom of the core are under 

electrical fields. Also, in order to obtain more accuracy, the effect of flexoelectricity has took into account at face sheets’ relations in 

this work. Flexoelectricity is a property of all insulators whereby they polarize when subject to an inhomogeneous deformation. This 

property plays a crucial role in small-scale rather than macro scale. Employing CPT, Hamilton’s principle, flexoelectricity 

considerations, the governing equations are derived and then solved analytically. By present work a detailed numerical study is 

obtained based on Piezoelectricity, Flexoelectricity and modified couple stress theories to indicate the significant effect of length 

scale parameter, shear correction factor, aspect and thickness ratios and boundary conditions on natural frequency of sandwich 

plates. Also, the figures show that there is an excellent agreement between present study and previous researches. These finding can 

be used for automotive industries, aircrafts, marine vessels and building industries. 
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flexoelectricity denotes the linear coupling between strain 

gradient and polarization (Yudin and Tagantsev 2013) and 

strain and polarization gradient (Mindlin 1968). It is also 

worthwhile mentioning that analogous to definitions of the 

direct and the converse piezoelectric effects, induction of 

the electric polarization due to the strain gradient has called 

direct flexoelectric effect and increasing mechanical stress 

or strain due to the electric field gradient has termed 

converse flexoelectric effect. Based on statistics, it has 

revealed that flexoelectric effect is more significant in 

micro and nano-scale. 

In the past century, a lot of studies have done by 

different researchers to provide more clear understanding 

about vibrational, buckling and bending behaviors of 

different Piezoelectric and functionally graded shells and 

plates. As first example, Duc and Thang (2014) used an 

analytical approach to investigate the nonlinear static 

buckling for imperfect eccentrically stiffened FG thin 

circular cylindrical shells. In the same year, transient 

responses of FG double curved shallow shells with 

temperature-dependent material properties in thermal 

environment has examined by Duc and Quan (2014). After 

that, Duc et al. (2015) evaluated mechanical and thermal 

stability of eccentrically stiffened functionally graded 

conical shell panels resting on elastic foundations in thermal 

environment. Furthermore, Duc et al. (2017a) elaborated on 

nonlinear dynamic response and vibration of imperfect 

eccentrically stiffness functionally graded elliptical 

cylindrical shells on elastic foundations using both the 

classical shell theory (CST) and Airy stress functions 

method with motion equations using Volmir’s assumption. 

Moreover, based on Reddy’s third-order shear deformation 

shell theory, Duc et al. (2017b) and Khoa et al. (2017) 

presented an analytical approach to investigate the 

nonlinear thermo-mechanical response and nonlinear 

buckling and postbuckling response of imperfect Sigmoid 

FGM circular cylindrical shells surrounded on elastic 

foundations, respectively. More recently, nonlinear 

thermomechanical buckling and post-buckling response of 

porous FGM plates have investigated using Reddy’s HSDT 

by Cong et al. (2018). Also, the stability in a rectangular 

functionally grade material (FGM) plate with central crack 

studied by Minh and Duc (2019) 

On the other hand, theoretical work on flexoelectricity 

dates back to 1957, where Mashkevich (1957) proposed the 

effect of flexoelectricity for the first time. After that, Kogan 

formulated this phenomenon. Kogan estimated the 

flexoelectric coefficients for crystal dielectrics with order of 
𝑒

𝑎
= 10−9𝑐/𝑚, where e is the electron charge, and a is the 

lattice parameter Sharma et al. (2007). Tagantsev (1986) 

theoretically confirmed that the flexoelectric effect in the 

crystalline solids is different from the piezoelectric effect 

and he derived a simple model for computing the 

flexoelectric coefficients. Experimental researches of the 

converse flexoelectric effect due to the inhomogeneous 

electric field in barium strontium were conducted by Fu et 

al. (2006). Moreover, Maranganti et al. (2006) developed a 

variation principle for dielectrics including both the strain 

gradient and polarization gradient effects. Then a lot of 

experiments have done by (Ma and Cross 2001, 2002, 

2006) to examine the flexoelectricity quantitatively, by 

measuring the flexoelectric coefficients of ferroelectric 

ceramics. In recent years, efforts have made by researchers 

to provide perfect understanding on this fragile effect by 

investigation of experimental and theoretical results. For 

example, possible applications of the flexoelectricity in 

solids has conducted by Zubko et al. (2013). After that, a 

thorough and comprehensive review of the physical 

fundamentals has done by Nguyen et al. (2013). Also, in 

2013, Yudin and Tagantsev (2013) presented a critical 

analysis of the knowledge on the flexoelectricity in 

common solids, excluding organic materials and liquid 

crystals. The influence of flexoelectricity on the 

electromechanical coupling behavior of a piezoelectric 

nanoplate surveyed by Yang et al. (2015). They hired 

Kirchhoff plate theory and Hamilton’s principle to derive 

their results. Also, size dependency of flexoelectric effect 

has revealed using simulation results on the electroelastic 

fields. After that, Barati (2017) examined Coupled effects of 

electrical polarization-strain gradient on vibration behavior 

of double-layered flexoelectric nanoplates and he succeed 

to prove that flexoelectricity yields a considerable 

difference between his model and previous investigations 

on conventional piezoelectric nanoplates. 

Separated from abovementioned efforts, some papers 

have studied in order to have complete mindset about 

different plate related theories. For instance, Batou et al. 

(2019) studied wave propagations in sigmoid functionally 

graded (S-FG) plates using new higher shear deformation 

theory (HSDT) based on two-dimensional (2D) elasticity 

theory. Beside this, Thu and Duc (2016), focused on non-

linear dynamic response and vibration of an imperfect 

three-phase laminated nanocomposite cylindrical panel. 

They utilized HSDT in order to define displacement field in 

their paper. Duc and Tung (2010) and Duc and Cong (2015) 

conducted an analytical approach to investigating the 

stability of simply supported rectangular functionally 

graded plates and analytical approach to investigate the 

nonlinear dynamic response and vibration of thick 

functionally graded material (FGM) plates, respectively, 

using FSDT. Moreover, a simple four-variable integral plate 

theory is employed for examining the thermal buckling 

properties of functionally graded material (FGM) sandwich 

plates by Salah et al. (2019). 

Finally, providing a through and comprehensive 

vibrational study on smart sandwich plates, with lighter and 

stiffer structure, in order to use in different and sensitive 

industries became a great motivation to conduct recent 

research. Therefore, using previous woks’ contents, in this 

article we derive the governing equations of motion for a 

sandwich plate including a Piezomagnetic core and two 

flexoelectric face sheets based on classical and modified 

couple stress theories (CPT & MCST). The governing 

equations of motion are derived and solved by using 

Hamilton’s principle. The results of this study investigate 

the effect of important parameters on vibrational behavior 

of sandwich flexoelectric plates. It is worthwhile 

mentioning that, Flexoelectric consideration for deriving 

governing equations is most important novelty of this paper. 

Moreover, such current sandwich model with different 
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boundary condition has not taken into vibrational 

examination yet. 
 

 

2. Sandwich plate modeling 
 

A sandwich plate including a piezomagnetic core, 

subjected to magnetic field, between two flexoelectric face 

sheets exposed to electric fields with length a, width b and 

thickness h resting on visco-Pasternak elastic foundation is 

shown in Fig. 1. Also, ℎ𝑐  is the thickness of central 

piezomagnetic core and ℎ𝑡  and ℎ𝑏  are the thickness of 

top and bottom flexoelectric face sheets, respectively, which 

ℎ = ℎ𝑡 + ℎ𝑐 + ℎ𝑏. Piezomagnetic core is made of polymer 

matrix and uniformly distributed CNT fibers. A Cartesian 

coordinate system (x, y, z) is used to describe the plate with 

the z-axis being along the thickness direction and the x−y 

plane sitting on the mid-plane of plate. Both magnetic and 

electric fields assume to be along z direction. Because of 

simplicity and pursue aforementioned sandwich plate 

analyzation, it seems to be better to decompose problem to 

three separate portions (Piezomagnetic core, Flexoelectric 

face sheets and MCST). Then, related equations to each part 

should be presented. At the end, strain and kinetic energies 

of each part can be obtained using CPT. The total energy of 

sandwich plate is the sum of each part’s energy. 

In this research, CPT is utilized to model displacement 

fields for simplicity. Based on this theory, the displacements 

of an arbitrary point in the sandwich plate for both 

flexoelectric face sheets and piezo-magnetic core can be 

denoted as Wattanasakulpong and Chaikittiratana (2015) 
 

�̃�(𝑥, 𝑦, 𝑧, 𝑡) = 𝑢(𝑥, 𝑦, 𝑡) − 𝑧𝑤,𝑥, (1) 
 

 

 

Fig. 1 2D Schematics of rectangular sandwich plate with 

Flexoelectric (FE) face sheets and Piezomagnetic 

(PM) core exposed to external magnetic and electric 

fields resting on Visco Pasternak foundation 
 

�̃�(𝑥, 𝑦, 𝑧, 𝑡) = 𝑣(𝑥, 𝑦, 𝑡) − 𝑧𝑤,𝑦, (2) 

 

�̃�(𝑥, 𝑦, 𝑧, 𝑡) = 𝑤(𝑥, 𝑦, 𝑡), (3) 

 

where u, v and w are the displacement components along 

the x, y and z directions, respectively. 

 

2.1 Piezomagnetic core 
 

Piezomagnetic core is made of 𝐶𝑜𝐹𝑒2𝑂4. As mentioned 

in section 2, the sandwich plate is containing a 

piezomagnetic core which is under magnetic field. In this 

section, the stress, strain and magnetic field relations for 

piezomagnetic core are derived. The strains can be obtained 
as Jafari Mehrabadi (2012) 

 

휀𝑥𝑥
𝑐 =

𝜕�̃�

𝜕𝑥
 (4) 

 

휀𝑦𝑦
𝑐 =

𝜕�̃�

𝜕𝑦
 (5) 

 

휀𝑥𝑦
𝑐 =

1

2
(
𝜕�̃�

𝜕𝑦
+
𝜕�̃�

𝜕𝑥
) (6) 

 

휀𝑥𝑧
𝑐 =

1

2
(
𝜕�̃�

𝜕𝑧
+
𝜕�̃�

𝜕𝑥
) (7) 

 

휀𝑦𝑧
𝑐 =

1

2
(
𝜕�̃�

𝜕𝑧
+
𝜕�̃�

𝜕𝑦
) (8) 

 

Where, superscript c represents piezomagnetic core. The 

stresses and magnetic induction can be presented as fallows 

Ebrahimi et al. (2019a) 

 

[
 
 
 
 
 
𝜎𝑥𝑥

𝑐

𝜎𝑦𝑦
𝑐

𝜎𝑥𝑦
𝑐

𝜎𝑦𝑧
𝑐

𝜎𝑥𝑧
𝑐 ]
 
 
 
 
 

=

[
 
 
 
 
𝑄11 𝑄12 0 0 0
𝑄12 𝑄22 0 0 0
0 0 𝑄66 0 0
0 0 0 𝑘𝑓𝑄44 0

0 0 0 0 𝑘𝑓𝑄55]
 
 
 
 

[
 
 
 
 
 
휀𝑥𝑥

𝑐

휀𝑦𝑦
𝑐

2휀𝑥𝑦
𝑐

2휀𝑦𝑧
𝑐

2휀𝑥𝑧
𝑐]
 
 
 
 
 

 

                +

[
 
 
 
 
0 0 𝑟31
0 0 𝑟31
0 0 0
0 𝑟24 0
𝑟15 0 0 ]

 
 
 
 

[
 
 
 
 
 
 
𝜕

𝜕𝑥
�̃�(𝑥, 𝑦, 𝑧, 𝑡)

𝜕

𝜕𝑦
�̃�(𝑥, 𝑦, 𝑧, 𝑡)

𝜕

𝜕𝑧
�̃�(𝑥, 𝑦, 𝑧, 𝑡)]

 
 
 
 
 
 

, 

(9) 

 

[

𝐵𝑥
𝐵𝑦
𝐵𝑧

] = [

0 0 0 0 𝑟15
0 0 0 𝑟24 0
𝑟31 𝑟31 0 0 0

]

[
 
 
 
 
 
휀𝑥𝑥

𝑐

휀𝑦𝑦
𝑐

2휀𝑥𝑦
𝑐

2휀𝑦𝑧
𝑐

2휀𝑥𝑧
𝑐]
 
 
 
 
 

 

             − [
𝜇11 0 0
0 𝜇22 0
0 0 𝜇33

]

[
 
 
 
 
 
 
𝜕

𝜕𝑥
�̃�(𝑥, 𝑦, 𝑧, 𝑡)

𝜕

𝜕𝑦
�̃�(𝑥, 𝑦, 𝑧, 𝑡)

𝜕

𝜕𝑧
�̃�(𝑥, 𝑦, 𝑧, 𝑡)]

 
 
 
 
 
 

, 

(10) 
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Where, Q, r, 𝑘𝑓  and �̃�  represent elastic constant, 

piezomagnetic constant, shear correction factor (which is 

equal to 5/6) and magnetic potential field. The magnetic 

potential field assumes to be: �̃�(𝑥, 𝑦, 𝑧, 𝑡) =

−𝛷(𝑥, 𝑦, 𝑡) 𝑐𝑜𝑠 (
𝜋𝑧

ℎ𝑐
). (Ebrahimi et al. 2019b) 

Also, B and 𝜇 denote magnetic induction and magnetic 

permeability coefficient, respectively. Finally, Using Eqs. 

(1-10), the kinetic and strain energy of Piezomagnetic core 

have derived as (Ke et al. 2010) 

 

𝐾𝑐 = ∫
1

2
𝜌𝑐

[
 
 
 
 
 
 
 
 
(
𝜕

𝜕𝑡
�̃�(𝑥, 𝑦, 𝑧, 𝑡))

2

+

+(
𝜕

𝜕𝑡
�̃�(𝑥, 𝑦, 𝑧, 𝑡))

2

+(
𝜕

𝜕𝑡
�̃�(𝑥, 𝑦, 𝑧, 𝑡))

2

]
 
 
 
 
 
 
 
 

𝑉

𝑑∀, (11) 

 

∪𝑐= ∫
1

2
𝑣

[𝜎𝑥𝑥
𝑐 휀𝑥𝑥

𝑐 + 𝜎𝑦𝑦
𝑐 휀𝑦𝑦

𝑐 + 2𝜎𝑥𝑦
𝑐 휀𝑥𝑦

𝑐 + 2𝜎𝑥𝑧
𝑐 휀𝑥𝑧

𝑐  

          +2𝜎𝑦𝑧
𝑐 휀𝑦𝑧

𝑐 + {𝐵𝑥
𝜕

𝜕𝑥
Φ̃(𝑥, 𝑦, 𝑧, 𝑡) 

          +𝐵𝑦
𝜕

𝜕𝑦
Φ̃(𝑥, 𝑦, 𝑧, 𝑡) + 𝐵𝑧

𝜕

𝜕𝑧
Φ̃(𝑥, 𝑦, 𝑧, 𝑡)}] 𝑑∀, 

(12) 

 

2.2 Flexoelectric face sheets 
 

The linear form of piezoelectricity theory has hired to 

show the effect of flexoelectricity. The higher order terms 

are neglected to simplify the equations (Robinson et al. 

2012, Zhang and Jiang 2014, Zubko et al. 2013). So, the 

internal energy density for flexoelectric face sheets can be 

defined as Zhang and Jiang (2014) 

 

∪=
1

2
𝑎𝑘𝑙𝑃𝑘𝑃𝑙 +

1

2
𝑐𝑖𝑗𝑘𝑙휀𝑖𝑗휀𝑘𝑙 + 𝑑𝑖𝑗𝑘휀𝑖𝑗𝑃𝑘 

       +
1

2
𝑏𝑖𝑗𝑘𝑙𝑃𝑖,𝑗𝑃𝑘,𝑙 + 𝑓𝑖𝑗𝑘𝑙𝑢𝑖,𝑗𝑘𝑃𝑙 + 𝑒𝑖𝑗𝑘𝑙휀𝑖𝑗𝑃𝑘,𝑙 , 

(13) 

 

where 𝑃𝑖 , 휀𝑖𝑗 , 𝑎𝑘𝑙 , 𝑐𝑖𝑗𝑘𝑙  and 𝑑𝑖𝑗𝑘  are, respectively, 

polarization, strain, dielectric, elastic and piezoelectric 

constant tensors. The polarization gradient and polarization 

gradient coupling tensor represents by 𝑏𝑖𝑗𝑘𝑙 . 𝑓𝑖𝑗𝑘𝑙  is the 

strain gradient and polarization coupling tensor. 𝑒𝑖𝑗𝑘𝑙 

denotes the strain and polarization gradient coupling and 

𝑓𝑖𝑗𝑘𝑙 = −𝑒𝑖𝑗𝑘𝑙 (Sharma et al. 2010, Shen and Hu 2010). 

Consequently, the constitutive equations for flexoelectric 

face sheets can be derived as Hu and Shen (2010) 

 

𝜎𝑖𝑗 =
𝜕 ∪

𝜕휀𝑖𝑗
= 𝑐𝑖𝑗𝑘𝑙휀𝑘𝑙 + 𝑑𝑖𝑗𝑘𝑃𝑘 + 𝑒𝑖𝑗𝑘𝑙𝑃𝑘,𝑙 , (14) 

 

𝜎𝑖𝑗𝑚 =
𝜕 ∪

𝜕𝑢𝑖,𝑗𝑚
= 𝑓𝑖𝑗𝑚𝑘𝑃𝑘, (15) 

 

𝐸𝑖 =
𝜕 ∪

𝜕𝑃𝑖
= 𝑎𝑖𝑗𝑃𝑗 + 𝑑𝑗𝑘𝑖휀𝑗𝑘 + 𝑓𝑗𝑘𝑙𝑖𝑢𝑗,𝑘𝑙 , (16) 

 

𝐸𝑖𝑗 =
𝜕 ∪

𝜕𝑃𝑖,𝑗
= 𝑏𝑖𝑗𝑘𝑙𝑃𝑘,𝑙 + 𝑒𝑘𝑙𝑖𝑗휀𝑘𝑙 , (17) 

 

where 𝜎𝑖𝑗 , 𝐸𝑖 , 𝜎𝑖𝑗𝑚  and 𝐸𝑖𝑗  represent stress, electrical 

field, higher order stress and higher order electrical field 

tensors, respectively. Moreover, the strain equations can be 

represented as follows Ansari and Sahmani (2011) 
 

휀𝑥𝑥 =
𝜕�̃�

𝜕𝑥
,                       휀𝑦𝑦 =

𝜕�̃�

𝜕𝑦
, 

휀𝑥𝑦 =
1

2
(
𝜕�̃�

𝜕𝑥
+
𝜕�̃�

𝜕𝑦
),     𝛾𝑥𝑥𝑧 =

𝜕휀𝑥𝑥
𝜕𝑧

, 

𝛾𝑦𝑦𝑧 =
𝜕휀𝑦𝑦
𝜕𝑧

,                  𝛾𝑥𝑦𝑧 =
𝜕(2휀𝑥𝑦)

𝜕𝑧
, 

𝛾𝑥𝑧 = 0,                           𝛾𝑦𝑧 = 0 

(18) 

 

Some assumptions are needed to mention the equations 

in a simple form as: 𝑐11 = 𝑐1111, 𝑐66 = 𝑐1212, 𝑑31 = 𝑑311, 

𝑎33 = 𝑎3333 , and 𝑏33 = 𝑏3333 , 𝑓1133 = 𝑓2233 = 𝑓19  (Shu 

et al. 2011). According to Fig. 1, the electric field 𝐸𝑖 only 

exists in the z direction {Formatting Citation} and using 

Eqs. (16)-(18), the higher order electric field 𝐸𝑖𝑗  for 

flexoelectric face sheets can be derived as 
 

𝐸𝑧 = 𝑎33𝑃𝑧 + 𝑑31(휀𝑥𝑥 + 휀𝑦𝑦) + 𝑓19 (
𝜕휀𝑥𝑥
𝜕𝑧

+
𝜕휀𝑦𝑦
𝜕𝑧

), (19) 

 

𝐸𝑧𝑥 = 𝑏3133𝑃𝑧,𝑧, (20) 

 

𝐸𝑧𝑦 = 𝑏3233𝑃𝑧,𝑧, (21) 

 

𝐸𝑧𝑧 = 𝑏33𝑃𝑧,𝑧 − 𝑓19(휀𝑥𝑥 + 휀𝑦𝑦). (22) 
 

When the flexoelectric face sheet is under an electric 

potential 𝜑 across z direction (across its thickness), the 

equilibrium equation should be satisfied as (Hu and Shen 

2010, Shen and Hu 2010) 
 

𝐸𝑧 +
𝜕𝜑

𝜕𝑧
− 𝐸𝑧𝑥,𝑥 − 𝐸𝑧𝑦,𝑦 − 𝐸𝑧𝑧,𝑧 = 0, (23) 

 

where 𝜑 is the electric potential along with z axis. When 

there is not any free electric charge on the flexoelectric face 

sheet, the Gauss’s law can be written as Hu and Shen (2010) 
 

−𝑘𝜑,𝑧𝑧 + 𝑃𝑧,𝑧 = 0, (24) 
 

where 𝑘 = 𝑘0𝑘𝑏 , 𝑘0 = 8.85 × 10
−12𝐶𝑉−1𝑚−1  is the 

permittivity of the air and 𝑘𝑏 = 6.62 is the background 

permittivity of BaTiO3 when its electric field is across the 

polarization direction Tagantsev and Gerra (2006). Using 

Eqs. (19)-(24) and the electric boundary conditions 𝐸𝑖𝑗𝑛𝑗 =

0, 𝜑
(
ℎ

2
)
= 𝑉0 and 𝜑

(−
ℎ

2
)
= 0 for flexoelectric face sheets, 

the electric potential can be derived in terms of transverse 

displacement, rotations of middle surface and applied 

voltage 𝑉0 as 
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where 𝜆2 = √
1+𝑘𝑎33

𝑘𝑏33
. 

Using Eqs. (23)-(24) the polarization is 

 

 

Substitution of Eq. (26) into Eqs. (19) and (22), 

respectively, electrical field in the z direction (𝐸𝑧) and the 

higher order electric field (𝐸𝑧𝑧)  for top and bottom 

flexoelectric face sheets can be obtained as 

 

 

 

After the derivation of electric field terms, the stresses 

of flexoelectric face sheets can be determined from the 

constitutive as follows 

 

{
 
 

 
 
𝜎𝑥𝑥
𝜎𝑦𝑦
𝜎𝑥𝑦
𝜏𝑥𝑥𝑧
𝜏𝑦𝑦𝑧
𝜏𝑥𝑦𝑧}

 
 

 
 

=

[
 
 
 
 
 
𝑐11 𝑐12 0 0 0 0
𝑐21 𝑐22 0 0 0 0
0 0 𝑐66 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0]

 
 
 
 
 

{
 
 

 
 
휀𝑥𝑥
휀𝑦𝑦
2휀𝑥𝑦
𝛾𝑥𝑥𝑧
𝛾𝑦𝑦𝑧
𝛾𝑥𝑦𝑧}

 
 

 
 

 

                 +

[
 
 
 
 
 
𝑑31𝑘 𝑘𝑠𝑓19𝑘
𝑑32𝑘 𝑘𝑠𝑓19𝑘
0 0

𝑘𝑠𝑓19𝑘 0
𝑘𝑠𝑓19𝑘 0
0 0 ]

 
 
 
 
 

{

𝜕𝜑

𝜕𝑧

−
𝜕2𝜑

𝜕𝑧2

}, 

(29) 

 

 

 

 

 

 

 

 

 

 

 

 

 

in Eq. (29), 𝑘𝑠 is shear correction factor which is equal to 

5/6. 

At the end, using Eqs. (1)-(3), (18), (25)-(28) and (29), 

the kinetic and strain energy of flexoelectric face sheets can 

be defined as Liu et al. (2012) 
 

𝐾𝑓 = ∫
1

2
𝜌𝑓

[
 
 
 
 
 
 
 
 
(
𝜕

𝜕𝑡
�̃�(𝑥, 𝑦, 𝑧, 𝑡))

2

+(
𝜕

𝜕𝑡
�̃�(𝑥, 𝑦, 𝑧, 𝑡))

2

+(
𝜕

𝜕𝑡
�̃�(𝑥, 𝑦, 𝑧, 𝑡))

2

]
 
 
 
 
 
 
 
 

𝑉

𝑑∀, (30) 

 

𝜑(𝑥, 𝑦, 𝑧, 𝑡) =
𝑑31 (𝑧

2 −
ℎ2

4
) (

𝜕2𝑤

𝜕𝑥2
+
𝜕2𝑤

𝜕𝑦2
)

2(𝑎33𝑘 + 1)
+
𝑉0
ℎ
𝑧 +

𝑉0
2
+
𝑓19𝑧 (

𝜕2𝑤

𝜕𝑥2
+
𝜕2𝑤

𝜕𝑦2
)

(𝑎33𝑘 + 1)
 

                          −

𝑓19ℎ (𝑒
𝜆2𝑧 − (𝑒𝜆2𝑧)

−1
) (

𝜕2𝑤

𝜕𝑥2
+
𝜕2𝑤

𝜕𝑦2
) (𝑒

𝜆2ℎ

2 − (𝑒
𝜆2ℎ

2 )
−1

)

−1

2(𝑎33𝑘 + 1)
 

                          +
𝑏33𝑘𝑑31

(𝑎33𝑘 + 1)
2

(

 1 −
𝑒𝜆2𝑧 + (𝑒𝜆2𝑧)

−1

𝑒
𝜆2ℎ

2 + (𝑒
𝜆2ℎ

2 )
−1

)

 + (
𝜕2𝑤

𝜕𝑥2
+
𝜕2𝑤

𝜕𝑦2
) −

𝑓19
(𝑎33𝑘 + 1)

(

 1 −
𝑒𝜆2𝑧 + (𝑒𝜆2𝑧)

−1

𝑒
𝜆2ℎ

2 + (𝑒
𝜆2ℎ

2 )
−1

)

 (
𝜕𝑢

𝜕𝑥
+
𝜕𝑣

𝜕𝑦
), 

(25) 

𝑃𝑧 = 2
𝑘𝑑31𝑧 (

𝜕2𝑤

𝜕𝑥2
+
𝜕2𝑤

𝜕𝑦2
)

2(𝑎33𝑘 + 1)
+
𝑘𝑉0
ℎ
+
𝑘𝑓19 (

𝜕2𝑤

𝜕𝑥2
+
𝜕2𝑤

𝜕𝑦2
)

(𝑎33𝑘 + 1)
−

𝑏33𝑘
2𝑑31 (𝑒

𝜆2𝑧𝜆2 −
𝜆2

𝑒𝜆2𝑧
) (

𝜕2𝑤

𝜕𝑥2
+
𝜕2𝑤

𝜕𝑦2
) (𝑒

𝜆2ℎ

2 + (𝑒
𝜆2ℎ

2 )
−1

)

−1

(𝑎33𝑘 + 1)
2

 

          −

𝑘𝑓19ℎ (𝑒
𝜆2𝑧𝜆2 +

𝜆2

𝑒𝜆2𝑧
) (

𝜕2𝑤

𝜕𝑥2
+
𝜕2𝑤

𝜕𝑦2
) (𝑒

𝜆2ℎ

2 − (𝑒
𝜆2ℎ

2 )
−1

)

−1

2(𝑎33𝑘 + 1)
+

𝑘𝑓19 (𝑒
𝜆2𝑧𝜆2 −

𝜆2

𝑒𝜆2𝑧
) (

𝜕𝑢

𝜕𝑥
+

𝜕𝑣

𝜕𝑦
) (𝑒

𝜆2ℎ

2 + (𝑒
𝜆2ℎ

2 )
−1

)

−1

(𝑎33𝑘 + 1)
. 

(26) 

𝐸𝑧 = 𝑎33𝑘 (2
𝑑31𝑧 (+

𝜕2𝑤

𝜕𝑥2
+
𝜕2𝑤

𝜕𝑦2
)

2(𝑎33𝑘 + 1)
+
𝑉0
ℎ
+
𝑓19 (+

𝜕2𝑤

𝜕𝑥2
+
𝜕2𝑤

𝜕𝑦2
)

(𝑎33𝑘 + 1)
−

𝑓19ℎ

2(𝑎33𝑘 + 1)
(𝑒𝜆2𝑧𝜆2 +

𝜆2
𝑒𝜆2𝑧

)(+
𝜕2𝑤

𝜕𝑥2
+
𝜕2𝑤

𝜕𝑦2
)(𝑒

𝜆2ℎ

2 − (𝑒
𝜆2ℎ

2 )
−1

)

−1

 

            −
𝑏33𝑘𝑑31

(𝑎33𝑘+ 1)
2
(𝑒𝜆2𝑧𝜆2 −

𝜆2
𝑒𝜆2𝑧

)(+
𝜕2𝑤

𝜕𝑥2
+
𝜕2𝑤

𝜕𝑦2
)(𝑒

𝜆2ℎ

2 + (𝑒
𝜆2ℎ

2 )
−1

)

−1

 

            +
𝑓
19

(𝑎33𝑘+ 1)
(𝑒𝜆2𝑧𝜆2 −

𝜆2
𝑒𝜆2𝑧

)(
𝜕𝑢

𝜕𝑥
+
𝜕𝑣

𝜕𝑦
)(𝑒

𝜆2ℎ

2 + (𝑒
𝜆2ℎ

2 )
−1

)

−1

)+𝑑31 (
𝜕𝑢

𝜕𝑥
+
𝜕𝑣

𝜕𝑦
− 𝑧

𝜕2𝑤

𝜕𝑥2
− 𝑧

𝜕2𝑤

𝜕𝑦2
)+ 𝑘𝑠𝑓19 (−

𝜕2𝑤

𝜕𝑥2
−
𝜕2𝑤

𝜕𝑦2
), 

(27) 

𝐸𝑧𝑧 = 𝑏33𝑘(
𝑑31 (

𝜕2𝑤

𝜕𝑥2
+
𝜕2𝑤

𝜕𝑦2
)

(𝑎33𝑘 + 1)
−

𝑓19ℎ

(𝑎33𝑘 + 1)
(𝑒𝜆2𝑧𝜆2

2 −
𝜆2
2

𝑒𝜆2𝑧
)(
𝜕2𝑤

𝜕𝑥2
+
𝜕2𝑤

𝜕𝑦2
)(𝑒

𝜆2ℎ

2 − (𝑒
𝜆2ℎ

2 )
−1

)

−1

 

            −
𝑏33𝑘𝑑31

(𝑎33𝑘+ 1)2
(2𝑒𝜆2𝑧𝜆2

2 +
2𝜆2

2

𝑒𝜆2𝑧
)(
𝜕2𝑤

𝜕𝑥2
+
𝜕2𝑤

𝜕𝑦2
)(𝑒

𝜆2ℎ

2 + (𝑒
𝜆2ℎ

2 )
−1

)

−1

 

            +
𝑓19

(𝑎33𝑘+ 1)
(2𝑒𝜆2𝑧𝜆2

2 +
2𝜆2

2

𝑒𝜆2𝑧
)(
𝜕𝑢

𝜕𝑥
+
𝜕𝑣

𝜕𝑦
)(𝑒

𝜆2ℎ

2 + (𝑒
𝜆2ℎ

2 )
−1

)

−1

)−𝑓19 (
𝜕𝑢

𝜕𝑥
− 𝑧

𝜕2𝑤

𝜕𝑥2
+
𝜕𝑣

𝜕𝑦
− 𝑧

𝜕2𝑤

𝜕𝑦2
). 

(28) 
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∪𝑓= ∫
1

2
𝑣

(𝜎𝑥𝑥휀𝑥𝑥 + 𝜎𝑦𝑦휀𝑦𝑦 + 2𝜎𝑥𝑦휀𝑥𝑦 + 𝜏𝑥𝑥𝑧𝛾𝑥𝑥𝑧 

          +𝜏𝑦𝑦𝑧𝛾𝑦𝑦𝑧 + 𝜏𝑥𝑦𝑧𝛾𝑥𝑦𝑧 + 𝐸𝑧𝑝𝑧 + 𝐸𝑧𝑧
𝜕

𝜕𝑧
𝑝𝑧 

          −𝑘 (
𝜕

𝜕𝑧
𝜑(𝑥, 𝑦, 𝑧, 𝑡))

2

+𝑝𝑧
𝜕

𝜕𝑧
𝜑(𝑥, 𝑦, 𝑧, 𝑡)) 𝑑∀, 

(31) 

 

2.3 Modified couple stress theory (MCST) 
 

According to statistics and different researches, it has 

revealed that Modified Couple Stress Theory is more 

accurate than Nonlocal theory. So, the MCST has utilized to 

consider the size effect of the aforementioned sandwich 

plate. So, the strain equations can be obtained as 

 

휀𝑥𝑥
𝑚 =

𝜕�̃�

𝜕𝑥
,       휀𝑦𝑦

𝑚 =
𝜕�̃�

𝜕𝑦
,      휀𝑥𝑦

𝑚 =
1

2
(
𝜕�̃�

𝜕𝑦
+
𝜕�̃�

𝜕𝑥
) 

휀𝑥𝑧
𝑚 =

1

2
(
𝜕�̃�

𝜕𝑧
+
𝜕�̃�

𝜕𝑥
),                휀𝑦𝑧

𝑚 =
1

2
(
𝜕�̃�

𝜕𝑧
+
𝜕�̃�

𝜕𝑦
), 

(32) 

 

Which the superscript m denotes MCST. The stress 

tensor can be defined as Yang et al. (2011) 

 

[
 
 
 
 
 
𝜎𝑥𝑥

𝑚

𝜎𝑦𝑦
𝑚

𝜎𝑥𝑦
𝑚

𝜎𝑦𝑧
𝑚

𝜎𝑥𝑧
𝑚 ]
 
 
 
 
 

=

[
 
 
 
 
𝑄11 𝑄12 0 0 0
𝑄12 𝑄22 0 0 0
0 0 𝑄66 0 0
0 0 0 𝑘𝑓𝑄44 0

0 0 0 0 𝑘𝑓𝑄55]
 
 
 
 

[
 
 
 
 
 
휀𝑥𝑥

𝑚

휀𝑦𝑦
𝑚

2휀𝑥𝑦
𝑚

2휀𝑦𝑧
𝑚

2휀𝑥𝑧
𝑚]
 
 
 
 
 

. (33) 

 

The equation of strain energy is presented as follows 

Rahmani et al. (2018) 

∪𝑚= ∫
1

2

[
 
 
 
 
 
 
𝜎𝑥𝑥

𝑚휀𝑥𝑥
𝑚 + 𝜎𝑦𝑦

𝑚휀𝑦𝑦
𝑚

+2𝜎𝑥𝑦
𝑚휀𝑥𝑦

𝑚 + 2𝜎𝑥𝑧
𝑚휀𝑥𝑧

𝑚

+2𝜎𝑦𝑧
𝑚휀𝑦𝑧

𝑚

+{

𝑚𝑥𝑥𝜒𝑥𝑥 +𝑚𝑦𝑦𝜒𝑦𝑦
+𝑚𝑥𝑦𝜒𝑥𝑦 +𝑚𝑥𝑧𝜒𝑥𝑧
+𝑚𝑦𝑧𝜒𝑦𝑧

}

]
 
 
 
 
 
 

𝑉

𝑑∀, (34) 

 

Where, 𝑚𝑙𝑘  and 𝜒𝑙𝑘  are stress and symmetric 

curvature tensor. As another expression, 𝑚𝑙𝑘 is a part of 

couple stress tensor which is ignorable in macro-scale 

whereas, plays a crucial role in micro and nano-scale. 

𝑚𝑙𝑘 and 𝜒𝑙𝑘 can be presented as 
 

𝜒𝑥𝑥 =
𝜕2𝑤

𝜕𝑦𝜕𝑥
,                          𝜒𝑦𝑦 = −

𝜕2𝑤

𝜕𝑦𝜕𝑥
 

𝜒𝑥𝑦 =
1

2
(
𝜕2𝑤

𝜕𝑦2
−
𝜕2𝑤

𝜕𝑥2
),       𝜒𝑥𝑧 =

1

4
(
𝜕2𝑣

𝜕𝑥2
−
𝜕2𝑢

𝜕𝑦𝜕𝑥
) 

𝜒𝑦𝑧 =
1

4
(
𝜕2𝑣

𝜕𝑦𝜕𝑥
−
𝜕2𝑢

𝜕𝑦2
),     𝜒𝑧𝑧 = 0 

(35) 

 

𝑚𝑙𝑘 = 2𝑙0
2𝐺𝜒𝑙𝑘, (36) 

 

Where, 𝑙0  is material length scale parameter and 𝐺 

assumes to be equal to 𝑄66. 

Substituting Eqs. (33)-(36) to Eq. (34), the strain energy 

due to MCST can be obtained. 

3. Governing equations 
 

Hamilton’s principle has used to extract the governing 

equations as follows (Arshid and Khorshidvand 2018, 

Guerroudj et al. 2018, Ebrahimi et al. 2017) 
 

𝛿𝛱 = 𝛿∫ ((∪𝑐− 𝐾𝑐) + (∪𝑓− 𝐾𝑓) +∪𝑚− 𝛴)𝑑𝑡
𝑡2

𝑡1

= 0, (37) 

 

in which, ∪ , K and 𝛴  represent strain energy, kinetic 

energy and external work, respectively. Superscripts c, f and 

m are, respectively, representative of the words, core, face 

sheets and MCST. 

Visco-Pasternak foundation is capable to consider 

normal and transverse shear loads. The force applied on 

sandwich plate due to Visco-Pasternak foundation can be 

determined as (Arshid et al. 2019, Yazid et al. 2018, 

Zenkour 2015, Anh et al. 2015) 
 

𝐹𝑉𝑖𝑠𝑐𝑜−𝑃𝑎𝑠𝑡𝑒𝑟𝑛𝑎𝑘𝑓𝑜𝑢𝑛𝑑𝑎𝑡𝑖𝑜𝑛 

= 𝐾𝑤𝑤(𝑥, 𝑦, 𝑡) − 𝐾𝑔𝑥
𝜕2𝑤(𝑥, 𝑦, 𝑡)

𝜕𝑥2
 

    −𝐾𝑔𝑦
𝜕2𝑤(𝑥, 𝑦, 𝑡)

𝜕𝑦2
+ 𝐶𝑑

𝜕2𝑤(𝑥, 𝑦, 𝑡)

𝜕𝑡
, 

(38) 

 

where 𝐾𝑤 is Winkler spring coefficient and 𝐾𝑔𝑥, 𝐾𝑔𝑦 are 

shear layer parameters in x and y directions, respectively. 

Also, 𝐶𝑑  is damping constant. Therefore, the work of 

elastic medium is as follows 
 

𝛴 =
1

2
∫𝐹𝑉𝑖𝑠𝑐𝑜−𝑃𝑎𝑠𝑡𝑒𝑟𝑛𝑎𝑘𝑓𝑜𝑢𝑛𝑑𝑎𝑡𝑖𝑜𝑛𝑤𝑑𝐴
𝐴

, (39) 

 

Substitution of Eqs. (11)-(12), (30)-(31), (34) and (39) 

into Eq. (37), the equations of motion can be obtained by 

setting the coefficients𝛿𝑢, 𝛿𝑣, 𝛿𝛷 and 𝛿𝑤 equal to zero. 
 

 

4. Analytical solution procedure 
 

In the case of considering different boundary conditions 

and in order to separate variables related to space and time 

for sandwich plate, the displacement components can be 
defined as Wattanasakulpong and Chaikittiratana (2015) 

 

𝑢(𝑥, 𝑦, 𝑡) = ∑ ∑𝑈𝑚𝑛
𝑑𝑋𝑚(𝑥)

𝑑𝑥
𝑌𝑛(𝑦)𝑒

𝑖𝜔𝑚𝑛𝑡

𝑁

𝑛=1

𝑀

𝑚=1

, 𝑣(𝑥, 𝑦, 𝑡) 

                  = ∑ ∑𝑉𝑚𝑛
𝑑𝑌𝑛(𝑦)

𝑑𝑦
𝑋𝑚(𝑥)𝑒

𝑖𝜔𝑚𝑛𝑡 ,

𝑁

𝑛=1

𝑀

𝑚=1

𝑤(𝑥, 𝑦, 𝑡) 

                  = ∑ ∑𝑊𝑚𝑛𝑋𝑚(𝑥)𝑌𝑛(𝑦)𝑒
𝑖𝜔𝑚𝑛𝑡 ,

𝑁

𝑛=1

𝑀

𝑚=1

𝛷(𝑥, 𝑦, 𝑡) 

                  = ∑ ∑𝛷𝑚𝑛𝑋𝑚(𝑥)𝑌𝑛(𝑦)𝑒
𝑖𝜔𝑚𝑛𝑡 ,

𝑁

𝑛=1

𝑀

𝑚=1

 

(40) 

 

in which 𝑋(𝑥)  and 𝑌(𝑦)  are hired to switch among 

different boundary conditions and define as follow 
 

𝑋𝑚(𝑥) = 𝑠𝑖𝑛(𝜛𝑚𝑥) + 휁𝑚 𝑐𝑜𝑠(𝜛𝑚𝑥) 
                  +휂𝑚 𝑠𝑖𝑛ℎ(𝜛𝑚𝑥) + 𝜉𝑚 𝑐𝑜𝑠ℎ(𝜛𝑚𝑥), 

(41) 
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𝑌𝑛(𝑥) = 𝑠𝑖𝑛(𝜛𝑛𝑦) + 휁𝑛 𝑐𝑜𝑠(𝜛𝑛𝑦) 
                +휂𝑛 𝑠𝑖𝑛ℎ(𝜛𝑛𝑦) + 𝜉𝑛 𝑐𝑜𝑠ℎ(𝜛𝑛𝑦). 

(41) 

 

All constants related to these equations for different 

boundary conditions are listed in Table 1 as below. 

𝑈𝑚𝑛,  𝑉𝑚𝑛,  𝑊𝑚𝑛 and 𝛷𝑚𝑛 are unknown coefficients of 

each mode and 𝜔𝑚𝑛 represents the natural frequency. The 

mode numbers along x and y directions are, respectively, m 

and n. Eventually, the equations of motion can be defined as 

a matric form as 
 

[

𝑇11 𝑇12 𝑇13 𝑇14
𝑇21 𝑇22 𝑇23 𝑇24
𝑇31 𝑇32 𝑇33 𝑇34
𝑇41 𝑇42 𝑇43 𝑇44

] [

𝑈𝑚𝑛
𝑉𝑚𝑛
𝑊𝑚𝑛
𝛷𝑚𝑛

] = [

0
0
0
0

]. (42) 

 

The arrays of matric [T] are obtained by substituting Eq. 

(40) into the governing equation of motion which have 

obtained in previous section. 
 

 

 

 

 

5. Numerical results and discussions 
 

In this section, numerical and graphical results have 

collected to investigate the effect of flexoelectricity on 

vibrational behavior of sandwich plate with piezomagnetic 

core made by 𝐶𝑜𝐹𝑒2𝑂4, and 𝐵𝑎𝑇𝑖𝑂3 as flexoelectric face 

sheets. The material properties of 𝐶𝑜𝐹𝑒2𝑂4 are expressed 

in Table 2 (Ebrahimi and Barati 2016). Also, the properties 

for 𝐵𝑎𝑇𝑖𝑂3 as flexoelectric face sheets are indicated in 

Table 3. (Zhang and Jiang 2014, Zhang et al. 2014) 

The geometrical and mechanical properties of sandwich 

plate are considered as follows 
 

ℎ𝑐 = 2(𝑛𝑚),    ℎ𝑓 = 0.1(𝑛𝑚),    𝑎 = 20ℎ, 
𝑎

𝑏
= 1,                𝐾𝑤 = 10

9(𝑁/𝑚3), 

𝐾𝑔𝑥 = 100(𝑁/𝑚),    𝐾
∗ =

𝐾𝑔𝑦

𝐾𝑔𝑥
,    𝐶𝑑 = 10

18(𝐾𝑔/𝑠). 

 

In order to guaranty the reliability of the results of this 

research, the effects of aspect ratio (a/b) and thickness to 

length ratio (h/a) on the non-dimensional fundamental 
 

Table 1 Different boundary condition constants 

B.c. SSSS SSCS CCCC 

𝜛𝑚 
𝑚𝜋

𝑎
 

𝑚𝜋

𝑎
 

(2𝑚 + 1)𝜋

2𝑎
 

𝜛𝑛 
𝑛𝜋

𝑏
 

(4𝑛 + 1)𝜋

4𝑏
 

(2𝑛 + 1)𝜋

2𝑏
 

휁𝑚 0 0 
−(𝑠𝑖𝑛(𝜛𝑚𝑎) − 𝑠𝑖𝑛ℎ(𝜛𝑚𝑎)

𝑐𝑜𝑠(𝜛𝑚𝑎) − 𝑐𝑜𝑠ℎ(𝜛𝑚𝑎)
 

휁𝑛 0 0 
−(𝑠𝑖𝑛(𝜛𝑛𝑏) − 𝑠𝑖𝑛ℎ(𝜛𝑛𝑏))

𝑐𝑜𝑠(𝜛𝑛𝑏) − 𝑐𝑜𝑠ℎ(𝜛𝑛𝑏)
 

휂𝑚 0 0 −1 

휂𝑛 0 
−𝑠𝑖𝑛𝜛𝑛 𝑏

𝑠𝑖𝑛ℎ𝜛𝑛 𝑏
 −1 

𝜉𝑚 0 0 −휁𝑚 

𝜉𝑛 0 0 −휁𝑛 

𝜛𝑚 
(4𝑚 + 1)𝜋

4𝑎
 

(2𝑚 − 1)𝜋

4𝑎
 

(2𝑚 − 1)𝜋

4𝑎
 

𝜛𝑛 
(4𝑛 + 1)𝜋

4𝑏
 

(2𝑛 − 1)𝜋

4𝑏
 

(4𝑛 + 1)𝜋

4𝑏
 

휁𝑚 0 
−(𝑠𝑖𝑛(𝜛𝑚𝑎) + 𝑠𝑖𝑛ℎ(𝜛𝑚𝑎)

𝑐𝑜𝑠(𝜛𝑚𝑎) + 𝑐𝑜𝑠ℎ(𝜛𝑚𝑎)
 

−(𝑠𝑖𝑛(𝜛𝑚𝑎) + 𝑠𝑖𝑛ℎ(𝜛𝑚𝑎)

𝑐𝑜𝑠(𝜛𝑚𝑎) + 𝑐𝑜𝑠ℎ(𝜛𝑚𝑎)
 

휁𝑛 0 
−(𝑠𝑖𝑛(𝜛𝑛𝑏) + 𝑠𝑖𝑛ℎ(𝜛𝑛𝑏))

𝑐𝑜𝑠(𝜛𝑛𝑏) + 𝑐𝑜𝑠ℎ(𝜛𝑛𝑏)
 0 

휂𝑚 
−𝑠𝑖𝑛𝜛𝑚 𝑎

𝑠𝑖𝑛ℎ𝜛𝑚 𝑎
 −1 −1 

휂𝑛 
−𝑠𝑖𝑛𝜛𝑛 𝑏

𝑠𝑖𝑛ℎ𝜛𝑛 𝑏
 −1 

−𝑠𝑖𝑛𝜛𝑛 𝑏

𝑠𝑖𝑛ℎ𝜛𝑛 𝑏
 

𝜉𝑚 0 −휁𝑚 −휁𝑚 

𝜉𝑛 0 −휁𝑛 0 

𝜛𝑚 
(4𝑚 + 1)𝜋

4𝑎
 

(2𝑚 − 1)𝜋

4𝑎
 

(2𝑚 − 1)𝜋

4𝑎
 

𝜛𝑛 
(4𝑛 + 1)𝜋

4𝑏
 

(2𝑛 − 1)𝜋

4𝑏
 

(4𝑛 + 1)𝜋

4𝑏
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Table 4 Comparison among the non-dimensional natural 

frequency of SSSS plates in present study and 

(Aghababaei and Reddy 2009, Hosseini-Hashemi 

et al. 2015) 

a/b h/a Author(s) Theory Frequency Error (%) 

1.0 0.1 

Aghababaei and 

Reddy (2009) 
HSDT 19.1678 2.1 

Hosseini-Hashemi 

et al. (2015) 
HSDT 19.0653 2.6 

Present  19.5788  

1.0 0.05 

Aghababaei and 

Reddy (2009) 
HSDT 19.6695 0.15 

Hosseini-Hashemi 

et al. (2015) 
HSDT 19.5625 0.69 

Present  19.6987  

0.5 0.1 

Aghababaei and 

Reddy (2009) 
HSDT 12.1157 1.3 

Hosseini-Hashemi 

et al. (2015) 
HSDT 12.0675 1.7 

Present  12.2741  

0.5 0.05 

Aghababaei and 

Reddy (2009) 
HSDT 12.3445 0.18 

Hosseini-Hashemi 

et al. (2015) 
HSDT 12.2675 0.44 

Present  12.3212  
 

 

 
natural frequency of SSSS plates compared with 

(Aghababaei and Reddy 2009 and Hosseini-Hashemi et al. 

2015) in Table 4. Moreover, the effect of different mode 

numbers on the dimensionless natural frequencies of the 

piezoelectric plate in present study has compared with Liu 

et al. (2013) in Table 5. 

Finally, using Tables 4-5, it is clear that a good 

agreement exists among the results of present study and 

those of Aghababaei and Reddy (2009), Hosseini-Hashemi 

et al. (2015), Liu et al. (2013). 

The natural frequency of sandwich plate versus width to 

thickness ratio (b/h) for different mode number is shown in 

 

 

 

 

Table 5 Comparison of dimensionless natural frequencies of 

the piezoelectric nanoplate in different mode 

numbers 

Frequency Liu et al. (2013) Present Error (%) 

𝜔11 0.6634 0.6902 4 

𝜔12 1.6518 1.6601 0.5 

𝜔22 2.6328 2.6962 2.4 

𝜔13 3.2829 3.2175 1.9 
 

 
 

Fig. 2. By increasing (b/h), the natural frequency of 

sandwich plate decreases. This behavior is due to the 

flexibility enhancement of sandwich plate which leads to 

stiffness and stability reduction. It is also found that in 

higher mode shapes, higher natural frequency observe in 

each (b/h). 

Fig. 3 denotes the damping constant effect on the natural 

frequency of sandwich plate versus the thickness of piezo-

magnetic core. This figure proved when damping constant 

increases, the stiffness of system decreases. As another 

expression, the ability of damping and attracting energy in 

dampers decreases by damping constant enhancement. So, 

the natural frequency decreases. Moreover, the natural 

frequency decreases by increasing in the thickness of 

piezomagnetic core. In fact, the stability and natural 

frequency of system reduces when the thickness of 

piezomagnetic core increases. 

Fig. 4 indicates the variations of natural frequency 

versus thickness of flexoelectric face sheets using Modified 

couple stress theory for different boundary conditions. It is 

observed that when the thickness of flexoelectric face sheets 

increases, the flexibility of sandwich plate increases and 

leads to increase the energy dissipation and natural 

frequency reduction in system. So, the control of vibrational 

behavior of sandwich plates is doable with change in 

thickness of flexoelectric face sheets in each case of 

boundary condition. 

In Fig. 5 based on the present analytical solutions, 

results have plotted for each of the five possible cases of 

boundary conditions (i.e., SSSS, SSCS, CSCS, CCCC and 

FCCS). S and C mean simply and clamped supports 

respectively. Clamped support related to an edge of structure 

Table 2 The Mechanical properties of Piezomagnetic layer (𝐶𝑜𝐹𝑒2𝑂4) (Ebrahimi and Barati 2016) 

𝜌𝑐(𝑘𝑔/𝑚
3) 𝑄11(𝐺𝑃𝑎) 𝑄12(𝐺𝑃𝑎) 𝑄22(𝐺𝑃𝑎) 𝑄44(𝐺𝑃𝑎) 

5300 286 173 286 45.3 

𝑄55(𝐺𝑃𝑎) 𝑄66(𝐺𝑃𝑎) 𝑟31(𝑁/𝐴𝑚) 𝜇11 = 𝜇22(𝑁𝑠
2/𝐶2) 𝜇33(𝑁𝑠

2/𝐶2) 

45.3 56.5 580.3 −590𝑒 − 6 157𝑒 − 6 
 

Table 3 The mechanical properties of flexoelectric face sheets (𝐵𝑎𝑇𝑖𝑂3) 

(Zhang and Jiang 2014, Zhang et al. 2014) 

𝜌𝑓(𝑘𝑔/𝑚
3) 𝑐11 = 𝑐22(𝐺𝑃𝑎) 𝑐12 = 𝑐21(𝐺𝑃𝑎) 𝑐66(𝐺𝑃𝑎) 𝜌𝑓(𝑘𝑔/𝑚

3) 

6020 167.55 78.15 44.7 6020 

𝑎33(𝑉𝑚/𝐶) 𝑏33(𝐽𝑚
3/𝐶2) 𝑑31 = 𝑑32(𝑉/𝑚) 𝑓19(𝑉) 𝑎33(𝑉𝑚/𝐶) 

0.79 × 108 1 × 10−9 3.5 × 108 10 0.79 × 108 
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structure increases the stiffness of system. Stiffness 

enhancement leads to flexibility reduction and more stable 

system. So, boundary condition including clamped supports 

has higher value of natural frequency in each thickness of 

flexoelectric face sheets. For each case of the boundary 

conditions, aspect ratio enhancement results lower values of 

natural frequencies. It is also found that, after a specific 

aspect ratio (about a/b = 2.5) the natural frequency 

alternation become ignorable and natural frequency tends to 

be constant. 

 

 

 

 

 

 

Pasternak shear constant values at X direction (𝐾𝑔𝑥) and 

Y direction (𝐾𝑔𝑦) can influence the natural frequency of 

system. In Fig. 6 the natural frequency with and without 

Pasternak foundation has investigated. By putting 𝐾𝑔𝑥 and 

𝐾𝑔𝑦 equal to zero, it is possible to eliminate the Pasternak 

foundation from the model related to this study. It has 

declared that the presence of Pasternak foundation, 

increases the natural frequency and stiffness level of system 

and by increasing in Pasternak shear constants value, the 

Pasternak foundation plays more important rule in natural 

 

Fig. 2 Variations of Natural frequency versus width to thickness ratio (b/h) for different mode number 

 

Fig. 3 Variations of Natural frequency versus thickness of piezo magnetic core subjected to different damping coefficients 

 

Fig. 4 Variations of natural frequency versus thickness of flexoelectric face sheets and diverse boundary conditions 
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frequency enlargement. 𝐾∗  is a constant and can be 

defined as 𝐾∗ = 𝐾𝑔𝑦/𝐾𝑔𝑥 . Fig. 6 indicates that in each 

𝐾𝑔𝑥, the higher values of natural frequency, stiffness and 

stability of system can be obtained by using higher value of 

𝐾𝑔𝑦 which means using higher value of 𝐾∗. 

The effect of length scale parameter (𝑙0) on natural 

frequency of sandwich plates has investigated in Fig. 7. As 

it is clear in Eqs. (34), (36)-(37), larger magnitudes of 𝑙0 

lead to increase in system strain energy due to the curvature 

tensor (𝑚𝑙𝑘). Curvature tensor is related to stiffness tensor. 

Therefore, by length scale parameter enhancement the 

stiffness and finally natural frequency of system increases. 

 

 

 

 

 

 
6. Conclusions 

 

As mentioned in abstract and introduction, flexo-

electricity denotes the linear coupling between strain 

gradient and polarization. Based on previous papers, 

however flexoelectricity has not a dominant effect in macro 

scale, its effect plays a crucial role in micro and nano scale. 

Using Classical plate theory (CPT) and modified couple 

stress theory (MCST), vibrational behaviour of a sandwich 

plate with piezomagnetic core and flexoelectric face sheets 

took into examination in current study. For governing 

equations elicitation, Hamilton’s principle and Navier’s 

 

Fig. 5 Variations of natural frequency versus aspect ratio for different boundary conditions 

 

Fig. 6 Variations of natural frequency versus shear layer constant in x direction under different 𝐾𝑔𝑥 to 𝐾𝑔𝑦 ratio (𝐾∗) 

 

Fig. 7 Variations of natural frequency versus length to thickness ratio (a/h) for different length scale parameter 
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methods have hired. Current research illustrates that thicker 

layers of flexoelectric face sheets lead to less stiff sandwich 

plate and consequently, the natural frequency decreases by 

flexo-face sheet thickness increasing. Moreover, recent 

paper shows sensitivity of natural frequency to length scale 

parameter and states natural frequency increases with length 

scale parameter enhancement. Beside this, it has revealed 

that boundary conditions act as reducing or increasing 

parameters for natural frequency. As a physical expression 

it is worthwhile mentioning that despite of SSSS, by using 

CCCC as boundary conditions, flexibility of whole system 

drops down and natural frequency increases. The results in 

this research demonstrate an excellent agreement with 

previous works. These results can help to design and 

manufacturing of smart systems more precisely. The aim of 

this work is to broad the borders of science related to 

structures with flexoelectric effects consideration. 
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