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1. Introduction 

 

Beam and plate structures are frequently applied in 

many engineering applications such as buildings, bridges, 

aircraft, ships and so on. Therefore, an analytical or 

experimental process which investigates structural 

behaviors of the beam and plate is a significant task for 

engineers and designers (El-Shami et al. 2010, Xiao et al. 

2016). Until now, a lot of studies (Awwad et al. 2014, 

Zirakian and Zhang 2015) were devoted to the industrial 

areas of beams and plates. Most of the features or 

characteristics of beams and plates have been well-known 

to engineers and designers. For example, loads applied to a 

beam may be a point load, uniformed or non-uniformed 

distributed loads, or varying loads. Besides, point moments 

or torsions may exist on the beam. The beam itself is 

supported at one or more points. Design conditions at the 

support depend on the kind of supports used. When the 

support is a roller, it can only have a reaction perpendicular 

to the motion of the roller. In a pinned support, it cannot 

carry a moment. When the support is fixed, then it can react 

in any direction and resist a moment as well. The beams can 

have various kinds of cross-sections, such as circular, 

elliptical, rectangular, I or L-shape, and so on. Comprehensive 
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knowledge of beam and plates could be found in the 

textbook of Timoshenko (1983) and Gere and Goodno 

(2013). 

The excellent mechanical properties of composite 

materials (Leigh et al. 2012, Mahajan and Aher 2012, Liu et 

al. 2013, Manickam et al. 2015) such as high specific 

strength and stiffness, flexible anisotropic properties, ultra-

lightweight and so on (Lee and Shin 2014, 2015) motivated 

researchers to study structural behaviors of laminated 

composite plates. A simple search of a popular website for 

the word “composite materials” yielded more than 250 

entries. Many of these titles are published papers or 

excellent books on the mechanics of composite materials 

and have been adopted by educational institutions for 

introductory courses (Srinivas 1973, Hahn and Tsai 1980, 

Green and Naghdi 1982, Reddy 1994, 2004, Gibson 2011, 

Vinson and Sierakowski 2012). 

Risk assessment (Tao et al. 2012, Stanley and John 

2018, Zhang et al. 2019) is the determination of the 

quantitative or qualitative value of risk related to an obvious 

situation and a recognized threat, also called hazard. In all 

types of engineering of complex systems, sophisticated risk 

assessments are often made within safety engineering 

(Spellman and Whiting 2005, Lee et al. 2016, Nasr et al. 

2018) and reliability engineering (Zio 2009, Zaitseva 2012, 

Abdulkadir and Altin 2014, Lee 2016, Sihombing and 

Torbol 2016), when it concerns threats to life, environment 

or machine functioning. The nuclear, aerospace, oil, rail and 

military industries have a long history of dealing with the 

risk assessment. Also, medical, hospital, social service, and 

food industries control the risks and perform the risk 

assessments continually. Methods for assessment of the risk 
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may differ between industries and whether it pertains to 

general financial decisions or environmental, ecological, or 

public health risk assessment. 

One of the main problems in the structural assessment, 

especially, to beams and plates with composite materials is 

the treatment of uncertainty (Bulleit 2008, Aminifar and 

Marzuki 2013, Lee and Shin 2017) mainly presented in 

numerical models, physical and geometrical parameters 

such as applied loads, Young’s modulus, inertia, and so on, 

and in measured variables such as displacements, strains, 

and rotations. One of the main issues, while considering the 

various sources of uncertainty, is how to define objective 

and reliable criteria for distinguishing between an abnormal 

behavior (differences of measured values and those 

predicted by the model) due to the presence of damages, 

and the differences of measured and calculated results 

because of the uncertainty and randomness in the 

experimental data, models and physical parameters. When 

performing long term structural assessment, methodologies 

that take into account these uncertainties should be 

implemented in an efficient, fast and user-friendly way 

(García et al. 2008, Gazi and Alhan 2018, Ghiasia and 

Ghasemi 2018). 

For the purpose, in this study, structural behaviors of the 

isotropic beam and laminated composite plates under plane 

stress conditions are analyzed with respect to structural 

uncertainty assessment. For the given representatives 

resulting in uncertainties of structural responses, applied 

load, and Young’s modulus is dealt with as uncertainty 

parameters. Uncertainty parameters are formulated by 

interval arithmetic describing the degree of uncertainty, 

which is linked to the initialization of finite element 

analysis. The variation of the deflection and von-Mises 

stress with respect to the uncertainty parameters are studied. 

The content of this study is listed as follows. In Section 

2, the finite element formulation of the composite plates 

under conditions of plane stress is presented. In Section 3, 

the uncertainty of Young’s modulus and applied force on the 

change of the structural maximum deflection and maximum 

von-Mises stress is described through interval arithmetic. In 

Section 4, the uncertainty analysis of the isotropic beams 

and laminated composite plates is presented under the 

conditions of geometrical triangular shape and clamped-free 

boundary conditions. The conclusions and remarks of this 

study are given in Section 5. 
 

 

2. Formulations of finite element method for 
laminate plates 
 

The resulting equation for the displacement-based finite 

element method is 
 

[𝐾]{𝑢} = {𝐹} (1) 
 

In the following, the stiffness matrix for laminated 

composite plates under plane stress conditions is generated. 

The general element stiffness matrix is derived for the plane 

stress problem in parametric space (𝜉, 𝜂) as follow (Reddy 

2006) 

[𝐾] = [
[𝐾11] [𝐾2]

[𝐾1] [𝐾2]
] (2) 

 

where 
 

𝐾𝑖𝑗
11 = ∫ [(𝐴11

𝜕𝜓𝑖

𝜕𝜉

𝜕𝜓𝑗

𝜕𝜉
+ 𝐴66

𝜕𝜓𝑖

𝜕𝜂

𝜕𝜓𝑗

𝜕𝜂
)

𝛺𝑒

+ 𝐴16 (
𝜕𝜓𝑖

𝜕𝜉

𝜕𝜓𝑗

𝜕𝜂
+

𝜕𝜓𝑖

𝜕𝜂

𝜕𝜓𝑗

𝜕𝜉
)] 𝑑𝜉𝑑𝜂 

(3a) 

 

𝐾𝑖𝑗
12 = 𝐾𝑗𝑖

21 ∫ (𝐴16

𝜕𝜓𝑖

𝜕𝜉

𝜕𝜓𝑗

𝜕𝜉
+ 𝐴26

𝜕𝜓𝑖

𝜕𝜂

𝜕𝜓𝑗

𝜕𝜂𝛺𝑒

+ 𝐴12

𝜕𝜓𝑖

𝜕𝜉

𝜕𝜓𝑗

𝜕𝜂
+ 𝐴66

𝜕𝜓𝑖

𝜕𝜂

𝜕𝜓𝑗

𝜕𝜉
) 𝑑𝜉𝑑𝜂 

(3b) 

 

𝐾𝑖𝑗
22 = ∫ [(𝐴66

𝜕𝜓𝑖

𝜕𝜉

𝜕𝜓𝑗

𝜕𝜉
+ 𝐴22

𝜕𝜓𝑖

𝜕𝜂

𝜕𝜓𝑗

𝜕𝜂
)

𝛺𝑒

+ 𝐴26 (
𝜕𝜓𝑖

𝜕𝜉

𝜕𝜓𝑗

𝜕𝜂
+

𝜕𝜓𝑖

𝜕𝜂

𝜕𝜓𝑗

𝜕𝜉
)] 𝑑𝜉𝑑𝜂 

(3c) 

 

in which 𝐴𝑖𝑗 is the extensional stiffness which is defined in 

terms of the lamina stiffness 𝑄̄𝑖𝑗
(𝑘)

 (Reddy 2004) as 

 

𝐴𝑖𝑗 = ∑ 𝑄̄𝑖𝑗
(𝑘)(𝑧𝑘+1 − 𝑧𝑘)

𝑁

𝑘=1

 (4) 

 

where 𝑁 is the number of lamina and details calculation of 

the lamina stiffness 𝑄̄𝑖𝑗
(𝑘)

 could be found in the book by 

Reddy. And 𝜓𝑖 are linear Lagrange interpolation functions 

and 𝑐𝑖𝑗 given for the constitutive equation as 
 

{

𝑁𝑥𝑥

𝑁𝑦𝑦

𝑁𝑥𝑦

} = [

𝐴11 𝐴12 𝐴16

𝐴21 𝐴22 𝐴26

𝐴16 𝐴26 𝐴66

] {

𝜀𝑥𝑥

𝜀𝑦𝑦

𝛾𝑥𝑦

}. (5) 

 

in which 𝑁𝑥𝑥, 𝑁𝑥𝑦, 𝑁𝑦𝑦 are the in-plane forces, 𝜀𝑥𝑥, 𝜀𝑦𝑦,

𝛾𝑥𝑦 are in-plane strains. The parent element in parametric 

space is defined as shown in Fig. 1 and the linear Lagrange 

interpolation functions associated with rectangular elements 

can be obtained as 
 

𝜓1 =
1

4
(1 − 𝜉)(1 − 𝜂) (6a) 

 

𝜓2 =
1

4
(1 + 𝜉)(1 − 𝜂) (6b) 

 

𝜓3 =
1

4
(1 + 𝜉)(1 + 𝜂) (6c) 

 

𝜓4 =
1

4
(1 − 𝜉)(1 + 𝜂) (6d) 

 

When the number of the lamina is one and the oriented 

direction is 0 degree, we have the orthotropic plate cases. 

And in the case of one lamina, 𝐸1 = 𝐸2, 𝐺12 =
𝐸

2(1+𝜈)
, we 

have the isotropic cases. 
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Fig. 1 Bi-linear parent element in parametric space 

 

 

The displacements and von-Mises stress are calculated 

as 
{𝑢} = [𝐾−1]{𝐹} (7) 

 

𝜎𝑉𝑀 = √𝜎1
2 + 𝜎2

2 − 𝜎1𝜎2 (8) 

 

where 𝜎1 and 𝜎2 are principal stresses. 
 

 

3. Formulations of structural parameters using 
interval arithmetic 
 

3.1 Interval arithmetic considering uncertainties of 
structural parameters 

 

Assume that I(R), I(Rn) and I(Rn x n) denote the sets of all 

closed real interval numbers, n dimension real interval and 

n x n real interval matrices, respectively. R is the set of all 

real numbers, 𝑋𝐼 = [𝑥, 𝑥] is a number of I(R) and can be 

usually written in the following form 

 

𝑋𝐼 = [𝑋𝐶 − 𝛥𝑋, 𝑋𝐶 + 𝛥𝑋] (9) 

 

𝑋𝐶 =
𝑥 + 𝑥

2
 (10) 

 

𝛥𝑋 =
𝑥 − 𝑥

2
 (11) 

 

where XC and 𝛥𝑋 denote the mean value of XI and the 

uncertainty of XI, respectively. The uncertain interval 

Δ𝑋𝐼 = [−Δ𝑋, Δ𝑋]indicates an interval change ratio with a 

given range of uncertainty. 

An arbitrary interval 𝑋𝐼 = [𝑥, 𝑥] can also be written as 

the sum of its mean value an uncertain interval: 𝑋𝐼 = 𝑋𝐶 +
Δ𝑋𝐼. 

 

3.2 Interval change function of Young’s modulus E 
 

It is assumed that E is not an exact value, and then the 

value of E exists within an interval with lower and upper 

bounds.  E = [E, E] = {E ∈ R; E ≤ E ≤ E} is the set of all 

real numbers are between infimum 𝐸 and the supremum 

E. 

The mean value of Young’s modulus may be written as 

𝐸𝐶 =
𝐸+𝐸

2
, and the maximum width of Young’s modulus is 

given as Δ𝐸 =
𝐸−𝐸

2
. 

Let f be a real-valued function of n real variables e1, 

e2,…,en. An extension of f means that an interval change 

function F of n interval variables E1,E2,..,En, for all 𝑒𝑖 ∈
𝐸𝑖(𝑖 = 1,2, . . . , 𝑛) possesses the following property F([E1, 

E1], [E2, E2],...,[En, En ]) = f(e1,e2,..,en). 

The interval of E may also be expressed as 

 

𝐸 = [𝐸𝐶 (1 −
𝛥𝐸

𝐸𝐶
) , 𝐸𝐶 (1 +

𝛥𝐸

𝐸𝐶
)] 

    = [1 −
𝐸 − 𝐸

2𝐸𝐶
, 1 +

𝐸 − 𝐸

2𝐸𝐶
] 𝐸𝐶 = 𝐸𝐹 . 𝐸𝐶 

(12) 

 

where interval change function of E is 𝐸𝐹 = [1 −
𝐸−𝐸

2𝐸𝐶 , 1 +

𝐸−𝐸

2𝐸𝐶 ] = [𝐸𝐹 , 𝐸𝐹]which 𝐸𝐹 = 1 −
𝐸−𝐸

2𝐸𝐶  and 𝐸𝐹 = 1 +
𝐸−𝐸

2𝐸𝐶 . 

Because EC is the mean value of E and the uncertainty 

of E is denoted by E. Thus, EF is called the interval factor of 

Young’s modulus E. 

The mean value of EF is given by 𝐸𝐹
𝐶 =

𝐸+𝐸

2
= 1, and 

the maximum width of EF is given by Δ𝐸𝐹 =
𝛥𝐸

𝐸𝐶. 

Δ𝐸𝐹  can be considered as the interval change ratio 

value to assess the dispersal degree of the interval [𝐸, 𝐸]. 

Additionally, the interval factor of Young’s modulus E can 

be written as the sum of its mean value and its uncertain 

interval Δ𝐸𝐹 with 𝐸𝐹 = 𝐸𝐹
𝐶 + 𝛥𝐸𝐹 = 1 +

𝛥𝐸

𝐸𝐶  and 𝐸𝐹 =

𝐸𝐹
𝐶 + Δ𝐸𝐹 = 1 +

𝛥𝐸

𝐸𝐶. 

 

3.3 Interval change function of applied load F 
 

It is assumed that F is not an exact value, and then the 

value of F is changed in an interval. 𝐹 = [𝐹, 𝐹] =

{𝐹 ∈ 𝑅; 𝐹 ≤ 𝐹 ≤ 𝐹}  is the set of all real numbers are 

between infimum 𝐹 and the supremum 𝐹. 

The mean value of the load is given by 𝐹𝐶 =
𝐹+𝐹

2
 and 

the maximum width of the load is given by 𝛥𝐹 =
𝐹−𝐹

2
. 

Let f be a real-valued function of n real variables 

f1,f2,..,fn. An extension of f means that an interval change 

function F of n interval variables F1,F2,..,Fn, for all 𝑒𝑓𝑖 ∈
𝐹𝑖(𝑖 = 1,2, . . . , 𝑛) possesses the following property F([F1, 

F1], [F2, F2],...,[Fn, Fn]) = f(f1,f2,..,fn). 

The interval of load, Fl can also be expressed as 

 

𝐹𝑙 = [𝐹𝐶 (1 −
𝛥𝐹

𝐹𝐶
) , 𝐹𝐶 (1 +

𝛥𝐹

𝐹𝐶
)] 

     = [1 −
𝐹 − 𝐹

2𝐹𝐶
, 1 +

𝐹 − 𝐹

2𝐹𝐶
] 𝐹𝐶 = 𝐹𝐹 . 𝐹𝐶 

(13) 

 

where interval change function of F is 𝐹𝐹 = [1 −
𝐹−𝐹

2𝐹𝐶 , 1 +

𝐹−𝐹

2𝐹𝐶 ] = [𝐹𝐹 , 𝐹𝐹]which 𝐹𝐹 = 1 −
𝐹−𝐹

2𝐹𝐶  and 𝐹𝐹 = 1 +
𝐹−𝐹

2𝐹𝐶 . 
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Because FC is the mean value of F and the uncertainty 

of F is denoted by F. Thus, FF is called the interval factor of 

the load F. 

The mean value of FF is given by 𝐹𝐹
𝐶 =

𝐹+𝐹

2
= 1 and 

the maximum width of EF is given by Δ𝐹𝐹 =
𝛥𝐹

𝐹𝐶. 

ΔFF can be considered as the interval change ratio value 

to assess the dispersal degree of the interval [𝐹, 𝐹] . 

Additionally, the interval factor of the load F can be written 

as the sum of its mean value and its uncertain 

interval 𝛥𝐹𝐹 with 𝐹𝐹 = 𝐹𝐹
𝐶 + 𝛥𝐹𝐹 = 1 +

𝛥𝐹

𝐹𝐶  and 𝐹𝐹 =

𝐹𝐹
𝐶 + Δ𝐹𝐹 = 1 +

𝛥𝐹

𝐹𝐶. 

In this study, interval change ratio is assumed to be a 

unit of given lower and upper bounds to show undertainty 

ranges of uncertainty structural parameters such as values of 

Young’s modulus and applied loads. 
 

 

4. Numerical applications and discussion 
 

To conduct survey in general, two kind of materials: 

homogeneous and non homogeneous with two 

representative structures are isotropic beam and composite 

plate are investigated in this part. 
 

4.1 Isotropic cantilever beams 
 

The cantilever beam with a triangular shape is modeled 

by 100×20 linear 4-node plane stress elements. The given 

interval change ratio is between 0 to 10% to describe the 

uncertainty degree of structural parameters. The schematic 

of the cantilever beam is depicted in Fig. 2, which denotes a 

real continuous model. Fig. 3 shows the discrete finite 

element model of the cantilever as shown in Fig. 2. Fig. 4 

presents the von-Mises stress contour of the cantilever beam 

with Young’s modulus E = 1, 𝜈 = 0.3, and F = -1 as given 

nominal values. The effect of the uncertainty of Young’s 
 

 

 

Fig. 2 Continuous real model of the cantilever beam 

with a triangular shape and a point load F 
 

 

 

Fig. 3 Discrete finite element models for the cantilever: 

100×20 4-node linear elements 
 

 

Fig. 4 von-Mises stress contour of the discrete modeled 

cantilever beam 

 

 

 

Fig. 5 von-Mises stress (Δ𝐸) 

 

 

 

Fig. 6 Deflection (Δ𝐸) 

 

 

 

Fig. 7 von-Mises stress (ΔF) 

 

 

modulus applied force on the change of the structural 

maximum deflection, and maximum von-Mises stress is 

described in Figs. 5 to 8. The uncertainty of them almost 
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Fig. 8 Deflection (ΔF) 

 

 

produces the same effect on structural deflection. Especially 

in Fig. 5, the von Mises stresses of the lower and upper 

bounds is totally same. It can be found that the uncertainty 

of Young’s modulus does not have any effect on the von-

Mises stress. 

Figs. 9 and 10 describe deflection curves at point A as 

shown in Fig. 2, according to the normalized applied load 

and Young’s modulus, respectively. As can be seen, the 

linear deflection curve for the normalized applied load is 

produced, but normalized Young’s modulus takes a nonlinear 

 

 

 

Fig. 9 Displacement at point A of the cantilever beam with 

respect to the normalized applied load 

 

 

 

Fig. 10 Deflection at point A of the cantilever beam with 

respect to the normalized modulus of elasticity 

deflection curve. This mean that the influence of applied 

load tends to increase linearly when the force is higher, but 

increase non-linearly in case of young modulus. In other 

words, the influence tended to decrease when the force is 

higher. 

Moreover, it can be found that uncertainty behaviors of 

a material parameter such as Young’s modulus are reduced 

when uncertainty degree increases. Note that the present 

uncertainty behavior denotes structural behaviors resulting 

from uncertainty parameters. And uncertainty degree 

appeals to an uncertainty situation shown by interval change 

ratio. 

 

4.2 Isotropic MBB beams 
 

For the second application, the classical Messerschmitt-

Bölkow-Blohm (MBB) beam is modeled for analysis which 

is a well-known simple supported beam in the structural 

optimization analysis. The schematic of MBB-beam with 

full design domain and half design domain with symmetric 

boundary conditions is depicted in Fig. 11. 

The modulus of elasticity and point load is also 

uncertain parameters. MBB-beam is geometrically modeled 

like as the previous example but different boundary and 

loading conditions. That is, the finite element model is the 

same as in Fig. 2. von-Mises stress contour is shown in Fig. 

12. The material properties are the same as the cantilever 

beam. The same procedure as the previous example is 

carried out for MBB-beam. Figs. 13 and 14 illustrate the 

variation of the deflection at point B with respect to the 

normalized applied load and normalized modulus of 

elasticity, respectively. 

 

 

 

Fig. 11 Schematic of MBB-beam. Top: full design domain, 

and bottom: half design domain with symmetry 

boundary conditions 

 

 

 

Fig. 12 Schematic of MBB-beam. Top: full design domain, 

and bottom: half design domain with symmetry 

boundary conditions 
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Fig. 13 Displacement at point B of the MBB-beam with 

respect to the normalized applied load 

 

 

 

Fig. 14 Displacement at point B of the MBB-beam with 

respect to the normalized modulus of elasticity 

 

 

As the same result of the previous application of the 

cantilever beam, uncertainty deflection behavior of material 

parameters such as Young’s modulus is gradually reduced 

when uncertainty degree increases. 

 

4.3 Laminated composite plates 
 

For the third application, the laminated composite plate 

is modeled for uncertainty interval analysis. The anti-

symmetric cross-ply [0/90] lay-up is considered for the 

whole uncertainty analysis as shown in Fig. 15. The applied 

force and boundary conditions are the same as those of the 

cantilever beam as shown in Fig. 12. The plated is modeled 

by 40×40 linear 4-node elements for analyzing the 

uncertainty of Young’s modulus and applied force on the 

von-Mises stress. The following elastic properties are 

chosen for the composite material utilized in the laminate 

stacking sequences: 

𝐸1 = 15𝐸0, 𝐸2 = 𝐸0, 𝐺12 = 0.6𝐸0, 𝜈12 = 0.3. Fig. 16(a) 

shows the finite element domain with 40×40 elements. Fig. 

16(b) presents the von-Mises stress contour of the [0/90] 

cross-ply laminated plate with 𝐸0 = 103, 𝑃 = −1.  The 

 

Fig. 15 Model of composite plates 
 

 

  

(a) Discrete finite element 

model 

(b) von-Mises stress of the 

model 

Fig. 16 Discrete finite element domain: 40×40 4-node linear 

elements and von-Mises stress contour 
 

 

 

Fig. 17 von-Mises stress (Δ𝐸0) 
 

 

 

Fig. 18 von-Mises stress (Δ𝐹) 

 
 

Interval change ratio is given between 0 to 10%, and the 

value 0 means an assumption for conventional deterministic 

analysis. 

The effect of the uncertainty of Young’s modulus 

applied force on the change of the maximum von-Mises 
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Fig. 19 von-Mises stress (Δ𝜆) 

 

 

 

Fig. 20 von-Mises stress (Δ𝛼) 

 

 

stress is shown in Figs. 17 to 18. The uncertainty of the 

applied force F almost produces a significant effect on the 

von-Mises stress, however, the uncertainty of Young’s 

modulus does not have any effect on it. 

The orthotropy ratio which is defined as 𝜆 = 𝐸1/𝐸2 is 

considered for uncertainty interval analysis. The effect of 

uncertainty of the orthotropy ratio 𝜆 is shown in Fig. 19. 

The fiber change ratio is defined as 𝛼 = 𝜃/𝜃0  for the 
[0/𝜃] lay-up (𝜃0 = 90∘). The effect of uncertainty of the 

fiber change ratio on the change of maximum von-Mises 

stress is present in Fig. 20. 

As can be seen in  Figs. 19 and 20, von-Mises curve of 

lower and upper bounds of 𝛥𝛼 tends to behave nonlinearly 

with respect to the interval change ratio. In the case of 𝛥𝜆, 

von-Mises curves of lower and upper bounds produce 

almost linear curves. 

 

 

5. Conclusions 
 

In this research, the isotropic cantilever, MBB beam, 

and the [0/90] cross-ply composite plate were analyzed for 

the uncertainty interval formulations of the deflection and 

von-Mises stress. The uncertainty behaviors produce linear 

or nonlinear curves of lower and upper bounds. The 

stiffness matrix is built for laminated composite plates 

under plane stress conditions. The isotropic cantilever beam 

is modeled by plane stress elements. From the presented 

results, the following concluding remarks are: 

● There is no effect of the uncertainty of Young’s 

modulus on the von-Mises stress. 

● The linear relationship is built between applied load 

and von-Mises stress as well as applied load and 

deflection. 

● Non-linear relation is seen between Young’s 

modulus and deflection, and orthotropy ratio and 

von-Mises stress, and fiber angle change ratio and 

von- Mises stress. 
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