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1. Introduction 

 

Recently, massive development of science and 

technology have a tendency to an era of nanotechnology. 

The progress in many fields, such as, material science, 

engineering, naval, aerospace, automotive, chemical, 

medicine, and electronics will enhance the easiness and 

leisurely of our life. Nanostructures such as, nanobars, 

nanotubes, nanobeams and nanoplates and nanogears are 

essential element utilized and exploited in nanotechnology. 

Since 1991, Iijima had discovered carbon nanotube (CNT), 

that has been considered by lots of researchers and 

scientists. Till now, CNT considers the strongest and most 

resilient material known, in addition to extraordinary 

mechanical, physical, and electrical properties, Eltaher et al. 

(2016a). 

To understand and predict mechanical and physical 

behaviors of CNTs precisely, discrete or modified 

continuum models have to be included in the analysis and 

formulation rather than classical continuum theories, those 

are missing length-scale effect. In discrete models, such as, 

ab initio calculations and derivation (Hehre 1976, Kresse 

and Hafner 1993, and Peng and Cho 2003), quantum 

mechanics (QM) (Gao et al. 1998 and Atkins and Friedman 

2011), molecular dynamic (MD) (Zhou and Shi 2002 and 
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Rapaport and Rapaport 2004), simplifications, such as 

regularity of particle distribution, symmetry and periodicity 

are assumed. To consider a size dependency, modified 

continuum models such as nonlocal theories (Eringen 

1972), modified couple stress theory of Mindlin (1963) and 

Toupin (1962), strain gradient theory (Yang et al. 2002), 

and surface energy (Gurtin and Murdoch 1975) were 

exploited. 

Based on discreated models, Li and Chou (2003, 2004) 

investigated stability behaviors of CNTs under axial and 

bending loading conditions in frame of the molecular 

structural mechanics. In 2005, Xiao et al. established 

analytical molecular mechanics model to predict 

mechanical properties of defect-free CNTs by modified 

Morse potential function. Eltaher et al. (2016a) considered 

size-scale effect and material-dependency to illustrate the 

nonlinear static behavior of CNTs. Through molecular 

dynamics (MD) theory, Mehralian et al. (2017) explored the 

role of vacancy defects in thermal buckling of pre-

compressed CNTs. By using the nonlocal temperature 

dependent, Shokravi and Jalili (2017) investigated dynamic 

buckling of sandwich micro plates reinforced by 

functionally graded CNTs. Eltaher et al. (2018) examined 

vibration behaviors of single/multi-CNTs by exploited 

continuum-discreated model including the energy 

equivalent between CNT atoms. Shokravi (2018) applied 

piezoelasticity theory to study dynamic buckling of the 

smart beam rested on Pasternak foundation and subjected to 

electric field. Akgöz and Civalek (2018) explored thermo-

elastic vibrational behavior of thick microbeams rested in 

elastic foundation by modified couple stress theory. In 

frame of MD finite element method. Eltaher et al. (2019a) 
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used energy equivalent model and finite element method to 

predict equivalent Young’s modulus of SWCNT and its 

mechanical behaviors such as tension, buckling and 

vaibrations. Eltaher et al. (2019b, c) modified the previous 

model to consider defects and gaps included in CNTs and 

presented their modal participation factors. Eltaher et al. 

(2019d) and Mohamed et al. (2019) exploited MD and 

associated energy equivalent model to study post-buckling 

of curved CNTs in frame of nonlinear Euler-Bernoulli 

beam. Eltaher and Mohamed (2020a) presented a 

comprehensive model to investigate a free vibration and 

resonance frequencies of nanostructure perforated beam 

element as nano-resonator. Eltaher et al. (2020) developed a 

modified continuum model to explore and investigate static 

and vibration behaviors of perforated piezoelectric NEMS 

structure. Mohamed et al. (2020) studied post-buckling of 

CNTs by using higher order shear deformation and energy 

equivalent method. Based of classical MD, buckling 

behavior of covalently functionalized SWCNTs and 

DWCNTs was studied by Ameri et al. (2020). 

In general, continuum theories are neglected size-

dependent of micro/nano-level by identifying mechanical 

properties such as, Young’s modulus, shear modulus, yield 

stress, and ultimate strength directly from macroscopic 

experiments, Ferrari et al. (1997). To overcome this 

deficiency and inconsistency, modified continuous 

mechanics models are proposed to take into account the 

missing information of micro/nano-level. Akgöz and 

Civalek (2011) studied via modified strain gradient 

elasticity theory buckling of protein microtubules. Eltaher et 

al. (2013) presented the coupling effect of nonlocal and 

surface energy on the vibration of nanobeam. Tounsi et al. 

(2013) examined the buckling stability of DWCNTs under a 

thermal load using nonlocal Timoshenko beam model. 

Eltaher et al. (2014a, b) exploited the higher order gradient 

theory to investigate the mechanical behaviors of nanbeams 

by finite element. Eltaher and Agwa (2016) and Agwa and 

Eltaher (2016) studied vibration behaviors of a pretension 

CNTs and carbyne nano-sensors by including surface 

elasticity, residual surface tension and nonlocal effect. 

Eltaher et al. (2016b) exploited Euler–Bernoulli nonlocal 

Eringen nanobeam to show long-range interactions between 

CNT atoms through vibration analysis. Ellali et al. (2018) 

studied buckling of piezoelectric plates rested on Pasternak 

elastic foundation using higher-order shear deformation 

plate theories. Tabbakh and Nasihatgozar (2018) studied 

buckling behavior of nanocomposite plates coated by 

magnetostrictive layer. Emam et al. (2018) examined post-

buckling and vibration responses of imperfect multilayer 

nanobeams under compressive force. Mohamed et al. 

(2018) introduced a novel model to predict nonlinear forced 

vibrations of C-C curved beam in the locality of post-

buckling mode. Youcef et al. (2018) developed an analytical 

non-classical model to predict the free vibrations of 

nanobeams included surface stress effects. Eltaher et al. 

(2019e) presented effects of periodic and nonperiodic 

modes on post-buckling and nonlinear vibration of beams 

rested on nonlinear foundations. Amir et al. (2019) studied 

vibration of FG saturated porous annular/circular micro 

sandwich plates embedded with CNTs subjected to multi-

physical preloads. Arda and Aydogdu (2020) analyzed 

dynamic response of a carbon nanotube mass sensor by 

considering both inertia and stiffness of the detected mass. 

Arani et al. (2019) studied wave propagation of FG nano-

beams based on the nonlocal elasticity theory considering 

surface and flexoelectric effects. Boussoula et al. (2020) 

presented a simple nth-order shear deformation theory for 

thermomechanical bending analysis of different 

configurations of FG sandwich plates. Civalek et al. (2020) 

studied size-dependent transverse and longitudinal 

vibrations of embedded carbon and silica carbide nanotubes 

by nonlocal finite element method. 

To bridge the gap between discrete and continuous 

models, Doublet Mechanics (DM) has been proposed. This 

theory is introduced in 1993 by Granik and Ferrari, on the 

basis of linearly elasto-static geomechanical principles. 

Subsequently, it is broadened to encompass other domains, 

such as, elastodynamics, viscoelasticity, failure theories, 

homogenization, and thermomechanics, Ferrari et al. 

(1997). Doublet Mechanics is a discrete micro-model, in 

which solids are described by arrays of points and a 

specified distance between particles. A particle pair is 

known as a doublet, and the particle spacing introduces 

length scales into the micro-structural theory. The model 

acquires micro-stress and micro-strain constitutive laws 

between the particles in each doublet. The potential of 

doublet mechanics is considering the microstructural 

elongation strains with additional macrostrain elongation. 

The theory has shown a promise to predict behaviors of 

nanotubes that are not presented by continuum mechanics. 

Kojic et al. (2011) presented a FE formulation including a 

micro-strain by using DM to explain multiscale-

multidomain modeling of microstructural materials. 

Eberhardt and Wallmersperger (2014) calculated the 

mechanical properties of SWCNTs numerically by using 

molecular mechanics approach, by considering the 

nanotube geometry and covalent bond. Fatahi-Vajari and 

Imam (2016a, b) derived a fourth-order partial differential 

equations governing the axial and torsional vibration modes 

of SWCNTs by using DM theory. Gul et al. (2017) and Gul 

and Aydogdu (2017) illustrated the axial vibration and 

flexural and axial wave propagation of CNTs embedded in 

an elastic medium using scale dependent DM theory. Gul 

and Aydogdu (2018a) investigated statics and dynamics of 

nanorods and nanobeams by using DM with implemented 

bond length of atoms of as an intrinsic length scale. The 

natural frequencies and critical buckling loads of perfect 

CNTs are investigated based on DM theory by Gul et al. 

(2018). In frame of DM, Gul and Aydogdu (2018b,2019) 

shown free vibration and buckling of DWCNTs embedded 

in an elastic medium with S-S boundary conditions. Yayli 

and Asa (2019) studied axial vibration of axially restrained 

CNTs within the framework of DM theory and Fourier sine 

series. Aydogdu and Gul (2018, 2020) studied buckling and 

vibration of double nanofibers embedded in an elastic 

matrix based on Euler-Bernoulli beam model. Based on DM 

theory, Eltaher and Mohamed (2020b) studied the static and 

dynamic behavior of perfect and imperfect CNTs. They 

developed closed form formulas for critical buckling loads 

and postbuckling configurations of perfect and imperfect 
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CNTs. As well as analytical solutions for linear vibration 

around buckled position were developed. C-C and S-S 

boundary conditions were considered. 

To the author’s knowledge, pre-buckling, post-buckling, 

and free vibration behaviors of perfect and imperfect 

SWCNTs with curved configuration in frame of DM theory 

and differential quadrature method have not been studied 

elsewhere. For this reason, this article intends to fill this gap 

in the literature and present comprehensive model to 

illustrate the mechanical behavior of size dependent 

SWCNTs in frame of DM. The rest of this manuscript is 

structured as follows: the main constitutive equations, 

micro-strain effects, geometrical imperfection of SWCNTs 

based on molecular dynamics are described in detail 

through section 2. The nonclassical sixth order nonlinear 

integro-partial differential equation of motion of imperfect 

SWCNT is derived through this section. Numerical 

solutions by using modified differential quadrature method 

of both perfect and imperfect CNTs are presented in section 

3. Parametric studies are presented to discuss the effect of 

length scale parameter, imperfection amplitude and shear 

foundation constant on the buckling loads, static responses 

and natural frequencies of S-S and C-C CNTs are discussed 

in Section 4. Main observations, investigations and 

conclusions are briefed in Section 5. Appendix A presented 

the analytical solution for buckling and mode shape of 

clamped-simply supported CNTs. 

 

 

2. Mathematical Model 
 

2.1 Doublet mechanics constitutive 
 

As known, a discreate doublet micro-mechanical model 

describes material’s atoms by a set of array of points at 

predetermined distances. A pair of points is defined as a 

doublet, and spacing distances between points include 

length scales into the microstructural theory, as illustrated in 

Fig. 1. Any atom in array has translation and rotation 

motions, those can be expanded by Taylor series. The 

lowest order of expansion represents macro-strain, while the 

terms beyond the first produce micro-strain includes the 

multi length scale 

Proposed that, the displacement field is concurring with 

displacement of an atom, thus, the elongation can be 

depicted by Ferrari et al. (1997) 

 

Δ𝑢𝛼 = 𝑢(ℎ + 𝜁𝛼
0, 𝑡) − 𝑢(ℎ, 𝑡) (1) 

 

in which ℎ is a position vector of an atom, 𝜁𝛼
0  is the 

separation distance, 𝛼 is the doublets number, and 𝑡 is the 

time. The micro-strain elongation is calculated by Ferrari et 

al. (1997) 
 

𝜖𝛼 =
𝜏𝛼 .  Δ𝑢𝛼
𝜂𝛼

=∑
(𝜂𝛼)

𝜒−1

𝜒!
𝜏𝛼
0 . (𝜏𝛼

0 . ∇)𝜒 𝑢

𝑀

𝜒=1

 (2) 

 

in which 𝜏𝛼 is the unit vector through 𝛼 direction, 𝜂𝛼 =
|𝜁𝛼
0| is the doublet separation (interpoint) distance in the 

 

Fig. 1 Geometrical micro-strains of doublet mechanics 

 

 

undeformed form, ∇ is the Del operator, and 𝑀 is the 

number of terms in Taylor series expansion. 

In linear elasticity, the relative displacement is small 

compared to doublet distance, so 𝜏𝛼 = 𝜏𝛼
0. By considering 

the terms of Taylor series (𝑀 = 3), the micro-strains can be 

depicted in cartesian coordinate by Aydogdu and Gul (2018) 
 

𝜖𝛼 = 𝜏𝛼𝑚
0 𝜏𝛼𝑛

0 (𝜀𝑚𝑛 +
1

2
𝜂𝛼𝜏𝛼𝑠

0
𝜕𝜀𝑚𝑛
𝜕𝑥𝑠

 

          +
1

6
𝜂𝛼
2𝜏𝛼𝑙

0 𝜏𝛼𝑠
0
𝜕2𝜀𝑚𝑛
𝜕𝑥𝑙𝜕𝑥𝑠

) 

(3) 

 

If the number of expansion terms increased more than 3, 

the calculation will be more complicated. The micro-stress 

𝑃𝛼 can be described by 
 

𝑃𝛼 =∑𝐵𝛼𝛽𝜖𝛽 = 𝐵0𝜏𝛼𝑚
0 𝜏𝛼𝑛

0 (𝜀𝑚𝑛 +
1

2
𝜂𝛼𝜏𝛼𝑠

0
𝜕𝜀𝑚𝑛
𝜕𝑥𝑠

𝛽

 

          +
1

6
𝜂𝛼
2𝜏𝛼𝑙

0 𝜏𝛼𝑠
0
𝜕2𝜀𝑚𝑛
𝜕𝑥𝑙𝜕𝑥𝑠

) 

(4) 

 

where 𝐵𝛼𝛽  is the tension modulus between points 

𝛼 and 𝛽. The macro-stress can be written in terms of micro-

stresses by 
 

𝜎 =∑𝜏𝛼
0  𝜏𝛼

0∑ 
(−𝜂𝛼)

𝜒−1

𝜒!
𝜏𝛼
0. (𝜏𝛼

0 . ∇)𝜒−1  𝑃𝛼

𝑀

𝜒=1

𝑛

𝛼=1

 (5) 

 

Substituting Eq. (4) into Eq. (5), results the macro-stress 

in terms of macro/micro-strains as 
 

𝜎 = ∑𝐵0𝜏𝛼𝑖
0 𝜏𝛼𝑗

0 𝜏𝛼𝑚
0 𝜏𝛼𝑛

0

𝑛

𝛼=1

 

        (𝜀𝑚𝑛 +
1

12
𝜂𝛼
2𝜏𝛼𝑙

0 𝜏𝛼𝑠
0
𝜕2𝜀𝑚𝑛
𝜕𝑥𝑙 𝜕𝑥𝑠

) 

(6) 

 

Since beam and plate theories are based on plane stress 

relations, thus −
𝜀33

𝜀11
= −−

𝜀22

𝜀11
= 𝜈 =

1

3
. According to 

Euler-Bernoulli beam theory, the normal stress including 

the DM micro-strain can be described as 
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𝜎𝑥𝑥 = 𝐵0 (𝜀𝑥𝑥 +
1

12
𝜂𝛼
2
𝜕2𝜀𝑥𝑥
𝜕𝑥2

) = 𝜘0𝜎𝑥𝑥
𝐿𝐸 + 𝜘1𝜎𝑥𝑥

𝐷𝑀 (7) 

 

where 𝜘0 = 1 , 𝜘1 =
1

12
𝜂𝛼
2  , 𝜎𝑥𝑥

𝐿𝐸 is classical elastic stress 

and 𝜎𝑥𝑥
𝐷𝑀 is the doublet stress due to micro-strain. The two 

parameters 𝜘0  and 𝜘1  are depending on the chirality 

angle of nanotube, angles between nodes, and number of 

terms of Taylor expansion. Plane stress condition leads to 

𝐵0 = 𝐸 , where 𝐸  is the Young’s modulus, Gul et al. 

(2018). 
 

2.2 Nanotube beam formulation 
 

According to Euler-Bernoulli theory, the axial and 

lateral displacements, (𝑈,𝑊) , of any common point 

located at (𝑥, 0, 𝑧) in the undeformed state of CNT are 
 

𝑈(𝑥, 𝑧, 𝑡) = 𝑢(𝑥, 𝑡) − 𝑧 [
𝜕𝑊

𝜕𝑥
−
𝑑𝑤0
𝑑𝑥

] 

&          𝑊(𝑥, 𝑧, 𝑡) = 𝑤(𝑥, 𝑡) 
(8) 

 

where 𝑢 and 𝑤 are the axial and transverse displacements, 

respectively, along centroidal axis of nanotube. 𝑤0 is the 

initial rise (imperfection) of CNT beam structure. Thus, 

nonlinear axial strain including von Karman strain and 

micro-strain is governed by 
 

𝜀𝑒𝑞𝑥 = 𝜀𝑥𝑥 +
1

12
𝜂𝛼
2
𝜕2𝜀𝑥𝑥
𝜕𝑥2

+ 𝜀𝑚𝑝𝑠 (9) 

 

where 𝜀𝑚𝑝𝑠  is the nonlinear midplane stretching due to 

initial curvature and out of deformation, which can be 

evaluated by 𝜀𝑚𝑝𝑠 =
1

2
[(
𝜕𝑊

𝜕𝑥
)
2

− (
𝑑𝑤0

𝑑𝑥
)
2

]. So, the force and 

moment resultants including micro-strain and mid-plane 

stretching and initial imperfection can be described by 
 

𝑁 = ∫𝜎𝑥𝑥𝑑𝐴
𝐴

= ∫𝐸𝜀𝑒𝑞𝑥𝑑𝐴
𝐴

 

&      𝑀 = ∫𝑧𝐸𝜀𝑒𝑞𝑥𝑑𝐴
𝐴

 

(10) 

 

Equations of motion of imperfect DM carbon nanotube 

can be presented by 
 

𝑚
𝜕2𝑢

𝜕𝑡2
+ 𝜇0

𝜕𝑢

𝜕𝑡
−
𝜕𝑁

𝜕𝑥
= 𝐹𝑢 (11a) 

 

𝑚
𝜕2𝑤

𝜕𝑡2
+ 𝜇1

𝜕𝑤

𝜕𝑡
−
𝜕2𝑀

𝜕𝑥2
−𝑁

𝜕2𝑤

𝜕𝑥2
= 𝐹𝑤 + 𝐹Ω (11b) 

 

where the inertia term is 𝑚 = ∫ 𝜌𝑑𝐴
𝐴

, 𝐹𝑢 is the axial force 

along the 𝑥 -axis, 𝜇0 and 𝜇1  are damping coefficients 

through axial and transverse directions, respectively. 𝐹Ω =
𝐹̅𝑐𝑜𝑠(Ω̅t)  is the affected harmonic force and 𝐹𝑤 =

𝑘̅𝑠
𝜕2𝑤

𝜕𝑥2
 is the transverse shear force. By substituting Eqs. (8) 

and (9) into Eq. (10), and then substitute results into Eq. 

(11), the following governing equation of motion of 

imperfect CNTs including mid-plane stretching and micro-

strain is 

𝑚 
𝜕2w

𝜕𝑡2
+ 𝜇̅

𝜕𝑤

𝜕𝑡
+

𝐸𝐼

1 − 𝜈2
[
𝜂2

12
(
𝜕6𝑤

𝜕𝑥6
−
𝜕6𝑤0
𝜕𝑥6

)] 

+(
𝜕4𝑤

𝜕𝑥4
−
𝑑4𝑤0
𝑑𝑥4

)] + 𝑃̅ − 𝑘̅𝑠 +
𝐴𝐸

2𝐿(1 − 𝜈2)
 

∫((
𝜕w

𝜕𝑥
)
2

− (
𝑑𝑤0
𝑑𝑥

)
2

)𝑑𝑥

𝐿

0

]
𝜕2𝑤

𝜕𝑥2
= 𝐹̅𝑐𝑜𝑠(Ω̅t) 

(12) 

 

in which 𝜇̅ is the damping coefficient, 𝐼 is the moment of 

inertia, 𝜈 is the Poisson’s ratio, 𝐴 is the area of cross-

sectional, 𝐿 is the length of CNT, 𝑃̅ is the applied axial 

load, 𝑘̅𝑠 is the elastic shear stiffness parameter and 𝜂 = 𝜂𝛼 

(𝜂 = 0.1421 𝑛𝑚 for CNT). The boundary conditions (BCs) 

of the CNT can be described as 
 

C − C:          𝑤 =
𝜕𝑤

𝜕𝑥
=
𝜕3𝑤

𝜕𝑥̂
= 0 

                      𝑎𝑡     𝑥 = 0, 𝐿 

(13a) 

 

S − S:        𝑤 =
𝜕2𝑤

𝜕𝑥2
=
𝜕2𝑤

𝜕𝑥2
+
𝜂2

12

𝜕4𝑤

𝜕𝑥4
= 0 

                    𝑎𝑡     𝑥 = 0, 𝐿 

(13b) 

 

The generalized equation of motion of imperfect CNTs 

with DM micro-strains is described in nondimensional form 

as 
 

𝑤̈ + 𝜇𝑤̇ + 𝛽2(𝑤𝑣𝑖 − 𝑤0
𝑣𝑖) + (𝑤𝑖𝑣 − 𝑤0

𝑖𝑣) 

+[𝑃 − 𝑘𝑠 +
1

2
∫(𝑤′2 −𝑤0

′2)𝑑𝑥

1

0

]𝑤′′ = 𝐹𝑐𝑜𝑠(Ω𝑡) 
(14) 

 

with the following nondimensional parameters 
 

𝑥̅ =
𝑥

𝐿
,         𝑤̅ =

𝑤

𝑟
,         𝑤̅0 =

𝑤0
𝑟
, 

𝑟 =  √
𝐼

𝐴
,     𝑡̅ = 𝑡√

𝐸𝐼

(1 − 𝜈2)𝑚𝐿4
 

(15) 

 

The coefficients of Eq. (14) are defined as 
 

𝛽2 =
𝜂2

12𝐿2
,                        𝑃 =

𝑃̅𝐿2(1 − 𝜈2)

𝐸𝐼
, 

𝑘𝑠 =
𝑘̅𝑠 𝐿

2(1 − 𝜈2)

𝐸𝐼
,        𝜇 = 𝜇̅√

𝐿4(1 − 𝜈2)

𝑚𝐸𝐼
, 

𝐹 =
𝐿4𝐹̅(1 − 𝜈2)

𝐸𝐼𝑟
   and   Ω = Ω̅√

(1 − 𝜈2)𝑚𝐿4

𝐸𝐼
 

(16) 

 

Hence, nondimensional BCs are 
 

𝑤 = 𝑤′ = 𝑤′′′ = 0     at     𝑥 = 0, 1 
(Clamped BCs) 

(17a) 

 

𝑤 = 𝑤′′ = 𝑤′′ + 𝛽2𝑤𝑖𝑣 = 0     at     𝑥 = 0, 1 
(Simply supported BCs) 

(17b) 

 

It should be noted that by setting 𝛽 = 0 in Eq. (14), 

classical equation of motion is obtained. In Eq. (14), 𝛽 
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represents length scale of CNT. 
 

 

3. Solution procedure 
 

The solution of governing equation of imperfect CNTs, 

Eq. (14), can be split into two parts. A time-independent 

solution which is related to post-buckling analysis and time-

dependent solution which is associated with dynamic 

analysis. Hence, the field variable of governing equation 

(14) is expressed as 

 

𝑤(𝑥, 𝑡) = 𝑤𝑠(𝑥) + 𝑤𝑑(𝑥, 𝑡) (18) 

 

in which 𝑤𝑠(𝑥) is the static deflection due to applied axial 

load 𝑃  and 𝑤𝑑(𝑥, 𝑡) is a small disturbance around the 

static deflection 𝑤𝑠(𝑥) . Substituting Eq. (18) into the 

governing (14) and the equations of boundary conditions 

(17). Then collecting the static parts, the result is time-

independent equation which represents the buckling 

problem of imperfect CNTs 
 

𝛽2𝑤𝑠
𝑣𝑖 + 𝑤𝑠

𝑖𝑣 + [𝑃 − 𝑘𝑠 −
1

2
∫(𝑤𝑠

′2 − 𝑤0
′2)𝑑𝑥

1

0

]𝑤𝑠
′′ 

= 𝛽2𝑤0
𝑣𝑖 +𝑤0

𝑖𝑣 

(19) 

 

The boundary conditions of Clamped and simply 

supported ends in static analysis are 

 

𝐶       𝑤𝑠 = 𝑤𝑠
′ = 𝑤𝑠

′′′ = 0     at     𝑥 = 0, 1                  (20a) 

 

𝑆       𝑤𝑠 = 𝑤𝑠
′′ = 𝑤𝑠

′′ + 𝛽2𝑤𝑠
𝑖𝑣 = 0     at     𝑥 = 0, 1 (20b) 

 

Assembling the time-dependent parts around the static 

deflection position. The result is the following dynamic 

equation 

 

𝑤̈𝑑+𝜇𝑤̇𝑑 + 𝛽
2𝑤𝑑

𝑣𝑖 + 𝑤𝑑
𝑖𝑣 

+[𝑃 − 𝑘𝑠 −
1

2
∫(𝑤𝑠

′2 − 𝑤0
′2)𝑑𝑥

1

0

]𝑤𝑑
′′ −

1

2
𝑤𝑠
′′∫𝑤𝑑

′ 2𝑑𝑥

1

0

 

−𝑤𝑠
′′∫𝑤𝑑

′𝑤𝑠
′𝑑𝑥

1

0

−
1

2
𝑤𝑑
′′∫𝑤𝑑

′ 2𝑑𝑥

1

0

− 𝑤𝑑
′′∫𝑤𝑑

′𝑤𝑠
′𝑑𝑥

1

0

 

= 𝐹𝑐𝑜𝑠(Ω𝑡) 

(21) 

 

In terms of 𝑤𝑑, the boundary conditions are 

 

𝐶          𝑤𝑑 = 𝑤𝑑
′ = 𝑤𝑑

′′′ = 0     at     𝑥 = 0, 1                (22a) 

 

𝑆          𝑤𝑑 = 𝑤𝑑
′′ = 𝑤𝑑

′′ + 𝛽2𝑤𝑑
𝑖𝑣 = 0     at     𝑥 = 0, 1 (22b) 

 

Herein, the differential-integral-quadrature method is 

used as a numerical method to solve the governing 

equations of static and dynamic problems. 

 

3.1 Differential-Integral-Quadrature Method (DIQM) 
 

To discretize the domain, the shifted Chebyshev–Gauss–

Lobatto grid points are used as, Mohamed et al. (2020) 
 

𝑥𝑖 =
1

2
(1 − cos(

(𝑖 − 1)𝜋

𝑁 − 1
)) ,      𝑖 = 1,2, . . 𝑁. (23) 

 

where 𝑁  is the number of grid points in the whole 

computational domain. According to the DQM, the first-

order derivative of a continuous function 𝑦(𝑥)  is 

expressed as 
 

𝑑𝑦(𝑥)

𝑑𝑥
|
𝑥=𝑥𝑖

=∑𝒞𝑖𝑗

𝑁

𝑗=1

𝑦(𝑥𝑗),     𝑖 = 1,2,⋯𝑁 (24) 

 

where 𝐶𝑖𝑗 is the weighting coefficients of the first order 

derivative which was introduced as 

 

𝒞𝑖𝑗 =

{
 
 

 
 

𝒫(𝑥𝑖)

(𝑥𝑖 − 𝑥𝑗)𝒫(𝑥𝑗)
     𝑖 ≠ 𝑗              𝑖, 𝑗 = 1,2, … . 𝑁

− ∑ 𝒞𝑖𝑗

𝑁

𝑗=1,𝑖≠𝑗

            𝑖 = 𝑗,            𝑖 = 1,2, … . . 𝑁  

 (25) 

 

in which 
 

𝒫(𝑥𝑖) = ∏ (𝑥𝑖 − 𝑥𝑗)

𝑁

𝑗=1,𝑗≠𝑖

 (26) 

 

Considering a vector 𝒚 = [𝑦(𝑥1) 𝑦(𝑥2)…𝑦(𝑥𝑛)]
𝑇 and 

its first derivative vector to be 𝒀 = [𝑌(𝑥1) 𝑌(𝑥2)…𝑌(𝑥𝑛)]. 
Based on Eq. (26), a differential matrix of the first order 

derivative can be written as 
 

𝒀 = 𝐶(1) 𝒚 (27) 
 

where 𝐶(1) = [𝒞𝑖𝑗]. Using matrix multiplication, the higher 

order matrices can be obtained as 
 

𝐶(𝑟) = 𝐶(1)𝐶(𝑟−1), 𝑟 > 1 (28) 
 

The definite integral of a continuous function 𝑦(𝑥) 
over the domain can be obtained as 

 

𝑑𝑦

𝑑𝑥
= 𝑌(𝑥) (29) 

 

Then 
 

∫𝑌(𝑥)𝑑𝑥

1

0

≅∑([𝒦]𝑁𝑘 − [𝒦]1𝑘)𝑌𝑘

𝑁

𝑘=1

= 𝓢𝑭 (30) 

 

where 𝒦  is the pseudo-inverse of matrix 𝐶(1) . More 

explanations about DIQM are given is Mohamed et al. 

(2018). 

 

3.2 Discritization of buckling problem of imperfect 
CNTs 

 

The buckling problem (19) can be rewritten as 

 

𝛽2𝑤𝑠
𝑣𝑖 +𝑤𝑠

𝑖𝑣 + 𝛾2𝑤𝑠
′′ = 𝛽2𝑤0

𝑣𝑖 +𝑤0
𝑖𝑣 (31a) 
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𝛾2 = 𝑃 − 𝑘𝑠 −
1

2
∫(𝑤𝑠

′2 − 𝑤0
′2)𝑑𝑥

1

0

 (31b) 

 

The column vector 𝒘𝑠 can be defined as 
 

𝒘𝒔
𝑻 = [𝑤1, 𝑤2, …𝑤𝑁] (32) 

 

in which 𝑤𝑖 = 𝑤(𝑥𝑖). The initial shape of imperfection 

𝑤0(𝑥)  is discretized as known vector 𝒘𝟎
𝑻 = [𝑤0(𝑥1),

𝑤0(𝑥2), … , 𝑤0(𝑥𝑁)]. Upon using the DIQM, the differential 

equation (34) can be discretized. The system of algebraic 

equations results from discretizing Eq. (34) is written as 

 

(𝛽2𝐶(6) + 𝐶(4) + 𝛾2𝐶(2))𝒘𝑠 − (𝛽
2𝐶(6) + 𝐶(4))𝒘𝟎 

= 𝟎 
(33a) 

 

𝛾2 − 𝑃 + 𝑘𝑠 +
1

2
𝓢 [(𝐶(1)𝒘𝒔)

∘2
− (𝐶(1)𝒘𝟎)

∘2
] = 0 (33b) 

 

where ∘  denotes matrix Hadamard product. The 

corresponding boundary conditions, Eq. (22), can be 

discretized in the same way and properly substituted in Eq. 

(33). To obtain buckling load and postbuckling 

configurations, the Newton method is used to solve 

nonlinear equations (33). The solution of the linearized 

form of Eq. (33) is considered as the initial values for 

Newton method. 
 

3.3 Discritization of linear vibration problem 
 

For linear vibration analysis, omitting the nonlinear, 

damping and force terms from Eq. (21), and using Eq. 

(31b), yields 
 

𝑤̈𝑑 + 𝛽
2𝑤𝑑

𝑣𝑖 + 𝑤𝑑
𝑖𝑣 + 𝛾2𝑤𝑑

′′ −
1

2
𝑤𝑠
′′∫𝑤𝑑

′ 2𝑑𝑥

1

0

 

= 𝑤𝑠
′′∫𝑤𝑑

′𝑤𝑠
′𝑑𝑥

1

0

 

(34) 

 

Assuming 𝑤𝑑 = 𝜙(𝑥)𝑒
𝑖𝜔𝑡 and inserting it in Eq. (34), 

on obtain 
 

𝛽2𝜙𝑣𝑖 + 𝜙𝑖𝑣 + 𝛾2𝜙′′ − 𝜔2𝜙 = 𝑤𝑠
′′∫𝑤𝑠

′𝜙′𝑑𝑥

1

0

 (35) 

 

 

in which 𝜔 signifies the natural frequency and 𝜙(𝑥) is 

the corresponding mode shape. The boundary conditions are 

given as 
 

𝐶        𝜙 = 𝜙′ = 𝜙′′′ = 0     at     𝑥 = 0, 1                 (36a) 

 

𝑆        𝜙 = 𝜙′′ = 𝜙′′ + 𝛽2𝜙𝑖𝑣 = 0     at     𝑥 = 0, 1 (36b) 
 

Using DIQM to discretize Eq. (35), the following linear 

eigenvalue problem is obtained 
 

(𝛽2𝐶(6) + 𝐶(4) + 𝛾2𝐶(2) 

−([(𝐶(2)𝒘𝒔)𝑶
𝑇] ∘ [𝓢(𝐶(1)𝒘𝒔)𝐶

(1)]))𝝓 = 𝜔2𝝓 
(37) 

 

Similarly, the corresponding boundary conditions are 

discretized. where the unknown column vector 𝝓 is defined 

as 𝝓𝑇 = [𝜙1, 𝜙2, 𝜙3, ……𝜙𝑁] . The eigenvalue problem 

(37) can be easily evaluated for the eigenvalues 𝜔 and the 

corresponding mode shapes 𝝓. 
 

 

4. Numerical results 
 

İn this section, numerical results for static and dynamic 

behaviors of perfect and imperfect CNTs are presented. The 

results based on DM and classical theories are compared 

and verified with those in the literatures. Herein, the initial 

shape of imperfection is assumed as the form of the first 

buckling mode shape of perfect CNT. 
 

𝑤0 = {
𝑔𝑠𝑖𝑛(𝜋𝑥)       for S-S

1

2
𝑔(1 − 𝑐𝑜𝑠(2𝜋𝑥))  for C-C

 (38) 

 

 

Table 1 Comparison of the nondimensional first critical 

buckling load of S-S and C-C perfect CNTs when 

𝑘𝑠 = 0 

𝐿 
(𝑛𝑚) 

S-S C-C 

DIQM 
Gul 

(2018) 

DIQM 

(𝑤′′′ = 0) 

DIQM 

(𝑤′′ = 0) 

Gul (2018) 

(𝑤′′ = 0) 

1 9.7057 9.711 36.8559 32.2056 32.21 

1.5 9.7968 9.796 38.3129 34.3668 34.37 

2 9.8287 9.828 38.8228 34.8952 34.89 

5 9.8631 9.863 39.3736 38.1466 38.23 

25 9.8694 - 39.4743 39.4806 - 
 

 

 

Table 2 Nondimensional first three natural frequencies of S-S perfect CNTs (𝑘𝑠 = 0, 𝑃 = 0) 

Frequency 

mode 
 

𝐿 (𝑛𝑚) 
Classical 

1 1.5 2 5 20 

𝜔1 
DIQM 9.7873 9.8331 9.8491 9.8663 9.8694 9.8696 

Gul (2018) 9.787 9.833 9.849 9.849 - 9.869 

𝜔2 
DIQM 38.1446 38.8913 39.1492 39.4259 39.4751 39.4784 

Gul (2018) 38.16 38.86 39.23 39.42 - 39.48 

𝜔3 
DIQM 81.9195 85.8254 87.1510 88.5605 88.8098 88.8264 

Gul (2018) 81.92 85.82 87.15 88.56 - 88.83 
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For C-S CNT the shape of initial imperfection (shape of 

first buckling mode) can be obtained from Eq. (A8) in 

Appendix A. 
 

4.1 Validation 
 

To verify the accuracy of the present method, the 

dimensionless critical buckling load and the first three 

natural frequencies of perfect CNTs without applied load 

are compared with those available in literature. Table 1 

 

 

compares the critical buckling load of S-S and C-C perfect 

CNTs based on the DIQM results and the results obtained 

by Gul et al. (2018). Since Gul et al. (2018) considered that 

the boundary conditions of C-C CNT take the form 
 

𝑤𝑠 = 𝑤𝑠
′ = 𝑤𝑠

′′ = 0     at     𝑥 = 0, 1 (39) 
 

In this table, the present model for C-C CNT is solved 

assuming the same form of boundary conditions. It can be 

found that the DIQM results are very close to those in the 
 

 

Table 3 Comparison of the nondimensional first three critical buckling load of S-S, C-S and C-C 

perfect CNTs 

B. Cs 𝑘𝑠 𝐿(𝑛𝑚) 
𝑃𝑐1 𝑃𝑐2 𝑃𝑐3 

DIQM Analytical DIQM Analytical DIQM Analytical 

S-S 

0 

1 9.7057 9.7057 36.8559 36.8558 75.5497 75.5496 

1.5 9.7968 9.7968 38.3129 38.3129 82.9257 82.9256 

2 9.8287 9.8286 38.8228 38.8227 85.5073 85.5072 

5 9.8631 9.8630 39.3735 39.3735 88.2954 88.2953 

25 9.8694 9.8693 39.4743 39.4742 88.8052 88.8052 

Classical 9.8697 9.8696 39.4785 39.4784 88.8265 88.8264 

5 

1 14.7057 14.7057 41.8559 41.8558 80.5497 80.5496 

1.5 14.7968 14.7968 43.3129 43.3129 87.9257 87.9256 

2 14.8287 14.8286 43.8228 43.8227 90.5073 90.5072 

5 14.8631 14.8630 44.3735 44.3735 93.2954 93.2953 

25 14.8694 14.8693 44.4743 44.4742 93.8052 93.8052 

Classical 14.8697 14.8696 44.4785 44.4784 93.8265 93.8264 

C-S 

0 

1 19.4302 19.4302 53.5072 53.5072 94.7106 94.7105 

1.5 19.8506 19.8505 56.9333 56.9332 108.1518 108.1517 

2 20.0046 20.0047 58.1328 58.1328 112.8538 112.8537 

5 20.1620 20.1605 59.4154 59.4316 117.9446 117.9320 

25 20.1897 20.1896 59.6698 59.6696 118.8617 118.8612 

Classical 20.1908 20.1907 59.6796 59.6795 118.8999 118.8998 

5 

1 24.4302 24.4302 58.5072 58.5072 99.7106 99.7105 

1.5 24.8506 24.8505 61.9333 61.9332 113.1518 113.1517 

2 25.0046 25.0047 63.1328 63.1328 117.8538 117.8537 

5 25.162 25.1605 64.4154 64.4316 122.9446 122.932 

25 25.1897 25.1896 64.6698 64.6696 123.8617 123.8612 

Classical 25.1908 25.1907 64.6796 64.6795 123.8999 123.8998 

C-C 

0 

1 36.8559 36.8559 68.429 68.429 115.9527 115.9526 

1.5 38.3129 38.3128 75.3477 75.346 139.2644 139.2643 

2 38.8228 38.8228 77.7209 77.7208 147.4235 147.4233 

5 39.3736 39.3735 80.3089 80.2818 156.2353 156.2353 

25 39.4743 39.4742 80.7449 80.7437 157.8466 157.8466 

Classical 39.4785 39.4784 80.763 80.7626 157.9137 157.9137 

5 

1 41.8559 41.8559 73.429 73.429 120.9527 120.9526 

1.5 43.3129 43.3128 80.3477 80.346 144.2644 144.2643 

2 43.8228 43.8228 82.7209 82.7208 152.4235 152.4233 

5 44.3736 44.3735 85.3089 85.2818 161.2353 161.2353 

25 44.4743 44.4742 85.7449 85.7437 162.8466 162.8466 

Classical 44.4785 44.4784 85.763 85.7626 162.9137 162.9137 
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literature. 

The dimensionless natural frequencies of S-S perfect 

CNTs obtained via DIQM and those reported by Gul et al. 

(2018) are compared in Table 2. Again, the results are found 

to be in good agreement. 

 

4.2 Parametric studies 
 

In this subsection, parametric studies are presented to 

analyze the influence of length-scale parameter, shear 

foundation constants and imperfection amplitude on the on 

buckling, post-buckling behavior and natural frequencies of 

CNTs. 

 

4.2.1 Parametric studies of static analysis 
The mutual effects of length scale and shear foundation 

constants on the dimensionless first three critical buckling 

loads of S-S, C-S and C-C perfect CNTs are summarized in 

Table 3. The DIQM results and analytical results reported 

by Eltaher and Mohamed (2020b) are presented. Based on 

Eltaher and Mohamed (2020b), the analytical solution for 

C-S perfect CNT is developed and is presented in Appendix 

A. It is found that increases the CNTs length increases the 

critical buckling loads. Also, it is observed that the critical 

buckling loads predicted by DM model are lower than those 
 

 

 

 

of the classical ones especially for higher buckling modes 

and short CNTs. Comparing the effect of length on different 

boundary conditions shows that the length-scale parameter 

is more effective in the case of C-C CNT. Furthermore, it 

should be pointed out that the critical buckling load are 

significantly increased with increasing the shear foundation 

constant. 

The post-buckling paths of S-S, C-S and C-C perfect 

CNTs for diverse length values are demonstrated in Fig. 2. 

It can be seen that the maximum static deflection of CNT 

decreases significantly as the length of CNT increases. This 

means that the impact of length scale parameter cannot be 

ignored. 

Table 4 summarizes the dimensionless first critical 

buckling loads of imperfect CNTs for diverse imperfection 

amplitude and length values with 𝑘𝑠 = 0. Different set of 

boundary conditions are considered. It is noticed that as the 

length scale parameter increases (the length of CNTs 

decreases) causes the CNTs to behave softer and the critical 

buckling loads decrease. This softening behavior becomes 

more pronounced when the value of imperfection amplitude 

increases. 

Fig. 3 depicts the variations of the dimensionless critical 

buckling load with the imperfection amplitude 𝑔 for 

different values of CNTs length. Fig. 3 reveals that the 
 

 

 

 

 

Fig. 2 Load-deflection curve of perfect S-S, C-S and C-C CNTs showing the lowest t buckled configurations when 𝑘𝑠 = 0 

Table 4 Nondimensional first critical buckling load of S-S, C-S and C-C imperfect CNTs when 

𝑘𝑠 = 0 and with various values of imperfection amplitude 

B. Cs 𝑔 
𝐿 (𝑛𝑚) 

Classical 
1 1.5 2 5 20 

S-S 

0.5 16.4089 16.5457 16.5935 16.6452 16.6544 16.6550 

1 18.8582 19.0218 19.079 19.1408 19.1518 19.1525 

2 18.2815 18.4877 18.5598 18.6376 18.6515 18.6524 

C-S 

0.5 30.5825 31.1621 31.5131 31.6158 31.6538 31.6935 

1 35.5793 36.2571 36.6664 36.7864 36.8307 36.8756 

2 38.8488 39.6975 40.1753 40.322 40.3762 40.3777 

C-C 

0.5 54.056 55.9794 56.6513 57.3760 57.5054 57.5140 

1 62.6711 64.8686 65.6355 66.4625 66.6100 66.6198 

2 71.8821 74.5146 75.4324 76.4217 76.5982 76.6099 
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critical buckling loads of imperfect CNTs with respect to 𝑔 

has a general tendency of ascending followed by 

descending for both DM and classical theories. It can be 

noted that as the effect of length scale parameter increases 

(CNTs length decrease), the difference between critical 

buckling loads predicted based on DM model and that 

obtained based on classical one increases, especially for C-

C CNTs. 

Fig. 4 shows the stable and unstable equilibrium paths 

of S-S and C-C perfect and imperfect CNTs for diverse 

values of imperfection amplitude when 𝐿 = 2 𝑛𝑚 and 

𝑘𝑠 = 0. The solid lines are associated with the stable 

responses and the dotted lines are associated with the 

unstable responses. It can be noted that perfect CNTs 

undergoes a pitchfork bifurcation. However, the imperfect 

CNTs exhibit a perturbed pitchfork (saddle-node) 

bifurcation. Fig. 4 illustrates that the imperfect CNTs in pre-

buckling state (𝑃 < 𝑃𝑐), has a stable solution (upper branch) 

which is independent on the bifurcation phenomena. In the 

post-buckling state (𝑃 > 𝑃𝑐), middel unstable branch and 

lower stable one appear. Furthermore, it is observed that the 

absolute values of the amplitude of upper stable and the 

 

 

 

 

middle unstable responses increase as the imperfection 

amplitude increases. 

In Fig. 5, the nonlinear responses of S-S and C-C 

imperfect CNTs in pre-and post-buckling states for different 

values of CNTs length are plotted. It is noticed that the 

absolute values of the amplitude of upper and lower stable 

branches decreases as the CNTs length increases. The 

reverse scenario occurs for the middle unstable branch. 

 

4.2.2 Parametric studies of linear vibration 
The first three dimensionless natural frequencies of S-S 

imperfect CNT at no axial load for diverse values of CNTs 

length and shear foundation constant are presented in Table 

5. It is noticed the natural frequencies has an ascending 

trend with respect to shear foundation constant. That is due 

to the fact that the shear foundation constant increases the 

stiffness of CNTs. As consequence, the natural frequencies 

of CNTs increase with increasing the shear foundation 

parameter. Furthermore, it is observed that increasing the 

length of CNT, the results of DM model converge to 

classical results and length scale parameter becomes in 

significant. The effects of length scale parameter and shear 

   

Fig. 3 Variation of the critical buckling load with the imperfection amplitude for different values of length 𝐿 when 𝑘𝑠 = 0 

  

Fig. 4 Influence of dimensionless imperfection amplitude 𝑔 on load-deflection curve of S-S and C-C CNTs 

(𝑘𝑠 = 0, 𝐿 = 1.5 𝑛𝑚) 
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foundation constant are more pronounced in the higher 

modes. 

Fig. 6 analyzes the variation of the dimensionless first 

natural frequency of S-S and C-C perfect CNTs under 
 

 

 

 

 

 

different values of CNTs length. In the pre-buckling state, 

increasing the CNTs length leads to increasing the natural 

frequency. However, in the postbuckling state, the reverse 

scenario occurs. 
 

 

 

 

  

Fig. 5 Influence of length 𝐿 on the load-deflection curves of S-S and C-C imperfect CNTs (𝑘𝑠 = 0, 𝑔 = 1) 

Table 5 Nondimensional first three natural frequencies of S-S imperfect CNTs with various values 

of shear foundation constant 𝑘𝑠, (𝑔 = 1, 𝑃 = 0) 

Frequency 

mode 
𝑘𝑠 

𝐿 (𝑛𝑚) 
Classical 

1 1.5 2 5 20 

𝜔1 

0 12.0206 12.0580 12.0710 12.0851 12.0876 12.0877 

5 12.5891 12.6313 12.6460 12.6619 12.6648 12.6650 

10 13.8374 13.8761 13.8894 13.9039 13.9065 13.9067 

𝜔2 

0 38.1446 38.8913 39.1492 39.4259 39.4751 39.4784 

5 40.0656 40.7803 41.0269 41.2920 41.3392 41.3423 

10 42.2000 42.8807 43.1137 43.3661 43.4110 43.4140 

𝜔3 

0 81.9195 85.8254 87.1510 88.5605 88.8098 88.8264 

5 83.9575 87.7755 89.0732 90.4537 90.6980 90.7143 

10 86.2781 89.9978 91.2639 92.6118 92.8505 92.8663 
 

  

Fig. 6 Influence of length scale on the first natural frequency of S-S and C-C perfect CNT when 𝑘𝑠 = 0 
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The influence of imperfection amplitude on the 

dimensionless first natural frequency of S-S and C-C CNTs 

is presented in Fig. 7. Fig. 7 shows that increasing the 

imperfection amplitude results in increasing the first natural 

frequency of imperfect CNTs. 
 

 

5. Conclusions 
 

The buckling, post-buckling response and linear 

vibration behavior of perfect and imperfect CNTs were 

examined numerically based on DM theory. Different set of 

boundery conditions were taken into account. The DIQM in 

conjcution with Newton method is employed to solve 

nonlinear six-order integro-differential equation governing 

the buckling problem, and derive the critical buckling load 

and post-buckling configurations. The DIQM is exploited to 

discrtize the linear vibration problem and the natural 

frequencies and corresponding mode shapes were obtained. 

Some verification studies were conducted for the present 

method. The results indicates that the DIQM is an efficient 

techniquce for analyzing the static and dynamic behaviors 

of CNTs. 

The influences of length scale parameter, imperfection 

amplitude and shear foundation constant on static and 

dynamic behaviors of CNTs were studied and the following 

remarks have been obtained 
 

(a) The trend of buckling load of perfect and imperfect 

CNTs with respect to shear foundation constant is 

ascending and it is descending with respect to 

length scale parameter 𝛽. 

(b) The buckling load has firstly ascending trend 

followed by descending trend with respect to the 

amplitude of initial imperfection 𝑔. 

(c) The absolute values of the amplitude of stable 

responses of perfect and imperfect CNTs has 

ascending trend with increasing the length scale 

parameter (i.e., decreasing the CNTs length). 

(d) As the shear foundation constant increases, the 

natural frequencies increase particularly at higher 

modes. 

 

 

(e) The natural frequency has a descending trend with 

increasing the length scale parameter in the pre-

buckling state. The reverse scenario occurs in the 

post-buckling state. 

(f) The natural frequency around the upper branch of 

imperfect CNTs increases as the imperfection 

amplitude increases. 

(g) The length scale parameter has the most effect on 

the static and dynamic behaviors of CNTs with C -

C boundary conditions. 
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Appendix A 
 

 

 
 

Analytical solutions for C-S perfect CNT 
 

Following Eltaher and Mohamed (2020b), the analytical solution for buckling problem of C-S perfect CNTs can be 

obtained. By removing the geometric imperfection 𝑤0 from buckling problem (19), that is 

 

𝛽2𝑤𝑠
𝑣𝑖 +𝑤𝑠

𝑖𝑣 + 𝜆2𝑤𝑠
′′ = 0 (A1) 

 

𝜆2 = 𝑃 − 𝑘𝑠 −
1

2
∫𝑤𝑠

′2𝑑𝑥

1

0

 (A2) 

 

The solution of Eq. (A1) can be written as 
 

𝑤𝑠(𝑥) = 𝑐1 + 𝑐2𝑥 + 𝑐3𝑠𝑖𝑛(𝑠1𝑥) + 𝑐4𝑐𝑜𝑠(𝑠1𝑥) + 𝑐5𝑠𝑖𝑛(𝑠2𝑥) + 𝑐6𝑐𝑜𝑠(𝑠2𝑥) (A3) 
 

in which 
 

𝑠1,2 =
1

𝛽
√
1

2
(1 ± √1 − 4𝛽2𝜆2) (A4) 

 

To compute the constants 𝑐𝑖 , (𝑖 = 1,2, …6), applying the C-S boundary conditions Eq. (22), yields the following 

nonlinear eigenvalue problem 
 

[
 
 
 
 
 
 
1 0 0 1 0 1
0 1 𝑠1 0 𝑠2 0

0 0 𝑠1
3 0 𝑠2

3 0

1 1 sin(𝑠1) cos(𝑠1) 𝑠𝑖𝑛(𝑠2) cos(𝑠2)

0 0 𝑠1
2𝑠𝑖𝑛(𝑠1) 𝑠1

2𝑐𝑜𝑠(𝑠1) 𝑠2
2𝑠𝑖𝑛(𝑠2) 𝑠2

2𝑐𝑜𝑠(𝑠2)

0 0 𝑠1
2𝛿1𝑠𝑖𝑛(𝑠1) 𝑠1

2𝛿1𝑐𝑜𝑠(𝑠1) 𝑠2
2𝛿2𝑠𝑖𝑛(𝑠2) 𝑠2

2𝛿2𝑐𝑜𝑠(𝑠2)]
 
 
 
 
 
 

[
 
 
 
 
 
𝑐1
𝑐2
𝑐3
𝑐4
𝑐5
𝑐6]
 
 
 
 
 

=

[
 
 
 
 
 
0
0
0
0
0
0]
 
 
 
 
 

 (A5) 

 

where 

𝛿1 = (1 − 𝛽
2𝑠1
2) and 𝛿2 = (1 − 𝛽

2𝑠2
2) 

 

The determinant of Eq. (A5) is set to zero, yields the following characteristic equation 

 

𝑠1
3(𝑡𝑎𝑛(𝑠2) − 𝑠2) − 𝑠2

3(𝑡𝑎𝑛(𝑠1) − 𝑠1) = 0 (A6) 

 

Solving Eq. (A6) numerically, the values of 𝜆 can be computed. And hence the critical buckling load of C-S perfect 

CNTs is calculated as 
 

𝑃𝑐 = 𝑘𝑠 + 𝜆
2 (A7) 

 

The mode shapes can be obtained as 
 

𝑤𝑠(𝑥) = 𝑐 (1 − 𝑥 −
(1 − 𝛽2𝑠1

2)

(1 − 2𝛽2𝑠1
2)𝑠1

𝑠𝑖𝑛(𝑠1𝑥) −
(1 − 𝛽2𝑠1

2)

(1 − 2𝛽2𝑠1
2)𝑠1

𝑡𝑎𝑛(𝑠1)𝑐𝑜𝑠(𝑠1𝑥) 

                 −
𝛽2𝑠1

2

(1 − 2𝛽2𝑠1
2)𝑠2

𝑠𝑖𝑛(𝑠2𝑥) +
𝛽2𝑠1

2

(1 − 2𝛽2𝑠1
2)𝑠2

𝑡𝑎𝑛(𝑠2)𝑐𝑜𝑠(𝑠2𝑥)) 

(A8) 

 

where the first mode shape of C-S perfect CNT is obtained by substituting the smallest value of 𝜆 computed from Eq. (A6) 

into Eq. (A8). The initial imperfection 𝑤0 of C-S CNT is taken to be the first mode shape obtained from Eq. (A8). 
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