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1. Introduction 

 

Evaluating the compressive strength of the concrete 

(CSC) is a crucial task in various civil engineering projects. 

Depending on the project’s purpose, the CSC is an 

important criterion for determining the type of concrete 

(Moayedi et al. 2017, 2019c, Prayogo 2018, Bui et al. 

2019(a-d)). As the name implies, the CSC indicates the 

strength of this mixture against compressive stress (Mandal 

et al. 2019), which is generally reported for 28-days 

specimens. Estimating the final strength of concrete at an 

early age is a significant and helpful advancement in the 

construction sector (Kheder et al. 2003). Furthermore, due 

to the fact that the CSC is a function of different elements 

(and dosages) in the mixture, predicting this characteristic 

needs many factors to be taken into consideration (Bui et al. 

2019a). Many scholars have tried to explain the relationship 

between these constituents with concrete quality using 
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simple methods (e.g., the Abrahams Law for relating the 

water to cement ratio to the concrete strength (Abrams 

1927)). A noticeable difficulty associated with laboratory 

approaches for evaluating this parameter is being time-

consuming as well as susceptible to experimental error 

(Akande et al. 2014). During the last decades, soft 

computing-based predictive techniques have gained huge 

popularity for solving complex engineering problems 

(Moayedi and Rezaei 2017, Moayedi and Hayati 2018a, 

Alsarraf et al. 2019, Bui et al. 2019c, d, Liu et al. 2019, 

Moayedi et al. 2019a, c, Wang et al. 2019, Guo et al. 2020, 

Mehrabi et al. 2020, Qiao et al. 2020, Zhou et al. 2020). 

Nguyen et al. (2019c), for example, proposed the use of 

artificial neural network (ANN) to evaluate the elastic 

modulus of the concrete affected by Alkali-silica reaction. 

Predicting the CSC using these models has received 

growing attention as well (Behnood et al. 2017). Yaseen et 

al. (2018) evaluated the capability of a so-called model 

extreme learning machine (ELM) in the prediction of the 

CSC of lightweight foamed concrete. Due to the superiority 

of the proposed tool to other employed models (like the 

SVR and M5 tree models (Bui et al. 2019d, Nguyen et al. 

2019b)), they suggested the ELM as a reliable approach for 

future usages. Also, different studies have successfully used 

ANNs for estimating the CSC (Altun et al. 2008, Alshihri et 

al. 2009, Atici 2011). Nehdi et al. (2001), for example, 

suggested ANN for simulating the CSC of pre-formed foam 
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Abstract.  Due to the undeniable importance of approximating the concrete compressive strength (CSC) in civil engineering, this 

paper focuses on presenting four novel optimizations of multi-layer perceptron (MLP) neural network, namely artificial bee colony 

(ABC-MLP), grasshopper optimization algorithm (GOA-MLP), shuffled frog leaping algorithm (SFLA-MLP), and salp swarm 

algorithm (SSA-MLP) for predicting this crucial parameter. The used dataset consists of 103 rows of information concerning seven 

influential parameters (cement, slag, water, fly ash, superplasticizer, fine aggregate, and coarse aggregate). In this work, the best-

fitted complexity of each ensemble is determined by a population-based sensitivity analysis. The GOA distinguished its self by the 

least complexity (population size = 50) and emerged as the second time-effective optimizer. Referring to the prediction results, all 

tested algorithms are able to construct reliable networks. However, the SSA (Correlation = 0.9652 and Error = 1.3939) and GOA 

(Correlation = 0.9629 and Error = 1.3922) performed more accurately than ABC (Correlation = 0.7060 and Error = 4.0161) and 

SFLA (Correlation = 0.8890 and Error = 2.5480). Therefore, the SSA-MLP and GOA-MLP can be promising alternatives to 

laboratorial and traditional CSC evaluative methods. 
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cellular concrete. In their study, four input factors, namely 

foam-to-cementitious materials ratio, cement content, sand-

to-cementitious materials ratio and water-to-cementitious 

materials ratio were applied. Moreover, Keshavarz and 

Torkian (2018) reported the superiority of the ANN to 

adaptive neuro-fuzzy inference system (ANFIS), based on 

the calculated correlation values (CorrelationANN = 0.942 

and CorrelationANFIS = 0.923). 

More recently, metaheuristic algorithms have been 

known as capable techniques for optimizing various 

engineering problems (Yu et al. 2015, Park et al. 2016, Akin 

and Sahin 2017, Chahnasir et al. 2018, Fallahian et al. 

2018, Moayedi and Hayati 2018b, Bui et al. 2019b, 

Moayedi et al. 2019b, c, d, e, f, 2020, Xi et al. 2019). 

Another outstanding application of these algorithms is 

prevailing computational drawbacks of predictive tools like 

the ANN and ANFIS . In this sense, Yu et al. (2019) could 

optimize the performance of a support vector machine 

(SVM) model by using particle swarm optimization (PSO) 

for predicting the concrete expansion caused by alkali 

aggregate reactivity. Bui et al. (2019(a) coupled the whale 

optimization algorithm (WOA) with an ANN to predict the 

CSC. They also compared the WOA with dragonfly 

algorithm (DA) and ant colony optimization (ACO) as 

benchmark models. Referring to the obtained results (error 

values were 3.4452, 3.3325, and 2.6985, respectively 

 

 

for the ACO-ANN, DA-ANN, and WOA- ANN), it was 

shown that the proposed WOA algorithm can be efficiently 

used to optimize the ANN for the mentioned purpose. In a 

similar research, de Almeida Neto et al. (2018) employed 

three swarm algorithms of fish school search (FSS), 

artificial bee colony (ABC), and PSO for fine-tuning 

support vector regression (SVR). The results indicated that 

the swarm-based ensembles outperform the typical SVR. 

However, ABC and FFS surpassed the PSO for this 

application. Moreover, other scholars like Cheng et al. 

(2013), Rebouh et al. (2017), Prayogo (2018). have shown 

the applicability of metaheuristic algorithms in the field of 

CSC modeling. More specifically, concerning the use of 

metaheuristic algorithms (e.g., firefly algorithm (Bui et al. 

2018) and imperialist competitive algorithm (Sadowski et 

al. 2018)) for optimizing the ANN, many studies have 

outlined that the incorporation of ANN with these 

techniques results in powerful predictive models. The wide 

variety of metaheuristic techniques encouraged the authors 

to apply four novel types of them, namely artificial bee 

colony (ABC), grasshopper optimization algorithm (GOA), 

shuffled frog leaping algorithm (SFLA), and salp swarm 

algorithm (SSA) to the problem of CSC estimation through 

optimizing the ANN performance. The algorithms are 

combined with this model to find the most suitable 

computational parameters. 

 

 

   

(a) Cement (b) Slag (c) Water 
 

   

(d) Fly ash (e) SP (f) FA 
 

   

(g) CA (h) Compressive strength  

Fig. 1 The graphical description of the used dataset 
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2. Methodology and established database 
 

The data we used to train and test the intelligent models 

of this study are collected and presented by Yeh (2007). The 

implementation of numerous concrete tests resulted in 

collocating 103 rows of information about three significant 

characteristics of concrete, namely slump (cm), flow (cm), 

and the 28-day CSC (Mpa). Meanwhile, the records of 

seven concrete elements, namely cement, slag, water, fly 

ash, superplasticizer (SP), fine aggregate (FA), and coarse 

aggregate (CA) are considered as the CSC influential 

parameters. Cement plays the main role in the concrete and 

its amount is directly proportional to the cohesiveness of the 

mixture. According to ACI 211.1, for a certain maximum 

size of coarse aggregate, the water content can directly 

influence the concrete consistency. This parameter (i.e., the 

consistency) rises by adding SP when the water does not 

experience any change. Similarly, the reason for adding 

pozzolanic admixtures (e.g., fly ash) lies in enhancing 

consistency. Also, aggregate characteristics need to be 

properly regarded for having a balance between the water 

requirement and the desired consistency (Mehta 1986, Yeh 

2007). 

The histograms of the CSC and seven influential factors 

are illustrated in Fig. 1. Moreover, Table 1 denotes the 

descriptive statistics of this dataset in terms of the 

minimum, maximum, and average values, as well as the 

standard deviation. As is seen, the content of cement, slag, 

water, fly ash, SP, FA, and CA varies in [137, 374], 

 

 

Table 1 Descriptive statistics of the CSC and input factors 

 Minimum Maximum Mean 
Standard 

deviation 

Compressive 

strength (MPa) 
17.1 58.5 36 7.8 

Cement (kg/m3) 137 374 229.9 78.9 

Slag (kg/m3) 0 260 149 85.4 

Water (kg/m3) 160 240 197.2 20.2 

Fly ash (kg/m3) 0 193 78 60.5 

SP (kg/m3) 4.4 19 8.5 2.8 

FA (kg/m3) 640.6 902 739.6 63.3 

CA (kg/m3) 708 1049.9 884 88.4 
 

 

 

 

Fig. 2 The results of the sensitivity analysis for determining 

the importance of the influential factors 

[0, 260], [160, 240], [0, 193], [4.4, 19], [640.6, 902], and 

[708, 1049.9] kg/m3, respectively. Notably, the slump of 

these samples ranges from 0 to 29 cm. The correlation 

between the CSC and these constituents is also measured. 

According to the results, the largest coefficients are 

obtained for cement and fly ash (0.199 and 0.198) while the 

SP and CA have the smallest correlations with the CSC 

(0.001 and 0.024). 

Fig. 2 depicts the importance of each influential factor 

on the CSC. The importance values are calculated by 

training a bagged ensemble of 200 regression trees and 

permuting out-of-bag observations among the trees in the 

Matlab environment (version 2014). According to this chart, 

the importance of the cement, slag, water, fly ash, SP, FA, 

and CA are 2.87, 0.48, 1.05, 2.52, 0.24, 0.04, and 0.43, 

respectively. It confirms the results of the correlation 

analysis which introduced the cement and fly ash as the 

most influential parameters. 

In this study, 80 % of the whole data (i.e., 82 samples) 

are specified to the CSC pattern analysis and training the 

models, and the remaining 20 % (i.e., 21 samples) are used 

as unseen concrete conditions to evaluate the prediction 

capability of the models. 

 

2.1 Methodology 
 

Artificial neural network: Artificial neural networks 

(ANNs) are known as one of the most powerful 

approximators among diverse artificial intelligence (AI) 

techniques. This model imitates the relationships and 

connections of biological neural networks. The first 

artificial neurons were designed by McCulloch and Pitts 

(1943). The capability of non-linear analysis of any 

complex problem is one of the main advantages of this 

predictive tool. The ANNs have shown high robustness for 

approximating various engineering parameters by taking 

into consideration their influential parameters (Kişi 2007, 

Nguyen et al. 2018, Gao et al. 2019). Fig. 3 illustrates the 

structure of the most popular notion of the ANNs, i.e., 

multi-layer perceptron (MLP) (Hornik 1991), with J hidden 

neurons. This is proper to note that in the MLPs, the 

number of input and output nodes equals the number of 

these parameters. Similar to other AI models, two sets of 

data including training and testing data are required in the 

development of an ANN. Utilizing the back-propagation 

 

 

 

Fig. 3 The general structure of the MLP neural network 
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(BP) learning method (Hecht-Nielsen 1992), the MLP tries 

to reduce the learning error (of training samples) within 

several epochs. After that, it applies the derived pattern to 

the second dataset (i.e., testing samples) to assess the 

generalization ability. 

 

Metaheuristic hybrids algorithms: In spite of the high 

simulation capability of the ANNs, there are appreciable 

computational drawbacks, like getting trapped in local 

minima (Moayedi et al. 2018), which can lead to reducing 

the reliability of the model. To deal with this problem, four 

wise metaheuristic algorithms, namely artificial bee colony, 

grasshopper optimization algorithm, shuffled frog leaping 

algorithm, and salp swarm algorithm are used in this study. 

These algorithms are nature-inspired optimizers which have 

been widely employed for finding optimal solutions. The 

ABC algorithm is suggested by Karaboga (2005)based on 

the foraging behavior of artificial bees. Three kinds of bees 

(employed bees, onlookers, and scouts) are hired to seek 

food sources (also known as nectars) which their position 

indicates a possible solution to the defined problem. The 

ABC is better detailed in previous literature like (Karaboga 

et al. 2007, Karaboga and Basturk 2007, Nguyen et al. 

2019a). Mimicking the swarming behavior of grasshoppers, 

the name GOA represents a recently-developed 

metaheuristic algorithm which is presented by Saremi et al. 

(2017) in 2017. The position of the insects is updated 

(based on three parameters of social relationship, gravity 

force, and wind advection) within exploration and 

exploitation stages in order to find food. For mathematical 

relationships of the GOA, the readers may refer to related 

studies (Aljarah et al. 2018, Mirjalili et al. 2018, Mafarja et 

al. 2019). The SFLA was proposed by Eusuff and Lansey 

(2003) as a popular and efficient metaheuristic algorithm. 

The relationship between randomly produced individuals 

(frogs), which are defined in so-called containers 

“memeplexes” is the basis of this algorithm. Like plenty of 

other swarm-based algorithms, the position of the frogs is 

repetitively updated to find the optimal solution. More 

details about this interaction can be found in previous 
studies (Liping et al. 2012, Zhang et al. 2012, Chen et al. 

2019). Mirjalili et al. (2017) developed the SSA based on 

the swarming behavior of salps when navigating and 

foraging in oceans. In this way, the SSA population is 

divided into two categories of leader (the chain front 

positions) and followers. The details of this algorithm are 

presented in (Ahmed et al. 2018, Sayed et al. 2018, Abbassi 

et al. 2019). 
 

 

3. Results and discussion 
 

As explained, to achieve the objective of this paper, the 

ABC, GOA, SFLA, and SSA hybrid metaheuristic 

algorithms need to get coupled with the ANN. Different 

structures of an MLP neural network were tested to ensure 

the most suitable MLP is used. Among ten values tried for 

the number of neurons in the hidden layer, 5 neurons gave 

the best responses. Thus, the used MLP takes the overall 

form of 7 × 5 × 1 which indicates 7 input neurons, 5 hidden 

neurons, and 1 output neuron in the corresponding layers. In 

 

Fig. 4 The procedure of optimizing the ANN using 

metaheuristic algorithms 
 

 

the following sections, the combination process is 

explained, and the results are presented and discussed. 
 

3.1 Hybridizing the MLP using metaheuristic 
techniques 

 

Four hybrid ensembles of ABC-MLP, GOA- MLP, 

SFLA- MLP, and SSA-MLP were constructed by 

synthesizing the ANN with the mentioned algorithms. In 

fact, the general equation of the MLP was given to the 

ABC, GOA, SFLA, and SSA optimizers. In every iteration, 

each algorithm suggests a solution matrix, containing the 

MLP weights and biases, to construct the network. The 

error between the predicted and actual values of the CSC 

(for training data) is measured by the objective function 

(OF) which was root mean square error (RMSE) in this 

work. This procedure is shown in Fig. 4. 

A total of 1000 repetitions were considered for each 

model to minimize the error. Also, the ensembles were 

implemented with nine different population sizes (i.e., 10, 

25, 50, 75, 100, 200, 300, 400, and 500) in order to 

optimize the complexity. Fig. 5 shows the obtained RMSEs. 

The best populations sizes for the ABC, GOA, SFLA, 

and SSA are 200, 50, 400, and 300, respectively. Moreover, 

the convergence curve of these elite networks is shown in 

this figure. As is seen, the mentioned algorithms achieved 

the RMSEs of 3.155655672, 1.020918642, 2.134444363, 

and 0.76517443. 
 

3.2 Accuracy criteria 
 

Two well-known error criteria of RMSE and mean 

absolute error (MAE) are used to measure the learning and 

prediction error of the implemented models. Besides, the 

correlation between the predicted and actual CSCs is 

reflected by the coefficient of determination (R2). These 

indices are formulated by Eqs. (1) to (3). 
 

𝑅𝑀𝑆𝐸 = √
1

𝐾
∑[(𝑍𝑖𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑

− 𝑍𝑖𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑
)]

𝐾

𝑖=1

2

 (1) 

 

𝑀𝐴𝐸 =
1

𝐾
∑|𝑍𝑖𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑

− 𝑍𝑖𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑
|

𝐾

𝐼=1

 (2) 
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𝑅2 = 1 −
∑ (𝑍𝑖𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑

− 𝑍𝑖𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑
)2𝐾

𝑖=1

∑ (𝑍𝑖𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑
− 𝑍𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑)2𝐾

𝑖=1

 (3) 

 

where K is the number of data, Zi predicted and Zi observed denote 

the predicted and observed CSCs, respectively, and 𝑍̅observed 

represents the average value of the Zi observed. 

 

 

 

 

3.3 Accuracy assessment of the implemented 
predictive models 

 

By applying the mentioned accuracy criteria, the 

performance of the used models is evaluated in this section. 

Firstly, the learning quality of the models is assessed by 

examining the training results. More clearly, it indicates the 
 

 

 

Fig. 5 The sensitivity analysis based on the model complexity 

  

(a) ABC-MLP (b) GOA-MLP 
 

  

(c) SFLA-MLP (d) SSA-MLP 

Fig. 6 The correlation of training results for the (a) ABC-MLP; (b) GOA-MLP; (c) SFLA-MLP; and (d) SSA-MLP prediction 
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capability of them in exploring the relationship between the 

CSC and concrete element factors. In the other dataset (i.e., 

the testing data), the quality of the results represents the 

generalization potential of the models which means 

predicting the CSC for unseen concrete conditions. 

Fig. 6 shows the correlation between the observed and 

estimated CSCs in the training phase. The observed values 

vary from 18.2600 to 52.6500, and the estimated values of 

ABC-MLP, GOA-MLP, FLA-MLP, and SSA-MLP range in 

[20.0049, 50.3094], [18.0189, 52.0248], [19.5559, 

51.8793], and [17.9521, 52.4335], respectively. According 

to this figure, all four ensembles achieved a consistent 

prediction of the CSC, due to the obtained R2 values 

(0.8475, 0.9822, 0.9223, 0.9900, respectively for the ABC-

MLP, GOA-MLP, FLA-MLP, and SSA-MLP) higher than 

80 %. However, it can be seen that there is a considerable 

distinction between the correlation of the ABC-MLP 

outputs with other models. 

Moreover, regarding the calculated error criteria, it is 

deduced that the used models have recognized the CSC 

pattern with an acceptable error. In detail, the largest and 

smallest calculated mean absolute percentage error (MAPE) 

is 7.46% and 1.78%, respectively. The RMSEs are 3.1557, 

1.0209, 2.1344, 0.7651, which indicate that the SSA-MLP 

and GOA-MLP performed more accurately than two other 

colleagues for the mentioned purpose. This claim can also 

be supported by the obtained MAEs (2.5419, 0.8268, 

1.7507, and 0.5935) in this phase. 

As for the second phase, the testing results are shown in 

Fig. 7. The observed CSCs vary from 17.1900 to 58.5300, 
 

 

and the products of the models range in [20.0049, 50.3094], 

[17.7379, 55.0478], [20.0032, 52.4552], and [18.3108, 

55.6466], respectively. similar to the training data, the 

highest R2 is obtained for the SSA-MLP (0.9652), followed 

by GOA-MLP (0.9629), SFLA-MLP (0.8890), and ABC-

MLP (0.7060). 

Moreover, the error values (the difference between each 

pair of the observed and estimated CSC) are depicted in 

Fig. 8, along with the histogram of them. In this phase, the 

highest and lowest values of MAPE equals 11.16% and 

3.80%, respectively. Similar to the training phase, the 

calculated RMSEs (4.5656, and 1.6446, 2.9191, and 

1.6678), as well as the MAEs (4.0161, 1.3922, 2.5480, and 

1.3939), indicate that the SSA and GOA are more reliable 

than the SFLA and ABC for predicting the CSCs under 

stranger conditions. 

According to all three accuracy criteria, all models 

presented a more accurate estimation of the CSC in the 

training phase. It means that they were more successful in 

analyzing the CSC pattern compared to generalizing it. 

Moreover, it was concluded that in both training and testing 

phases, the SSA and GOA outperform ABC and SFLA in 

optimizing the MLP. 

Referring to all three indices (i.e., the RMSE, MAE, and 

R2 in Table 2), the SFLA, without any discrepancy, 

performs more efficiently than the ABC algorithm. But 

establishing a comparison between the SSA and GOA 

requires more discussions. In this sense, although the SSA 

grasps a considerably more accurate understanding of the 

problem, the testing results of the GOA are slightly better in 
 

 

  

(a) ABC-MLP (b) GOA-MLP 
 

  

(c) SFLA-MLP (d) SSA-MLP 

Fig. 7 The correlation of testing results for the (a) ABC-MLP; (b) GOA-MLP; (c) SFLA-MLP; and (d) SSA-MLP prediction 
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Table 2 The obtained values of RMSE, MAE, and R2 

Models 

Network results 

Training Testing 

RMSE MAE R2 RMSE MAE R2 

ABC-MLP 3.1557 2.5419 0.8475 4.5656 4.0161 0.7060 

GOA-MLP 1.0209 0.8268 0.9822 1.6446 1.3922 0.9629 

SFLA-MLP 2.1344 1.7507 0.9223 2.9191 2.5480 0.8890 

SSA-MLP 0.7651 0.5935 0.9900 1.6678 1.3939 0.9652 
 

 

 

terms of the RMSE and MAE. However, the R2 indicates 

that the SSA products are 0.23% more correlated. Thus, to 

acquire an overall comparison between the performance of 

all four models, a ranking system is developed in Table 3. In 

this system, based on the calculated values of RMSE, MAE, 

and R2, each model receives three scores in each phase. The 

larger the assigned score is, the higher the accuracy is. 

According to the obtained overall score (the summation of 

the scores), the SSA (OS = 12) is the superior optimizer in 

training the MLP. This is while in the testing phase, the 

GOA (OS = 11) surpasses the SSA (OS = 10). Therefore, it 

can be deduced that the GOA enjoys more prediction 

capability. 

As explained, selecting the appropriate training algori- 

 

 

Table 3 The developed ranking system based on the 

calculated accuracy criteria 

Models 

Scores 

Training Testing 

RMSE MAE R2 

Overall 

score 

(OS) 

RMSE MAE R2 

Overall 

score 

(OS) 

ABC-MLP 1 1 1 3 1 1 1 3 

GOA-MLP 3 3 3 9 4 4 3 11 

SFLA-

MLP 
2 2 2 6 2 2 2 6 

SSA-MLP 4 4 4 12 3 3 4 10 
 

 

 

thm is a significant step in utilizing ANNs. Each training 

method benefits its special regulations to properly adjust the 

computational parameters (i.e., the weights and biases). Due 

to the large number of the parameters involved, it is a very 

difficult process that cannot be carried out manually. For 

example, in the case of the used MLP network, we have 46 

parameters (7 × 5 = 35 weights connecting the input and 

hidden layers, five biases of the hidden neurons, 5 × 1 = 5 

weights connecting the hidden and output layers, and 1 bias 

belonging to the output neuron). In this study, the employed 

   

(a) (b) (c) 
 

   

(d) (e) (f) 
 

   

(g) (h)  

Fig. 8 The results obtained for (a) and (b) ABC-MLP; (c) and (d) GOA-MLP; (e) and (f) SFLA-MLP; and (g) and (h) 

SSA-MLP predictions for the testing samples 
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Fig. 9 The computation time elapsed by each optimizer for 

training the MLP 

 

 

metaheuristic algorithms could successfully supervise the 

training process. 

The time-effectiveness is of high importance in 

determining the most suitable predictive model for 

engineering objectives. Fig. 9 shows the time taken by the 

ABC, GOA, SFLA, and SSA for optimizing the MLP. As is 

seen, there are noticeable distinctions between the 

algorithms. As the disadvantages of the ABC, it not only 

presented the weakest prediction but also took the longest 

time for doing the assigned task. On the opposite, the SFLA 

emerged as the fastest optimizer with good accuracy. The 

computation times required by the SSA and GOA are very 

close. Therefore, it can be concluded that selecting the most 

suitable model depends on the priorities of the task. More 

clearly, when the time is a more determinant factor 
 

 

 

(compared to the accuracy), the SFLA-MLP may be used to 

predict the CSC. 

Another significant outcome of this study is the 

improvement resulted from using capable optimizers. In 

comparison with the algorithms used by Tien Bui et al. 

(2019) (i.e., WOA, ACO, and DA), our elite models 

achieved a considerably better understanding of the CSC 

pattern. In this regard, the training RMSE of their best 

model (i.e., WOA-MLP) was 1.3576 while this value is 

obtained 1.0209 and 0.7651 for the GOA-MLP and SSA-

MLP modes used in this study. The same goes for the 

prediction capability of them (RMSE of 2.6985 vs. 1.6446 

and 1.6678). Moreover, since the models used in these two 

studies have been implemented under the same 

circumstances (i.e., the same operating system), they can be 

compared in terms of the optimization time. As is shown in 

Fig. 9, the proposed GOA and SSA needed 714.5 and 

3782.7 seconds for optimizing the MLP. These values were 

5271 and 7620 seconds for the WOA and DA algorithm 

used byTien Bui et al. (2019). Thus, the ensembles created 

by the GOA and SSA are more time-efficient predictors, 

too. 

 

3.4 Presenting the neural predictive formula 
 

Due to the conclusion that both SSA and GOA 

metaheuristic algorithms constructed the most reliable MLP 

neural network of the current study, in this part, it was 

aimed to extract the neural formula of the SSA-MLP and 

GOA-MLP models to estimate the CSC using its effective 

factors (i.e., cement, slag, water, fly ash, SP, FA, and CA). 

The CSC predictive formulas are presented as Equations 4 

and 5. This is proper to note that these equations are built 

by the weights and biases of the unique output neuron of the 

optimized networks. Hence, the variables of them (i.e., A to 

E and F to I) are the outputs of the hidden neurons which 

should be calculated by Eqs. (6) and (7), respectively for the 

SSA-MLP and GOA-MLP formula. 

 

CSCSSA-MLP = -0.6627 × A - 0.8565 × B - 0.4422 × C 

        + 0.3258 × D - 0.7748 × E - 0.5664 
(4) 

 

CSCGOA-MLP = 0.7872 × F + 0.0508 × G - 0.3141 × H 

       - 0.0650 × I - 0.9800 × J - 0.2546 
(5) 

 

 

where Tansig stands for the activation function of the ANN 

which for a given input x, it is obtained as follows 

 

𝑇𝑎𝑛𝑠𝑖𝑔 (𝑥) =  
2

1 + 𝑒−2𝑥
− 1 (8) 

 

 

4. Conclusions 
 

The optimization capability of four wise metaheuristic 

techniques namely artificial bee colony, grasshopper 

optimization algorithm, shuffled frog leaping algorithm, and 

salp swarm algorithm was assessed in this study. The 

algorithms were applied to optimize the performance of 
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Swarm-based hybridizations of neural network for predicting the concrete strength 

artificial neural network for predicting the compressive 

strength of concrete. The carried-out sensitivity analysis 

revealed that the ABC, GOA, SFLA, and SSA present the 

best performance by the population sizes 200, 50, 400, and 

300, respectively. It was found that all four metaheuristic 

algorithms can grasp a reliable understanding of the non-

linear relationship between the CSC and mixture 

ingredients. However, due to the eye-catching results of the 

SSA and GOA-based ensembles, we believe that they can 

provide non-destructive and accurate approaches for early 

estimation of the CSC. 

Concerning future studies, the authors would suggest 

conducting comparative studies in which different 

optimizers (i.e., metaheuristic algorithms) are applied to 

other basic models (e.g., SVM and ANFIS) to improve the 

current methodologies available for indirect measurement 

of the CSC. Moreover, developing a graphical user interface 

(GUI) from reliable predictive models could be of interest 

to engineers. 
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