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1. Introduction 

 

Accurate assessment of the stability of slopes is a vital 

step in many civil/geotechnical engineering projects. Up to 

now, various analytical and numerical methods have been 

suggested for this task (Ng and Shi 1998, Cai and Ugai 

2004, Zhang and Zhou 2018, Wang et al. 2019). Dai et al. 

(2008) conducted a numerical approach (by employing a 

finite element and a fast Lagrangian finite difference 

method) for analyzing the soil slope stability by taking into 

equation the tension and shear failures. Pradatta et al. 

(2018) presented an analytical technique for stability 

analysis of cohesionless soil slopes under combined 

horizontal and vertical seismic loads. Camargo et al. (2016) 

employed an effective numerical solution , namely 

numerical limit analysis to a 3D problem. They applied the 

proposed methodology to a real-world catchment affected 

by intense rainfall. Lim et al. (2016) used finite element 

limit analysis methods (i.e., the upper and lower bound 

solutions) to investigate the stability of soil and rock slopes. 

(Leshchinsky and Ambauen 2015) stated the applicability of 
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upper bound limit analysis associated with discontinuity 

layout optimization. This method can be effectively used for 

stability evaluation and analyzing the failure mechanism, 

regardless of the constraints and assumptions needed in 

limit equilibrium methods. 

Soft computing methods have been successfully used in 

various research projects in different fields of geotechnical 
engineering (Bagheri Sereshki and Derakhshani 2018, Qiao 

et al. 2020, Zhou et al. 2020). Different examples of soft 

computing are utilized for soil compression coefficient 

(Moayedi et al. 2019b, 2020a), landslide susceptibility 
assessment (Bui et al. 2019c, Nguyen et al. 2019), slope 

stability (Bui et al. 2019a, Moayedi et al. 2019c). Some 

studies have specifically addressed the shallow foundation 

problems such as predicting the ultimate bearing capacity 

and settlement (Barari et al. 2015, Kohestani et al. 2017, 

Mosallanezhad and Moayedi 2017, Moayedi and Hayati 

2018). A review of the soft computing research programs 

regarding the ultimate bearing capacity is provided in the 

next section. In recent years, machine learning methods 

such as artificial neural network (ANN), genetic 

programming, bacterial foraging optimization (Xu and 

Chen 2014, Chen et al. 2020), improved ant colony 
optimization (Zhao et al. 2014), fruit fly optimization (Shen 

et al. 2016), chaotic moth-flame optimization (Wang et al. 

2017), Moth-flame optimizer (Xu et al. 2019), grey wolf 
optimization (Zhao et al. 2019), multi-swarm whale 
optimizer (Wang and Chen 2020), etc. have become popular 

among the scholars because they can make predictions with 
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Abstract.  This research is dedicated to slope stability analysis using novel intelligent models. By coupling a neural network with 

spotted hyena optimizer (SHO), salp swarm algorithm (SSA), shuffled frog leaping algorithm (SFLA), and league champion 

optimization algorithm (LCA) metaheuristic algorithms, four predictive ensembles are built for predicting the factor of safety (FOS) 

of a single-layer cohesive soil slope. The data used to develop the ensembles are provided from a vast finite element analysis. After 

creating the proposed models, it was observed that the best population size for the SHO, SSA, SFLA, and LCA is 300, 400, 400, and 

200, respectively. Evaluation of the results showed that the combination of metaheuristic and neural approaches offers capable tools 

for estimating the FOS. However, the SSA (error = 0.3532 and correlation = 0.9937), emerged as the most reliable optimizer, 

followed by LCA (error = 0.5430 and correlation = 0.9843), SFLA (error = 0.8176 and correlation = 0.9645), and SHO (error = 

2.0887 and correlation = 0.8614). Due to the high accuracy of the SSA in properly adjusting the computational parameters of the 

neural network, the corresponding FOS predictive formula is presented to be used as a fast yet accurate substitution for traditional 

methods. 
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optimal accuracy when modeling complicated phenomena. 

The invention of soft computing has suggested efficient 

predictors (like fuzzy-based tools) which have been useful 

in many engineering and medical fields. ANNs are known 

as potent predictive methods that mimic the relationships 

between the components of a real neural system 

(McCulloch and Pitts 1943). The most notable option of this 

tool is the non-linear perception of every complex 

phenomenon including plenty of engineering parameters 

(Zounemat-Kermani et al. 2016, Ghiasi and Ghasemi 2018, 

Keshavarz and Torkian 2018, Li et al. 2018, Onat and Gul 

2018). Basically, the ANNs benefit the backpropagation 

(BP) (Hecht-Nielsen 1992) scheme to map the relationship 

between a group of input-output data. In fact, a number of 

mathematical equations are established between so-called 

processors “neurons” by using connecting weights. The 

neural equation is then completed by adding a threshold 

term as well as applying an activation function. Many 

studies have investigated the efficacy of artificial 

intelligence models for slope stability analysis (Sakellariou 

and Ferentinou 2005, Choobbasti et al. 2009, Li et al. 2016, 

Akin and Sahin 2017, Chahnasir et al. 2018, Fallahian et al. 

2018). 

Despite the wide application of ANNs, these approaches 

are not so resistant against computational drawbacks like 

local minima. Therefore, hybrid metaheuristic algorithms 

have been suggested for optimization aims. Gandomi et al. 

(2015) and (2017) used various evolutionary techniques for 

slope stability optimization and proved the high efficiency 

biogeography‐based optimization and flight krill herd for 

slope stability analysis. Scholars like Gordan et al. (2016) 

and Li et al. (2015) have focused on the usefulness of 

particle swarm optimization in this field. Moayedi et al. 

(2019a) used Harris hawks optimization (HHO) technique 

to overcome the computational shortcomings of a multi-

layer neural network. The proposed algorithm reduced the 

prediction error by nearly 27% and increased the correlation 

between the real and forecasted FOSs from 0.8220 to 

0.9253. Similar methodologies were applied to the problem 

of landslide susceptibility modeling carried out for different 

regions in Iran (Moayedi et al. 2018). 

 

 

The literature review indicates the wide application of 

well-known optimization techniques used for enhancing the 

competency of machine learning methods like ANNs in the 

field of slope stability assessment (Bui et al. 2019b, Yuan 

and Moayedi 2019). But it is felt that employing more state-

of-the-art metaheuristic techniques can lead to more capable 

predictors for dealing with the mentioned problem. Hence, 

four wise optimization algorithms, namely spotted hyena 

optimizer (SHO), salp swarm algorithm (SSA), shuffled 

frog leaping algorithm (SFLA), and league champion 

optimization algorithm (LCA) are proposed in this study to 

create neural ensembles for accurate appraisement of the 

FOS. Meanwhile, the best model is distinguished based on 

an accuracy evaluation process. 

 

 

2. Methodology and established database 
 

Needless to say, every intelligent model needs to be fed 

by proper data (in both classification and regression cases). 

These data can be derived from different ways like 

laboratory tests and experimental approaches, real-world 

observation, analytical computer software, etc. The soil data 

used to train and evaluate the intelligent models of this 

study are obtained from a finite element analysis carried out 

in Optum G2 software (Krabbenhoft et al. 2015). In this 

modeling, the FOS of a single-layer cohesive soil slope 

(with mechanical factors of Poisson ratio = 0.35, internal 

friction angle = 0°, and soil unit weight = 18 kN/m3) is 

calculated by taking into consideration the effect of four 

variables, namely undrained cohesive strength (Cu), slope 

angle (β), the surcharge on the footing (w), and the ratio of 

setback distance (d/D). An illustration of the modeled 

system can be seen in Fig. 1(a). Also, an example of the 

Optum G2 analysis is shown in this figure. 

A total of 630 stages were analyzed and the values of 

input factors (i.e., d/D, Cu, β, and w) along with the 

obtained FOS create the dataset. Fig. 2 depicts the 

relationship between the input and output factors. Out of 

this information, regarding the popular ratio of 80:20, the 

predictive models use 504 samples to infer the relationship 

 

 

  

(a) (b) 

Fig. 1 A schematic vision of (a) the designed slope in the reality; and (b) Optum G2 analysis (horizontal strain diagram 

for d/D = 1, Cu = 75 kPa, β = 15°, and w = 100 KN/m2) 
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between the mentioned parameters. Then, the trained 

models are applied to the remaining 126 samples for 

evaluating their prediction capability for unseen slope 

conditions. 

 

2.1 Methodology 
 

The graphical description of the methodology (i.e., the 

implemented steps) applied to achieve the goal of the study 

 

 

 

 

is illustrated in Fig. 3. After preparing a suitable database 

from finite element approaches, it is divided into the 

training and testing phases. Next, the hybridization process 

(combining the metaheuristic algorithms with the ANN) is 

implemented which is the main core of this work. The next 

step is optimizing the created models in terms of their 

population size. For this purpose, the convergence behavior 

of each algorithm is evaluated to ensure that it is being 

executed in the optimal conditions. The neural ensemble 

  

(a) (b) 
 

  

(c) (d) 

Fig. 2 The graphical description of the input/output factors 

 

Fig. 3 The methodology of the study 
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models then perform to predict the FOS, and lastly, their 

performance is validated by proper criteria. 

 

2.1.1 Used metaheuristic schemes 
SHO: The spotted hyena optimizer is a recently 

developed metaheuristic algorithm which is designed by 

Dhiman and Kumar (2018) for finding the optimal solutions 

to engineering problems. The high convergence speed can 

be noted as an advantage of the SHO. The social behavior 

of spotted hyenas for hunting a prey (e.g., a zebra) 

comprises several stages during which the individuals try to 

update their locations. These stages are described as 

follows: 

a) Encircling prey 

Spotted hyenas (SHs) can track the location of their prey 

for surrounding it. The elite candidate is the SH that is 

closest to the target. After defining the best solution, other 

agents update their locations. Mathematically 
 

�⃗⃗� ℎ = |�⃗�  . �⃗� 𝑝(𝑥) − �⃗� (𝑥)| (1) 

 

�⃗� (𝑥 + 1) = �⃗� 𝑝(𝑥) − �⃗�  . �⃗⃗� ℎ (2) 
 

where X shows the current iteration, �⃗⃗� ℎ  represents the 

distance between the SH and the target, �⃗�  and �⃗�  are 

coefficient vectors. Also, �⃗�  and �⃗� 𝑝 indicate the position 

of the SH and prey, respectively. The coefficient vectors are 

defined as follows 
 

�⃗� =  2 . 𝑟 𝑑 1 (3) 

 

�⃗� =  2ℎ⃗  . 𝑟 𝑑 2 − ℎ⃗  (4) 

 

ℎ⃗ = 5 − (𝐼𝑡 ×
5

𝐼𝑡𝑚𝑎𝑥
) ,     𝐼𝑡 = 1, 2, . . , 𝐼𝑡𝑚𝑎𝑥 (5) 

 

where It is the iteration. As this parameter increases, the ℎ⃗  
falls from 5 to 0 linearly to properly balance the exploration 

and exploitation. 𝑟 𝑑 1 and 𝑟 𝑑 2 symbolize random vectors 

in [0, 1]. 

b) Hunting 

In the hunting process, it is assumed that the elite agents 

know the target location. Other agents try to update their 

locations accordingly. Assuming �⃗� ℎ  and �⃗� 𝑘  as the 

position of the first elite SH and other SHs, respectively, we 

can write 
 

�⃗⃗� ℎ = |�⃗�  . �⃗� ℎ − �⃗� 𝑘| (6) 

 

�⃗� 𝑘 = �⃗� ℎ − �⃗�  . �⃗⃗� ℎ (7) 

 

𝐶 ℎ = �⃗� 𝑘 + �⃗� 𝑘+1 + ⋯+ �⃗� 𝑘+𝑁 (8) 

 

The parameter N defines the number of individuals that 

is obtained from the below relationship 

 

𝑁 = 𝑐𝑜𝑢𝑛𝑡𝑛𝑜𝑠(�⃗� ℎ, �⃗� ℎ+1, … , (�⃗� ℎ + �⃗⃗� )) (9) 

 

in which �⃗⃗�  is a random vector that its value may range 

from 0.5 to 1, nos stands for the number of solutions. The 

term 𝐶 ℎ is a cluster of N number of optimal solutions. 

c) Attacking target (Exploitation) 

For doing this stage, the value of ℎ⃗  is decreased. For 

this decrease, the variation in �⃗�  is also reduced. The group 

of SHs attack target when |�⃗� | < 1. The attacking procedure 

can be expressed as follows 

 

�⃗� (𝑥 + 1) =
𝐶 ℎ
𝑁

 (10) 

 

where the outcome of this relationship (i.e., �⃗� (𝑥 + 1)) 

adjusts the position of other SHs, based on the position of 

the elite one. 

d) As explained, the SHs seek the target regarding the 

position of the SHs in vector 𝐶 ℎ. Once |�⃗� | > 1, the 

SHs leave the prey. It leads the algorithm toward a 

global optimization. The exploration is carried out 

by assist of the vector �⃗� . This component contains 

the random weight of the target that is produced in 

Eq. (10). This vector effectively helps the SHO to 

avoid local optimizations. The pseudocode of the 

SHO is presented below (Jia et al. 2019) 

 

Algorithm 1: The pseudo-code of the SHO technique  

Take the population (𝑃𝑖 , 𝑖 = 1,2, … , 𝑛) as the input and 

show the elite search agent. 

 

Initialize the SHO parameters h, N, E, and B 

Compute the fitness of the search agents 

𝑃ℎ = 𝑡ℎ𝑒 𝑒𝑙𝑖𝑡𝑒 𝑠𝑒𝑎𝑟𝑐ℎ 𝑎𝑔𝑒𝑛𝑡 

𝐶ℎ = 𝑡ℎ𝑒 𝑐𝑙𝑢𝑠𝑡𝑒𝑟 𝑜𝑓 𝑜𝑝𝑡𝑖𝑚𝑎𝑙 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛𝑠 

   while (the number of iterations) do 

       for each search agent do 

           Update the position of the present SH by 

Eq. (3) 

       end for 

       Update h, N, E, and B  

       Adjust the agents gone behind the given space 

(if any) 

       Calculate the fitness of each agent 

       Update the elite SH if a better solution is found 

       Update the cluster 𝐶ℎ  regarding the elite 

individual 

       x = x + 1 

   end while 

Return 𝑃ℎ 

End 

 

More information about this algorithm can be found in 

Balasubbareddy et al. (2019), Dhiman (2019), Divya et al. 

(2020). 

 

SSA: The salp swarm algorithm is proposed by Mirjalili 

et al. (2017), based on the foraging behavior of salps (a 

member of Salpidae family living in oceans). Similar to 

many other algorithms, the SSA is a population-based 

method in which the possible solutions are represented by 
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salp individuals. The members in each salp chain are 

followers guided by a so-called member “leader” to find 

food sources (FSs). 

The below matrix represents a group of k salps 

 

𝑋𝑖 = 

[
 
 
 
𝑥1

1 𝑥2
1 … 𝑥𝑑

1

𝑥1
2 𝑥2

2 … 𝑥𝑑
2

⋮ ⋮ … ⋮
𝑥1

𝑘 𝑥2
𝑘 … 𝑥𝑑

𝑘]
 
 
 

 (11) 

 

Given 𝐹𝑆𝑗 as the position of the FS in the dimension j, 

the position of the leader (𝑥𝑗
1) is adjusted based on the 

following equation 

 

𝑥𝑗
1 = {

𝐹𝑆𝑗 + 𝐶1 ((𝑢𝑏𝑗 − 𝑙𝑏𝑗)𝐶2 + 𝑙𝑏𝑗)    𝐶3 ≥ 0.5

𝐹𝑆𝑗 − 𝐶1 ((𝑢𝑏𝑗 − 𝑙𝑏𝑗)𝐶2 + 𝑙𝑏𝑗)    𝐶3 < 0.5
 (12) 

 

where 𝐶2 and 𝐶3 are values randomly selected in [0, 

1] that play a significant role in directing the coming 

positions (towards+ ∞ or − ∞) and determining the step 

size. Also, 𝑢𝑏𝑗 and 𝑙𝑏𝑗 denote the upper bound and lower 

bound of the dimension. 𝐶1 is a variable which is gently 

reduced over the process. Eq. (13) gives this parameter 

 

𝐶1 = 2𝑒
−(

4𝐼𝑡

𝐼𝑡𝑚𝑎𝑥
)
2

 (13) 

 

where the present iteration and the maximum number of 

iterations are shown by It and 𝐼𝑡𝑚𝑎𝑥, respectively. 

Finally, the follower salps use Eq. (14) to update their 

positions 

 

𝑥𝑗
𝑖 = 

1

2
 (𝑥𝑗

𝑖 + 𝑥𝑗
𝑖−1) (14) 

 

in which i ≥ 2. The pseudo-code of the SSA algorithm is 

presented in Algorithm 2 (Faris et al. 2018). 

 

Algorithm 2: The pseudo-code of the SSA technique 

Take the population (𝑃𝑖 , 𝑖 = 1,2, … , 𝑛) as the input and 

show the elite search agent. 

 

Initialize the salp population with respect to lower 

bound and upper bound 

   while (ending criterion is not met) do 

       Calculate the fitness of each agent 

       Set FSs the elite agent 

       Update c1 by Eq. (13) 

       for (each search agent) do  

          if (i ==1) then 

              Update the leading salp’s position by 

Eq. (12) 

          else 

              Update the follower salps’ position by 

Eq. (14) 

       Update the population with respect to ub and lb 

of variables 

Return FS 

The SSA is further detailed in Hussien et al. (2017), 

Aljarah et al. (2018), Ibrahim et al. (2019). 

 

SFLA: The shuffled frog leaping algorithm is one of the 

most popular search techniques introduced by Eusuff and 

Lansey (2003). As the name connotes, the individuals in 

this algorithm are a series of frogs where each one 

represents a solution. This algorithm presents a combination 

of the PSO and Memetic algorithm based genetic algorithm 

(Kimiyaghalam et al. 2012). 

Similar to other algorithms which are inspired by 

animals’ behavior, updating the frogs’ positions is the main 

idea of the SFLA. To do this, a fitness value is assigned to 

each member to classify them in a number of containers 

named memeplexes (Chen et al. 2019). 

Updating the frogs’ positions can be expressed by the 

below relationships 
 

𝑋𝑛𝑒𝑤 = 𝑋𝑤 + 𝑆 (15) 

 

where 𝑋𝑤 symbolizes the worst frog’s position and S is 

calculated as follows 

 

𝑆 = 𝑟𝑎𝑛𝑑() × (𝑋𝑏 − 𝑋𝑤) (16) 

 

In the above equation, 𝑋𝑏 is the frog's best position and 

rand () gives a random value between 0 and 1. Note that S 

can receive values between Smax (i.e., the maximum leap) 

and -Smax. Algorithm 3 gives the pseudocode of the SFLA 

(Supraja and Jayashri 2017) 

 

Algorithm 3: The pseudo-code of the SFLA technique 

Start 

Initialize a random population of frogs 

Calculate the fitness of each agent 

Sort the frogs based on their fitness values 

Divide the population into m memeplexes 

       for each memeplex do 

           Determine the best and worst member  

           Improve the position of the worst member 

using Eq. (15) 

           Repeat this for the given number of 

            iterations 

       end for 

Merge the evolved memeplexes 

Sort the frogs regarding their descending fitness vales 

Check if stopping criterion = true 

End 

 

The SFLA is also explained in the previous literature 

(Liping et al. 2012, Zhang et al. 2012, Roy et al. 2013). 

 

LCA: Kashan (2009) presented the league champion 

optimization inspired by the competitions in an artificial 

league. Utilizing a single round-robin algorithm, the main 

schedule is developed for a season. If there are K teams in 

the league, a total of K × (K – 1) / 2 matches are supposed 

to be held. Actually, there are K – 1 weeks in each season 

(S) that results in S × (K – 1) weeks of contests. This is 

worth noting that in order to donate rest to a team, a dummy 
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team is taken into account when K is an odd number. 

Regarding the playing strength of the attending teams, 

the chance of winning/losing is determined for them in the 

matches. More clearly, the team with larger playing strength 

is more likely to win the match. Based on this idealized rule 

(Kashan 2014) 
 

𝑓(𝑋𝑖
𝑡) − 𝑓 

𝑓(𝑋𝑗
𝑡) − 𝑓 

=  
𝑃𝑗

𝑡

𝑃𝑖
𝑡 

 (17) 

 

where 𝑋𝑖
𝑡  and 𝑋𝑗

𝑡  define the formations, 𝑓(𝑋𝑖
𝑡)  and 

𝑓(𝑋𝑗
𝑡) are the playing strengths of the teams and the chance 

of team i for defeating the opponent is shown by 𝑃𝑖
𝑡. Also, f  

represents a function that is projected to be minimized. 

Based on another idealized rule of the LCA algorithm it 

can be written that 
 

𝑃𝑗
𝑡 + 𝑃𝑖

𝑡 =  1 (18) 

 

Hence, for a match between two teams i and j at the tth 

week, the parameter 𝑃𝑖
𝑡  can be calculated by Eq. (19) 

(Moayedi et al. 2020b) 
 

𝑃𝑖
𝑡 = 

𝑓(𝑋𝑗
𝑡) − 𝑓 

𝑓(𝑋𝑗
𝑡) +  𝑓(𝑋𝑖

𝑡) −  2𝑓 
 (19) 

 

The pseudo-code of the LCA can be found in Algorithm 

4 (Bozorg-Haddad 2018). 

 

Algorithm 4: The pseudo-code of the LCA technique 

Start 

         Initialize the random formation of the teams  

         Generate league schedule for K teams 

         for m = 1: K(S-1) 

         Evaluate the strength of the teams 

         Compute the chance of each to beat its rival 

in the coming competition (𝑃𝑖
𝑡) 

         Generate a random value in [0, 1] (Rn) 

 

          If Rn ≤ 𝑃𝑖
𝑡 

              Team i is the winner 

              Else 

              Team j is the winner 

           End if 

 

         Generate a random value in [0,1] (r) 

         Calculate the number of changes in teams’ 

best formation (𝐵𝑖
𝑡) for the next competition 

with respect to the truncated geometric 

distribution (𝑞𝑖
𝑡) 

         𝑞𝑖
𝑡 players are randomly chosen (from 𝐵𝑖

𝑡) 

and changed by the strength/weakness/ 

opportunity/threat (SWOT) matrix 

 

          If team i and team l are the winners 

              Select the S/T strategy 

              Else if team i is the winner and team l 

is the loser 

              Select the S/O strategy 

Else if team i is the loser and team l 

is the winner 

              Select the W/T strategy 

              Else if both teams are losers 

              Select the W/O strategy 

 

           End if 

          end for 

End 
 

The LCA algorithm is better explained in Kashan (2011, 

2014), Jalili et al. (2016). 
 

2.1.2 Ensemble development and optimization 
The hybridization process of the ANN is explained in 

this section. It consists of four steps including (a) obtaining 

the best basic structure of the ANN, (b) creating the 

equation of the found network and introducing it (as the 

problem function) to the optimizers, (c) executing the 

optimizers for finding the best parameters (i.e., the 

connecting weights and biases) for the network in a 

repetitive process, and (d) picking the most promising 

response regarding the stopping criteria. More clearly, the 

algorithms try to update the positions of their individuals 

(e.g., the frogs in the SFLA) to improve the goodness of 

their responses. It usually continues until it reaches a 

defined number of iterations or a specific fitness value. 

 The ANN proposed in this study is represented by an 
MLP (Hornik et al. 1989), a well-known notion of 

feedforward networks. The number of hidden neurons is 

one of the most influential variables the optimal value 

should be determined for that. This item was handled by 

trial and error efforts and it was shown that among ten 

tested values (1, 2, …, 10), the best MLP is which contained 

five hidden neurons. Also, Tansig was selected as the 

activation function of the hidden layer. Next, the general 

equation of the model is given to the SHO, SSA, SFLA, 

LCA algorithms to create SHO-MLP, SSA-MLP, SFLA-

MLP, and LCA-MLP ensembles. In this task, the variables 

are the MLP computational parameters which are aimed to 

be optimized based on the relationship between the FOS 

with d/D, Cu, β, and w. Thus, the suggested solution is a 

matrix containing new weights and biases for constructing 

an MLP. The search process is performed for 1000 times 

(i.e., iterations). To evaluate the quality of the optimization, 

an objective function is defined to measure the accuracy at 

each iteration. This function is set to be root mean square 

error (RMSE) in this work (see Eq. (20)). 
 

𝑅𝑀𝑆𝐸 = √
1

𝐾
∑[(𝑂𝑖𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑

− 𝑂𝑖𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑
)]

𝐾

𝑖=1

2

 (20) 

 

where Oi predicted and Oi observed represent the forecasted and 

real values of FOS and K symbolizes the number of 

samples. 

Moreover, the number of involved individuals has a 

significant impact on the optimization results. This is why 

this parameter needs to be optimized. To this end, all four 

ensembles are implemented with nine different population 
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Fig. 4 The convergence curves of the elite models 

 

 

sizes (Nps), varying from 10 to 500. The results (the 

obtained RMSEs and the computation time) are available in 

Table 1 with a color intensity system. As is seen, the SHO, 

SSA, SFLA and LCA algorithms present the best 

optimization of the MLP with the population sizes of 300, 

400, 400, and 200, respectively. Additionally, the 

convergence curves belonging to the best-fitted ensembles 

are illustrated in Fig. 4. 

 

 

3. Results and discussion 
 

3.1 Quality assessment indices 
 

As well as the RMSE, mean absolute error (MAE) of the 

prediction results is calculated for both training and testing 

data. Moreover, the correlation between the real and 

calculated FOSs is reported by the coefficient of 

determination (R2). As is known, the ideal value for the 

RMSE and MAE is zero, while the R2 can range from 0 to 1 

indicating the lowest and highest possible correlation, 

respectively. Assuming �̅�observed as the average of Oi observed, 

Eqs. (21) and (22) formulate the MAE and R2. 

 

𝑀𝐴𝐸 =
1

𝐾
∑|𝑂𝑖𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑

− 𝑂𝑖𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑
|

𝐾

𝑖=1

 (21) 

 

 

𝑅2 = 1 −
∑ (𝑂𝑖𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑

− 𝑂𝑖𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑
)2𝐾

𝑖=1

∑ (𝑂𝑖𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑
− 𝑂𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑)2𝐾

𝑖=1

 (22) 

 

3.2 Quality assessment and comparison 
 

Utilizing the RMSE, MAE, and R2 indices for 

comparing the real and forecasted FOSs, the performances 

of the SHO-MLP, SSA-MLP, SFLA-MLP, and LCA-MLP 

are evaluated. These criteria are once applied to the training 

data for assessing the learning potency of the models, as 

well as the testing data for evaluating the prediction ability. 

In fact, the neural-metaheuristic FOS pattern that is derived 

from the training data is applied to unseen slope 

circumstances. 

Fig. 5 shows the training results. In this figure, the target 

FOSs (i.e., the real values) are compared with the forecasted 

ones. The pure error (= real value – forecasted value) of 

each sample is also depicted. As is seen, the FOS pattern is 

properly understood by all four models.  The extent of 

learning errors for the the SHO-MLP, SSA-MLP, SFLA-

MLP and LCA-MLP models is [-6.1336, 4.3488], [-1.1401, 

1.5463], [-0.9040, 3.5451], and [-1.4348, 1.7213], 

respectively. Statistically, the RMSEs (2.6728, 0.4463, 

1.1962, and 0.6704) and MAEs (2.0501, 0.3108, 0.8118, 

and 0.5172) obtained in this phase indicate that the FOS 

analysis carried out by the models is associated with an 

acceptable error. Moreover, considering the accommodation 

of the results, the calculated values of R2 report 0.8368, 

0.9947, 0.9621, and 0.9880 correlation between the outputs 

and target data. 

The results of the testing phase also indicate a high 

generalization efficiency for the models. Fig. 6 displays the 

correlation between the real and forecasted FOSs, along 

with the histogram of the errors. According to these charts, 

the values of the R2 index show higher than 96 % accuracy 

for the SSA-MLP, SFLA-MLP, and LCA-MLP, while it is 

0.8614 for the SHO-MLP prediction. Besides, the 

calculated RMSE of 2.6728, 0.4463, 1.1962, and 0.6704, as 

well as the MAEs of 2.0501, 0.3108, 0.8118, and 0.5172, 

reflect a good performance of the used ensembles for 

unseen conditions of the problem. 

 

 

Table 1 The results of the sensitivity analysis 

Np 
SHO-MLP SSA-MLP SFLA-MLP LCA-MLP 

RMSE Time (s) RMSE Time (s) RMSE Time (s) RMSE Time (s) 

10 3.322995 146.3396 0.865851 135.9052 1.255943 218.4249 1.022846 140.6084 

25 3.373912 354.1796 0.832654 322.3489 1.288907 213.3355 0.951905 364.9705 

50 3.488242 704.2673 0.540544 643.6628 1.668806 212.1432 0.790649 685.8581 

75 3.332569 1112.581 0.523702 971.0438 1.225821 218.2488 0.84658 985.3211 

100 3.380597 1301.352 0.508214 1404.67 1.270973 226.041 0.87237 1297.818 

200 3.24693 2579.889 0.506516 2760.106 1.27593 230.4944 0.67041 2583.583 

300 2.672776 4128.133 0.498274 4128.397 1.491712 263.4617 0.835979 3869.399 

400 3.053384 5676.226 0.44636 5509.48 1.196237 264.7039 0.907868 14488.1 

500 3.082803 6915.045 0.492831 6571.096 1.253728 279.0669 0.725523 6260.833 
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3.3 Performance comparison 
 

In this section, it is aimed to determine the most reliable 

metaheuristic algorithm (among used ones) for optimizing 

the ANN in analyzing the stability of single-layer soil 

slopes. To meet this goal, the models are assessed by taking 

into consideration the used accuracy criteria (i.e., the 

RMSE, MAE, and R2 in Table 2) in both training and 

testing phases. A ranking score (between 1 to 4) is assigned 

to each model and the overall grade (OG) is calculated as 

the summation of them. Then, the models are ranked based 

on the resulted OGs. The results of this process are shown 

in Table 3. According to this table, the predictive model that 

is based on the SHO algorithm has gained the smallest score 

(i.e., 1) in all cells. After that, SFLA-based MLP has 

received a partial score of 2 in terms of all three indices. 

 

 

Table 2 The obtained values of RMSE, MAE, and R2 

Models 

Network results 

Training Testing 

RMSE MAE R2 RMSE MAE R2 

SHO-MLP 2.6728 2.0501 0.8368 2.6071 2.0887 0.8614 

SSA-MLP 0.4463 0.3108 0.9947 0.4825 0.3532 0.9937 

SFLA-MLP 1.1962 0.8118 0.9621 1.1696 0.8176 0.9645 

LCA-MLP 0.6704 0.5172 0.9880 0.7648 0.5430 0.9843 
 

 
 

The scores of the MLP optimized by the LCA are 3 which 

indicates its better performance compared to two earlier 

optimizers. The largest score (i.r., 4) is obtained for the 

SSA-MLP in all cells which reflects the superiority of the 

  

(a) 
 

  

(b) 
 

  

(c) 
 

  

(d) 

Fig. 5 The training results for the (a) SHO-MLP; (b) SSA-MLP; (c) SFLA-MLP; and (d) LCA-MLP prediction 
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(a) (b) 
 

  

(c) (d) 
 

  

(e) (f) 
 

  

(g) (h) 

Fig. 6 The testing results for the (a) and (b) SHO-MLP; (c) and (d) SSA-MLP; (e) and (f) SFLA-MLP; and 

(g) and (h) LCA-MLP prediction 
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SSA in all parts. 

All in all, the SSA has gained the highest OG (= 12), 

followed by the LCA (OG = 9), SFLA (OG = 6), and SHO 

(OG = 4). It indicates that the proposed MLP neural 

network constructed by the SSA is better optimized than 

other colleagues. It is proper to mention that catching the 

same results in the testing phase means that there is no 

discrepancy between the learning and generalization 

capabilities of the used models. In other words, the more 

quality of learning, the more accuracy of prediction for 

stranger conditions. 

 

3.4 Presenting the neural predictive formula 
 

In the previous section, it was shown that the MLP 

parameters suggested by the SSA algorithm construct the 

most accurate neural network. In this section, the optimized 

parameters of the SSA-MLP ensemble are used to generate 

the FOS predictive formula. Since the final response of the 

MLP is released from the output layer, fulfilling this 

purpose entails extracting the weights and biases of the 

relevant neuron. These parameters are arranged in the form 

of Eq. (23). This equation is fed by six variables which are 

the product of hidden neurons (i.e., the response of neurons 

in the previous layer). Eq. (24) is used to achieve these 

variables by receiving the problem parameters (i.e., the Cu, 

β, d/D, and w). 

 

𝐹𝑂𝑆𝑆𝑆𝐴−𝑀𝐿𝑃 = −0.7312 × 𝐴 − 0.9610 × 𝐵 
                             −0.7498 × 𝐶 − 0.5534 × 𝐷 
                             −0.1017 × 𝐸 + 0.0691 × 𝐹 + 0.9808 

(23) 

 

 

𝑇𝑎𝑛𝑠𝑖𝑔 (𝑥) =  
2

1 + 𝑒−2𝑥
− 1 (25) 

 

A significant outcome of this study was introducing the 

SSA-MLP as an excellent yet soft method to be used by 

experts and engineers. Besides, by taking some specific 

measures regarding neural analysis, the presented formula 

can be a useful and simple way for calculating the FOS of 

 

 

 

Fig. 7 The importance of the input factors in predicting 

the FOS 

 

 

identical slopes in real projects. It helps engineers avoid 

complicated and time-consuming finite element analysis. 

Analyzing the importance of the FOS influential parameters 

is the last part of this study which can give significant 

contributions concerning selecting the appropriate 

parameters in the real-world analysis. Utilizing a regression 

tree model, the importance of the input factors is calculated. 

The results are depicted in Fig. 7. As is seen, Cu, β, b/B, and 

w have gained the importance values of 10.08, 4.48, 0.17, 

and 5.35, respectively. It denotes that undrained cohesive 

strength has the greatest effect (in the case of this dataset) 

on the FOS. 

 

 

 

 

4. Conclusions 
 

Analyzing the stability of soil slope is one of the most 

crucial issues in geotechnical projects which needs to be 

properly dealt with. It was the main motivation of the 

current study to employ four wise metaheuristic techniques 

namely spotted hyena optimizer, salp swarm algorithm, 

shuffled frog leaping algorithm, and league champion 

Table 3 The executed ranking system based on accuracy criteria 

Models 

Scores 

Training Testing 

RMSE MAE R2 
Overall 

grade 
Rank RMSE MAE R2 

Overall 

grade 
Rank 

SHO-MLP 1 1 1 3 4 1 1 1 3 4 

SSA-MLP 4 4 4 12 1 4 4 4 12 1 

SFLA-MLP 2 2 2 6 3 2 2 2 6 3 

LCA-MLP 3 3 3 9 2 3 3 3 9 2 
 

[
 
 
 
 
 
𝐴
𝐵
𝐶
𝐷
𝐸
𝐹]
 
 
 
 
 

=  𝑇𝑎𝑛𝑠𝑖𝑔

(

 
 
 
 

(

 
 
 

[
 
 
 
 
 
0.4783 1.1539 1.0187 1.4842
0.9375 −1.3227 0.8848 1.1788
1.6702 −0.6027 −1.1291 −0.6109
0.9165 −1.8969 −0.5821 −0.1542
1.7448 0.9500 0.3645 0.8494
1.5837 1.4772 −0.1290 0.3066 ]

 
 
 
 
 

 [

𝐶𝑢
𝛽

𝑑/𝐷
𝑤

] 

)

 
 
 

 + 

[
 
 
 
 
 
−2.1911
−1.3147
−0.4382
0.4382
1.3147
2.1911 ]

 
 
 
 
 

 

)

 
 
 
 

 (24) 
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optimization algorithm for estimating the FOS using four 

effective factors. The algorithms were coupled with neural 

network for finding the optimal weights and biases. The 

population-based sensitivity analysis demonstrated that the 

best complexity of the SHO, SSA, SFLA, and LCA is 300, 

400, 400, and 200, respectively. The results revealed that 

the combination of the ANN with metaheuristic science can 

successfully handle the mentioned task. A comparison 

between the models showed that SSA-MLP is the most 

accurate ensemble in both training (RMSEs were 2.6728, 

0.4463, 1.1962, and 0.6704) and testing phases (RMSEs 

were 2.6071, 0.4825, 1.1696, and 0.7648). The authors 

would suggest the use of other optimizers toward achieving 

the most reliable predictive model in future studies. Also, 

taking into account the effect of other FOS-related 

parameters can be investigated. 
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