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1. Introduction 

 

Water distribution networks provide purified water from 

reservoirs to commercial facilities, industrial facilities, and 

locals through complex pipeline networks. In particular, 

lifeline infrastructure, such as water network, are 

concentrated in the centers of metropolitan cities, which can 

cause direct and indirect damage to other lifeline facilities 

(Lee et al. 2009). Therefore, when external disturbances 

such as natural disasters occur, a prompt response is needed 

to minimize economic damage and casualties (Cerchiello et 

al. 2018, Kim et al. 2018). 

Research reports from the Pan-American Health 

Organization (PAHO) have shown that earthquakes have the 

greatest impact on water network systems among other 

natural disasters (PAHO 2002). The impact on the water 

network depends on the frequency and magnitude of the 

earthquake, but once an earthquake occurs, it can cause 
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serious social disruptions (Jeon and O’Rourke 2005). 

Therefore, it is important to conduct a seismic risk 

assessment of the water distribution network at the system 

level and to establish repair priorities (plans) and recovery 

strategies. 

Various studies have been conducted to assess the 

seismic risk assessment of lifeline infrastructures such as 

water networks, power networks, gas networks and 

transport networks. Early studies adopted connectivity-

based approaches to assess system reliability. For example, 

Esposito et al. (2015) conducted a simulation-based seismic 

risk assessment of a gas distribution network in L’Aquila, 

Italy, considering the gas network facilities. Rokneddin et 

al. (2013) evaluated bridge network system reliability 

through an Origin-Destination (O-D) connectivity analysis 

based on Markov Chain Monte Carlo (MCMC) simulations. 

Moreover, Dueñas‐Osorio et al. (2007) performed a seismic 

hazard analysis of electric power networks considering the 

interdependency of water networks. In the case of water 

transmission networks, Yoon et al. (2018) proposed a 

comprehensive framework for seismic risk assessment, and 

the proposed model was verified using an actual water 

network located in South Korea. 

However, connectivity-based system reliability does not 

reflect physical environmental conditions such as the nodal 
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Abstract.  Conventional Monte Carlo simulation-based methods for seismic risk assessment of water networks often require 

excessive computational time costs due to the hydraulic analysis. In this study, an Artificial Neural Network-based surrogate model 
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constructed with appropriate training parameters through trial-and-error procedures. Furthermore, a deep neural network with 
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was defined as the damage states of the k-dimensional network facilities, and the output was defined as the network system 

performance. To generate training data, random sampling was performed between earthquake magnitudes of 5.0 and 7.5, and 

hydraulic analyses were conducted to evaluate network performance. For a hydraulic simulation, EPANET-based MATLAB code 

was developed, and a pressure-driven analysis approach was adopted to represent an unsteady-state network. To demonstrate the 

constructed surrogate model, the actual water distribution network of A-city, South Korea, was adopted, and the network map was 

reconstructed from the geographic information system data. The surrogate model was able to predict network performance within a 

3% relative error at trained epicenters in drastically reduced time. In addition, the accuracy of the surrogate model was estimated to 

within 3% relative error (5% for network performance lower than 0.2) at different epicenters to verify the robustness of the epicenter 

location. Therefore, it is concluded that ANN-based surrogate model can be utilized as an alternative model for efficient seismic risk 

assessment to within 5% of relative error. 
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capacity, elevation, and demand. To overcome the 

limitations of connectivity-based approaches, flow-based 

system reliability methodologies were proposed. Lee et al. 

(2011) performed a post-hazard flow capacity analysis of a 

transportation network considering the deterioration of 

bridges, and Kang et al. (2017) conducted the flow analysis 

of a water pipeline network under seismic conditions. 

Moreover, Shi and O’Rourke (2006), Wang and O’Rourke 

(2006), and Bonneau and O’Rourke (2009) developed the 

GIRAFFE program to measure seismic performance in Los 

Angeles, California, in extreme events such as earthquakes. 

Although flow-based network analysis enables more 

accurate network performance estimation than connectivity-

based analysis, it often requires more computational time 

because hydraulic simulations are required. 

For the flow-based seismic risk assessment of a water 

network, the Monte Carlo simulation (MCS) is used 

frequently. In the conventional MCS-based system 

reliability approach, the damaged network is simulated by 

numerical modeling and removal of impaired network 

components. The network performance is then estimated by 

comparing the total and available flow rates of nodal 

demands at the transmission and sink nodes. However, 

conventional MCS methods require significant computation 

time for hydraulic simulations, and the time cost increases 

exponentially as the system dimension increases. In 

particular, excessive computation time is needed if iterative 

systems such as optimization problems, resilience 

estimation, and seismic risk assessment using probabilistic 

seismic hazard analysis (PSHA) are required. 

To reduce the computational time cost through efficient 

risk assessment, numerous researchers have performed 

surrogate-based modeling to enable seismic performance 

assessments (Mangalathu et al. 2018, Seo et al. 2012, Seo 

and Linzell 2013). Stern et al. (2017) evaluated the MCS-

based seismic performance of the California water network 

using logistic regression and kernel support vector machine 

classifiers. Dueñas‐Osorio and Rojo (2011) proposed radial 

topology reliability assessment tools and explored customer 

service availability and errors. Moreover, Kang et al. (2008) 

and Lim and Song (2012) proposed non-simulation based 

the matrix-based system reliability (MSR) method and 

recursive decomposition algorithm (RDA) for the efficient 

risk assessment of lifeline networks, respectively. However, 

their research was only applied to connectivity-based 

network systems and was demonstrated in small networks 

with system dimensions of less than 100. In particular, 

previous studies did not focus on reducing the computation 

time cost and did not consider flow-based system reliability. 

Therefore, previous studies are not suitable for flow-based 

system reliability assessment of large dimensional networks 

for accelerated MCS. 

In view of the above, this paper proposes an Artificial 

Neural Network (ANN)-based surrogate model for 

accelerated MCS of flow-based system reliability. In 

particular, the construction of the ANN-based surrogate 

model is described, and the accuracy and computation time 

of the surrogate model are compared with the conventional 

direct method. For flow-based network simulations, an 

EPANET-based MATLAB computer code was developed to 

implement the pressure-driven analysis. 

To demonstrate the ANN-based surrogate model, an 

actual water distribution network located in South Korea 

was adopted, and the network map was reconstructed based 

on geographic information system (GIS) data. The ANN-

based surrogate model was randomly sampled in the range 

of earthquake magnitudes of 5.0–7.5, and the network 

damage status and system performance were utilized as 

training data. To verify the performance prediction of the 

surrogate model, the prediction results were compared with 

the results of the conventional direct calculation method in 

the trained epicenter, and different epicenter locations were 

adopted to confirm their robustness. 

The remainder of this paper is organized as follows. In 

Section 2, theoretical backgrounds are introduced including 

the flow-based system reliability analysis, and MCS 

framework for direct calculation and ANN-based surrogate 

model are discussed in Section 3. From the proposed 

surrogate model, a numerical example is demonstrated in 

Section 4. Finally, Section 5 summarizes the key findings of 

this research and provides suggestions for future research 

direction. 

 

 

2. Flow-based system reliability 
 

2.1 Flow-based network analysis 
 

Network analysis methods are classified into 

connectivity-based and flow-based methods. Connectivity-

based network analysis determines network performance 

based on failure conditions of nodes or links, regardless of 

facility capacity and demand. Therefore, the network 

performance is focused on the connection between the 

source and the sink node, and does not reflect the physical 

conditions of the actual flow. However, an actual water 

distribution network must consider not only the elevation of 

the target area but also environmental conditions such as the 

pipe diameter, node demand, and pressure. In addition, as 

the flow amount can be controlled according to the failure 

states of the link (pipeline), the sink node performance 

should be determined to reflect the states of all transmission 

nodes and links (Guidotti et al. 2016, Yoon et al. 2020). 

In this study, the hydraulic analysis tool EPANET, 

which was developed by the US Environmental Protection 

Agency (EPA), was utilized to evaluate the exact network 

performance of water distribution networks. The traditional 

EPANET program employs a demand-driven analysis 

(DDA)-based solver to calculate the nodal pressure. 

However, under unsteady state conditions, non physical 

values such as negative pressure can be measured at the 

water facility (edge or node). Therefore, in this study, 

EPANET-based MATLAB code that enables a hydraulic 

simulation of damaged networks with a pressure-based 

analysis (PDA) approach is implemented. 

 

2.2 Ground motion prediction equation 
 

An earthquake is a phenomenon in which the energy 

released between different faults is transmitted to the 
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ground surface. Various ground motions can be generated 

depending on the path of the seismic wave propagation, 

geotechnical environment, and local site characteristics. 

Thus, a mathematically simple expression called the ground 

motion prediction equation (GMPE) is utilized to consider 

these complex physical phenomena (Ambraseys et al. 

2005a, b, Boore et al. 2003, Joyner and Boore 1993). In 

general, ground motion can be expressed as the probability 

distribution of conditionally selected seismic intensity 

measures such as the peak ground acceleration (PGA), peak 

ground velocity (PGV), peak ground deformation (PGD) 

depending on the propagation paths or local site, and soil 
environments (Abrahamson and Youngs 1992, Esposito and 

Iervolino 2012, Goda and Hong 2008). 

In this study, the PGV seismic attenuation law proposed 

by Wang and Takada (2005) is utilized 
 

𝑙𝑜𝑔(𝑃𝐺𝑉𝑗)  =  0.725𝑀𝑖 + 0.00318𝐻 − 0.519 

                           −1.318 𝑙𝑜𝑔(𝑅𝑖𝑗 + 0.334𝑒0.653𝑀𝑖) 
(1) 

 

where 𝑃𝐺𝑉𝑗 represents the mean velocity (m/s) at the j-th 

site, 𝑀𝑖 is the earthquake magnitude at the epicenter, 𝐻 is 

the length of the focal depth (km), and 𝑅𝑖𝑗 is the distance 

between the epicenter and the j-th site. 

To represent the uncertainty of the generated ground 

motion, the spatial correlation terms (inter-events and intra- 

events) of the ground motion intensity are also considered. 

Inter- and intra-events represent the uncertainty of the 

ground motion caused by the intrinsic characteristics of the 

seismic waves, and seismic wave propagation paths and soil 

conditions, respectively. This is expressed as the following 

equation (Sokolov et al. 2010, Wagener et al. 2016) 
 

𝜌𝑇𝑜𝑡𝑎𝑙 =
𝜎𝜂

2

𝜎𝜂
2 + 𝜎𝜀

2
+

𝜎𝜀
2

𝜎𝜂
2 + 𝜎𝜀

2
𝜌(𝛥𝑖𝑗) (2) 

 

where 𝜎𝜂
2 and 𝜎𝜀

2 represent the predefined residual terms 

of inter- and intra-events, and 𝜌(𝛥𝑖𝑗) represents the spatial 

correlation of the ground motion intensity. In this study, the 

following spatial correlation equation proposed by Goda 

and Hong (2008) was adopted 
 

𝜌(𝛥𝑖𝑗) =  𝑒(−0.509√∆) (3) 
 

where 𝛥𝑖𝑗 indicates the distance between the i-th site and j-

th site. 
 

2.3 Seismic vulnerability analysis 
 

Once the magnitude of the ground motion is determined, 

the failure and leakage probability of the pipeline should be 

evaluated. According to Hazus-MH (FEMA 2003), PGV is 

known as a suitable parameter for damage caused by strong 

ground movement, while PGD is known to be suitable for 

damage from landslides, ground settlement, and 

liquefaction. 

The failure probability of a pipeline is modeled with the 

repair rate (number of breaks or leakages per unit length of 

the pipeline) and is proposed in various equation forms 

based on empirical seismic data. In this study, the equation 

proposed by O’Rourke and Ayala (1993) was adopted. In 

addition, modification factors according to the 

characteristics of the pipes (diameter, materials, soil 

conditions, etc.) proposed by Isoyama et al. (2000) are 

reflected, and the survival function proposed by Park et al. 

(2010) is utilized to evaluate the deterioration of the 

pipeline performance against an earthquake, which is 

represented by the following equation (Yoon et al. 2018) 
 

𝑟𝑒𝑝𝑎𝑖𝑟 𝑟𝑎𝑡𝑒 (𝑅𝑅𝑖)  =  
1

𝑆(𝑡)
𝐶1𝐶2𝜅(𝑃𝐺𝑉𝑖)

𝜏 (4) 

 

where 𝑆(𝑡) is the survival probability of the i-th pipeline 

after being buried for t hours, 𝐶1  represents the 

modification factor according to the material of the 

pipeline, 𝐶2 represents the modification factor according to 

the diameter of the pipe, and 𝜅 and 𝜏 are the scaling and 

exponent parameters, respectively. 

Using the proposed repair rate (RR), the failure 

probability of a buried pipeline can be represented by the 

following equation 
 

𝑃𝑏𝑟𝑒𝑎𝑘,𝑖  =  1 − 𝑒−𝑅𝑅𝑖𝐿𝑖 (5) 
 

where 𝑃𝑏𝑟𝑒𝑎𝑘,𝑖  and 𝐿𝑖  are the breakage probability and 

length of the i-th pipe, respectively. In addition, the leakage 

failure probability proposed by Okumura and Shinozuka 

(1991) was introduced to consider the leakage state. In their 

research, the leakage failure probability of a pipeline is 

assumed to be five times the breakage failure probability 
 

𝑃𝑙𝑒𝑎𝑘,𝑖  =  5 × 𝑃𝑏𝑟𝑒𝑎𝑘,𝑖 (6) 
 

2.4 Numerical modeling of network structure 
 

For the numerical modeling of buried pipelines, damage 

states can be classified into three types: breakage, leakage, 

and intact pipe. In this study, the broad method proposed by 

Hwang et al. (1998) was adopted to evaluate the 

performance of a pipeline network. In the EPANET 

program, the emitter function is used to represent the 

leakage and breakage in the pipeline, and the discharge flow 

can be calculated based on the emitter coefficient, which is 

expressed as the following equation 
 

𝑄𝑑𝑖𝑠,𝑖  =  𝐶𝑝𝑖
𝛾 (7) 

 

where 𝑝𝑖 represents the nodal pressure of the i-th damaged 

pipeline, and 𝐶  and 𝛾  represent the emitter coefficient 

and exponent, respectively. According to a study conducted 

by Puchovsky (1999), the sprinkler model well predicts the 

discharge flow when 𝛾 is 0.5. In addition, when the above 

formula is substituted into the orifice formula, the emitter 

coefficient can be calculated by the following formula 
 

𝐶 = 𝐶0𝐴√2𝑔 (8) 
 

where 𝐶0 represents the flow coefficient (empirically, 0.64 

is utilized), 𝐴 represents the cross-sectional area of the 

damaged pipeline, and 𝑔 is the gravitational acceleration. 

In general, the area of breakage in the pipeline is assumed 

to be 20% of the entire area, and the area of leakage in the 

pipeline is assumed to be 3% of  the entire area 
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(Farahmandfar and Piratla 2017). 

The hydraulic analysis process consists of calculating 

the discharge flow (hydraulic analysis I) and calculating the 

available nodal pressure (hydraulic analysis II). Fig. 1 

shows a numerical modeling technique for calculating the 

discharge flow rate. First, when a pipeline with breakage or 

leakage is determined by seismic analysis, the discharge 

flow rate 𝑄𝑑𝑖𝑠,𝑖 of the i-th pipeline can be estimated by 

hydraulic analysis I. Once a leak or breakage flow is 

calculated, it is applied in EPANET by updating it to the 

base demand 𝑄𝑏𝑎𝑠𝑒,𝑖 of the front node in the flow path. 

Then, the pipeline is closed if there is a breakage in the 

pipeline. Through the proposed hydraulic modeling process, 

the discharge flow of a damaged pipeline is considered as a 

nodal demand, and the extent of damage is controlled by the 

emitter coefficient. 

Hydraulic analysis II is an analysis phase to evaluate the 

performance of a damaged network. In the network 

analysis, the performance of a node is evaluated by the 

pressure, and the desirable pressure for the required demand 

is expressed using the following equation (Gupta and Bhave 

1996) 

𝑃𝑑𝑒𝑠,𝑖 = 𝑃𝑚𝑖𝑛,𝑖 + 𝑅𝑖(𝑄𝑟𝑒𝑞,𝑖)
𝑚 (9) 

 

where 𝑃𝑚𝑖𝑛,𝑖 indicates the minimum nodal pressure of the 

entire network (15 m is utilized in this study), 𝑅𝑖 is the 

resistance coefficient (0.1 is utilized), and 𝑚  is the 

exponent coefficient (2 is utilized). 

The performance of a damaged network can be 

evaluated by employing the head-outflow relationship 

(HOR), which represents the relationship between the nodal 

serviceability and available nodal pressure. In this study, the 

HOR equation proposed by Wagner et al. (1988) is adopted 

to estimate the nodal serviceability of the i-th node (𝑁𝑆𝑖) 

according to the available pressure, which is expressed as 

follows 
 

𝑁𝑆𝑖 = {

0       

(
𝑃𝑎𝑣𝑙,𝑖 − 𝑃𝑚𝑖𝑛,𝑖

𝑃𝑑𝑒𝑠,𝑖 − 𝑃𝑚𝑖𝑛,𝑖

)
1

𝑛⁄

1 

 

𝑖𝑓 𝑃𝑎𝑣𝑙,𝑖 < 𝑃𝑚𝑖𝑛,𝑖

𝑖𝑓 𝑃𝑚𝑖𝑛,𝑖 < 𝑃𝑎𝑣𝑙,𝑖 < 𝑃𝑑𝑒𝑠,𝑖

𝑖𝑓 𝑃𝑎𝑣𝑙,𝑖 > 𝑃𝑑𝑒𝑠,𝑖

 (10) 

 

𝑄𝑎𝑣𝑙,𝑖 = 𝑄𝑟𝑒𝑞,𝑖 × 𝑁𝑆𝑖 (11) 
 

where n denotes the serviceability coefficient (2 is utilized), 

𝑃𝑎𝑣𝑙,𝑖 denotes the available nodal pressure of the i-th node, 

𝑁𝑆𝑖  represents the nodal serviceability of the i-th node 

according to 𝑃𝑎𝑣𝑙,𝑖 , and 𝑄𝑎𝑣𝑙,𝑖  represents the available 

nodal demand of the i-th node according to the nodal 

serviceability. 

 

 

2.5 Performance indicator 
 

When the available nodal demand is calculated across 

the network through the hydraulic analysis phase, the 

network performance can be predicted at the system level. 

Various approaches can be adopted to evaluate the network 

performance depending on the network analysis (i.e., 

connectivity or flow analysis). In particular, different 

performance indicators are available depending on the size, 

type, and topology of the network. Therefore, it is important 

to define appropriate performance indicators that can reflect 

the flow characteristics of the water distribution network. 

In this study, the performance indicator utilized was the 

system serviceability index (𝑆𝑠) proposed by Wang et al. 

(2010). 𝑆𝑠 can be expressed as the ratio of the required 

nodal demand of the sink node before the earthquake and 

the available nodal demand after the earthquake 
 

𝑆𝑆 =
∑ 𝑄𝑎𝑣𝑙,𝑖

𝑛
𝑖=1

∑ 𝑄𝑟𝑒𝑞,𝑖
𝑛
𝑖=1

 (12) 

 

where n is the total number of sink nodes. 
 

 

3. Surrogate model for accelerated Monte Carlo 
analysis of system reliability 
 

3.1 Conventional Monte Carlo simulation 
framework for direct calculation 

 

Fig. 2 shows the conventional MCS framework for the 

performance evaluation of water distribution networks. An 

EPANET input file must be generated based on GIS data to 

perform direct calculations using MCS. When the network 

map is reconstructed, the ground motion can be predicted 

with spatial correlation, and the failure probability of the 

network components can be evaluated. The failure 

probability of the network components is estimated by 

Hazus-MH, and the network states are determined by 

random sampling between 0 and 1. If the random number 

generated in each sampling is less than the probability of 

failure, then it is considered destroyed; otherwise, the 

condition is intact. 

If damaged network components are identified during 

the earthquake generation phase, it moves to the hydraulic 

analysis phase. Because damage to the pipeline cannot be 

simulated in the EPANET analysis, the hydraulic analysis is 

utilized to evaluate the discharge flow rate of the pipeline 

where breakages and leaks have occurred, and then the 

network is updated with the nodal demands of the front 

  

(a) Damaged pipeline (leakage or breakage) (b) Numerical modelling for hydraulic analysis 

Fig. 1 Numerical modeling scheme for damaged (leakage or breakage) pipeline structure (Yoon et al. 2020) 
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node. Hydraulic analysis I enables the numerical modeling 

of damaged pipelines under unsteady-state conditions, and 

the calculated 𝑄𝑟𝑒𝑞,𝑖  and 𝑃𝑑𝑒𝑠,𝑖  are moved to hydraulic 

analysis II. 

The phase of hydraulic analysis II is the performance 

assessment of the damaged water distribution network. 

When the available nodal pressures are estimated through 

hydraulic analysis II, the nodal serviceability is determined 

by comparing them with the desired nodal pressure 

calculated in the previous phase of hydraulic analysis I. 

This MCS framework enables the evaluation of the 

available nodal demands and system serviceability of the 

sink node at the i-th sampling. The hydraulic analysis 

performs iterative calculations until the network 

performance (𝑆𝑠) is within the convergence range or the 

MCS reaches 𝑁𝑚𝑎𝑥. 

 

3.2 Proposed ANN-based surrogate model 
 

ANN is an artificial intelligence technique that 

recognizes patterns of input and output data (hidden layers 

and neurons) and expresses the relationship between the 

input and output as a function through supervised learning. 

Because ANN technology is easy to use and has fast 

computation, various researchers have adopted the ANN 

technique in the engineering domain such as structural 

damage detection (Kim et al. 2008, Nguyen et al. 2019, Li 

et al. 2015), structural response prediction (Hakim and 

Razak 2014, Onat and Gul 2018, Shahbazi et al. 2014), 

structural control (Akin and Sahin 2017), and structural 

monitoring (Rizzo and Lanza 2006). In this study, an ANN-

based surrogate model was employed to accelerate the 

seismic performance evaluation of a water distribution 

network under seismic conditions. 

The MCS-based direct calculation introduced in Section 

3.1 requires a significant computation time due to hydraulic 

analyses (see Fig. 2). Therefore, this study aims to quickly 

predict the network performance of a water network 

through an ANN-based surrogate model. In particular, as 

lifeline structures such as waterworks are buried 

underground, the network structure remains constant for all 

systems. Therefore, even though it takes a few hours to 

build a surrogate model, it can be effectively and 

consistently utilized for excessively iterative systems such 

as optimization problems, seismic resilience estimation, and 

 

 

 

Fig. 3 Proposed framework for approximate system 

reliability with ANN-based surrogate model 

 

 

seismic risk analysis employing PSHA. 

The input data for water network performance 

prediction are k-dimensional network component states 

during earthquakes (0: damaged, 1: breakage, 2: leakage), 

and the output data is defined as system performance 

between 0 and 1. Fig. 3 shows the system reliability 

approximation framework using the ANN-based surrogate 

model. Unlike the conventional direct calculation method, 

the surrogate model method constructs a response function 

of the network performance to quickly calculate the system 

performance when the network conditions are determined. 

The proposed accelerated framework uses k-dimensional 

network states and the system serviceability to build 

predictive models, which can significantly reduce the 

excessive computation time due to hydraulic analyses. The 

ANN-based prediction model evaluates the network 

performance through a built-in surrogate model, which 

enables accelerate MCS over the traditional MCS 

framework. 

 

 

4. Numerical example 
 
4.1 Description of water distribution network 
 

To demonstrate the proposed ANN-based surrogate 

model, an actual water distribution network located in A 

 

Fig. 2 Conventional MCS framework for direct calculation of network performance 
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Fig. 4 Reconstructed network map of target water 

distribution network 

 

 

city, South Korea, was adopted. GIS source data was 

provided by the A-city waterworks headquarters, and the 

network map was reconstructed by post-processing the 

source data. 

The A-city water network supplies purified water from 

one source node to 66 sink nodes through 85 transmission 

nodes. The total length of the pipeline is 18.9 km, and the 

maximum water supply is 9800 𝑚3/𝑑𝑎𝑦 in an area of 6 

𝑘𝑚2. The diameter of the pipeline is distributed between 50 

and 400 mm (mainly 150–300 mm). The pipeline type 

consists of ductile cast iron pipes (DCIP), polyethylene 

pipes (PE), cast iron pipes (CIP), and polyvinyl chloride 

pipes (PVC). The deterioration of the pipeline was 

investigated as at 24.9 years after burial. Moreover, the 

elevation of the node was estimated using the Google Earth 

Pro and GIS data, and the elevation of the demonstrated 

target region was in the range of 19–34 m. Fig. 4 shows a 

reconstructed network map of the A-city water distribution 

network. 

 

4.2 Generation of training data 
 

In this section, a surrogate model constructed to predict 

the seismic performance of the target water network is 

presented. The epicenter for the generation of training data 

was selected using the location of a historical earthquake of 

magnitude 5.4 with a focal depth of 10 km (see Fig. 4). In 

addition, the magnitude of the earthquake was between 5.0 

and 7.5 with a uniform distribution. This was determined by 

random sampling, and the ANN surrogate model was 

trained using a total of 300,000 data items. Table 1 shows 

the ANN network configuration for the surrogate model. To 

avoid overfitting or underfitting the training and test data, 

10,000 sufficient epochs were used and the dataset was set 

at a ratio of 0.7: 0.15: 0.15 (training data: test data: 

validation data). In addition, a learning rate of 0.01, 

momentum constant of 0.9, and error tolerance of 0.0001 

were adopted to select the learning parameters. The selected 

parameters were determined through a trial procedure, and 

sufficient numbers of hidden layers and neurons were 

utilized to predict the solution of the 218-dimensional 

function. In this study, regarding the trade-off between 

Table 1 ANN properties for surrogate model 

Network dimensions 

(output) 
218 (1) 

Network type Feed-forward back propagation 

Training function 
Gradient descent with momentum and 

adaptive learning rate 

Adaption learning 

function 

Gradient descent with momentum weight 

and bias learning function 

Performance function Mean Squared Error (MSE) 

Number of layers 15 

Number of neurons 15 

Transfer function Tan-Sigmoid transfer function 
 

 

 

 

Fig. 5 Convergence of mean and variance of system 

serviceability according to number of samples 
 

 

 

Fig. 6 ANN training performance according to epoch 
 

 

MCS required to train ANN and the accuracy of ANN, 

MCS with 500 samples were utilized. Fig. 5 shows the 

mean and variance of the system services.  

Fig. 6 shows the training, test, and validation 

performance according to the epoch. In this study, an 

appropriate number of 10,000 epochs was selected to 

prevent the underfitting and overfitting of training data. As 

a result of network training, the correlation between the 

predicted and observed values was identified as follows: 

training data (0.9687), validation data (0.9865), test data 
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Table 2 Comparison of results between direct calculation 

method and ANN-based method 

Earthquake 

magnitude 

Direct calculation method ANN-based method 

𝑆𝑆 
Computation 

time (seconds) 
𝑆𝑆 

Computation 

time (seconds) 

5.0 0.9667 460s 0.9735 1.18s 

5.5 0.9346 475s 0.9279 1.21s 

6.0 0.8838 640s 0.8762 1.26s 

6.5 0.7768 650s 0.7689 1.29s 

7.0 0.4426 675s 0.4368 1.27s 

7.5 0.1742 740s 0.1681 1.27s 
 

 

 

(0.9677), and all data (0.9685). 

 

4.3 Performance prediction: Trained epicenter 
 

In this section, the performance estimation of trained 

epicenters conducted using trained surrogate models is 

presented. The location of the input earthquake was the 

same as that of the epicenter for generating training data, 

and six earthquake magnitudes were chosen: 5.0, 5.5, 6.0, 

6.5, 7.0, and 7.5. In addition, the results of the ANN-based 

prediction model (performance estimation and computation 

time) were compared with the results of the conventional 

MCS framework through direct calculation. 

Table 2 lists the network performance and computa-

tional time cost using the MCS framework results based on 

direct calculation and the ANN-based prediction model for 

10,000 samples. The performance of the network tends to 

decrease as the earthquake magnitude increases. In 

particular, 𝑆𝑠  decreases rapidly when the earthquake 

magnitude is larger than 6.5. This is consistent with seismic 

design standards, in which the water distribution network in 

South Korea was designed to withstand an earthquake 

magnitude of 5.7 to 6.4. In addition, the results of the direct 

calculation method and the ANN-based method are found to 

have a relative error within 0.3 to 3%. When the network 

performance exceeds 0.5, the relative error is found to be 

within 1%, but the relative error is more sensitive as 𝑆𝑠 

decreases below 0.4. For computation time costs, the direct 

calculation method requires a large computational time 

 

 

 

Table 3 Cumulative ratio of relative errors between direct 

calculation method and ANN-based method 

Relative error 1% 3% 5% 7% 10% 

Earthquake 

magnitude 

5.0 0.875 0.996 0.997 0.997 0.999 

5.5 0.857 0.966 0.974 0.988 0.996 

6.0 0.838 0.929 0.944 0.958 0.972 

6.5 0.814 0.915 0.924 0.948 0.974 

7.0 0.806 0.908 0.914 0.938 0.977 

7.5 0.754 0.862 0.897 0.929 0.972 
 

 

 

(more than 460 seconds) to perform 500 MCS for 

convergence due to hydraulic analyses, but for the surrogate 

model, the computation was completed in around 1.2 s 

using the built-in prediction function. 

Fig. 7 shows the convergence of network performance 

when the earthquake magnitude is 7.0 and 7.5. The solid 

line represents the mean network performance, and the 

dashed line represents the coefficient of variation (COV) of 

the network performance. As the number of samples 

increases, the network performance tends to converge. For 

an earthquake magnitude of 7.0, 𝑆𝑠 is evenly distributed 

from 0 to 1, so the convergence of network performance is 

proven only when a sufficient MCS number is obtained 

(more than 4000 samples). However, with an earthquake 

magnitude of 7.5, the network performance is distributed 

below 0.5. Thus, the network performance can be achieved 

with a small number of samples (more than 2500). 

Especially for COV, the network performance tends to 

converge faster at an earthquake magnitude of 7.5. 

Table 3 lists the cumulative ratio distribution of the 

relative errors for 𝑆𝑠 between the surrogate model and the 

direct calculation method. As the magnitude of an 

earthquake increases (decreases in 𝑆𝑠), the cumulative ratio 

of relative errors tends to decrease. In particular, if the 

magnitude of the earthquake is greater than 7.0, then the 

network performance will be significantly reduced, leading 

to an increase in the variation of the relative error. This can 

be attributed to a decrease in the absolute range of the 

relative error as the magnitude of the earthquake increases 

(a decrease in network performance). Moreover, it was 

confirmed that the cumulative ratio of the total number of 

samples gradually increased as the criterion of the relative 

error increased. 
 

  

Fig. 7 Convergence of network performance using direct calculation method and ANN-based method 
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Fig. 8 Location of test earthquake locations for the 

robustness of epicenters 
 

 

4.4 Performance prediction: Robustness of 
epicenters 

 

In Section 4.3, the surrogate model was tested on trained 

epicenters. However, the epicenter can be located 

depending on the distribution of faults. Therefore, this study 

aims to verify the surrogate model by selecting the 

epicenter location around A-city (near-fault). Fig. 8 shows 

the location of the test earthquake and the training epicenter 

for verification of the surrogate model. Six earthquake 

magnitudes between 5.0 and 7.5 were considered at each 

location. 

Table 4 compares the performance of the ANN-based 

and direct calculations according to the epicenter location 

and earthquake magnitude. The network performance 

estimates of the surrogate models were found to be within 

6% of the relative error compared with that of the direct 
 

 

Table 4 Comparison of results between direct calculation 

method and ANN-based method for different 

epicenters 

Test epicenter System serviceability (𝑆𝑆) 

Location 1 5.0 5.5 6.0 6.5 7.0 7.5 

ANN-based 0.9529 0.9272 0.8732 0.7611 0.5262 0.2307 

Direct calculation 0.9466 0.9176 0.8578 0.7461 0.5128 0.2175 

Relative error (%) 0.66 1.05 1.79 2.01 2.61 6.07 

Location 2 5.0 5.5 6.0 6.5 7.0 7.5 

ANN-based 0.9526 0.9084 0.8648 0.7293 0.4907 0.2171 

Direct calculation 0.9479 0.9161 0.8538 0.7460 0.4761 0.2057 

Relative error (%) 0.49 0.84 1.29 2.24 3.07 5.54 

Location 3 5.0 5.5 6.0 6.5 7.0 7.5 

ANN-based 0.9512 0.9142 0.8454 0.7293 0.5093 0.2223 

Direct calculation 0.9439 0.9206 0.8614 0.7432 0.4960 0.2113 

Relative error (%) 0.77 0.69 1.85 1.87 2.68 5.21 

Location 4 5.0 5.5 6.0 6.5 7.0 7.5 

ANN-based 0.9461 0.9349 0.8810 0.7670 0.5435 0.2338 

Direct calculation 0.9516 0.9263 0.8715 0.7778 0.5298 0.2246 

Relative error (%) 0.58 0.93 1.09 1.39 2.59 4.09 
 

calculation method. In particular, when the earthquake 

magnitude is less than 6.5, it can be confirmed that the 

relative error can be predicted within 2%. However, as the 

magnitude of the earthquake gradually increases, the 

relative error tends to increase. This is because 𝑆𝑠 

decreases as the magnitude of the earthquake increases, 

making it more sensitive to relative errors. The surrogate 

model also shows that the relative error increases because 

the network performance is more widely distributed 

between 0 and 1 when the earthquake magnitude is between 

approximately 6.5 and 7.0. 
 

 

5. Conclusions 
 

Conventional MCS-based direct calculation methods 

require excessive computation time due to iterative 

hydraulic analyses. In this study, an ANN-based surrogate 

model for accelerated MCS of the seismic performance 

estimation of water distribution networks was proposed. To 

train the surrogate model, the network component states (0: 

intact, 1: breakage, 2: leakage) and the performance 

indicator (system serviceability) were selected as input and 

output data, respectively. In the neural network, appropriate 

training parameters were selected through a trial procedure, 

and a deep neural network was set up to compute a large 

network of 218 dimensions with a sufficient number of 

hidden layers and neurons to avoid overfitting or 

underfitting. 

To evaluate the network performance (exact solution) of 

the training data, an EPANET-based hydraulic analysis was  

utilized and the PDA approach was employed to represent 

the network in an unsteady-state condition. In addition, 

EPANET-based MATLAB computer code was developed to 

enable PDA-based hydraulic analysis. To demonstrate the 

surrogate model, the water distribution network of A-city in 

South Korea was adopted, and the network map was 

reconstructed based on GIS data. The epicenter for training 

data was selected based on historical earthquake data, and 

the earthquake magnitude was determined by random 

sampling of earthquake magnitudes between 5.0 and 7.5 

with uniform distribution. 

To verify the constructed surrogate model, the epicenter 

was considered as the epicenter of the training data, and the 

results of the direct calculation method and the surrogate 

model were compared. The numerical results showed that 

𝑆𝑠 of the surrogate model was predicted within 3% of the 

relative error compared to the direct calculation method. 

For earthquakes above a magnitude of 7.0, the relative error 

was approximately 3%, while for earthquakes below a 

magnitude of 7.0, the relative error was less than 1%. This 

can be attributed to the fact that the relative error increases 

because the network performance decreases as the 

earthquake magnitude increases. For the computational time 

cost, the response function built by the surrogate model 

showed that the computation time was significantly reduced 

because there was no hydraulic analysis process. In 

addition, a numerical analysis was performed using four 

different historical earthquake data items to verify the 

robustness of the epicenter location of the surrogate model. 

The numerical results showed that the surrogate model 
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accurately predicts the network performance compared to 

traditional MCS-based direct computation methods and that 

the relative errors decrease as the network performance 

increases. Therefore, the proposed model can be used as a 

database for decision modeling to quickly determine the 

restoration priority of water supply facilities and to establish 

a recovery strategy through the spatially correlated ground 

motion included in the surrogate model 

So far, this paper mainly focuses on developing a new 

framework to construct a surrogate model for accelerated 

MCS of the seismic performance estimation of water 

distribution networks. For this reason, the ANN technique 

was applied for the sake of simplicity. The results showed 

that the surrogate model using the ANN model showed an 

accurate prediction of network performance that fared well 

as compared with conventional direct Monte Carlo analysis. 

In the future, specialized algorithms, such as a multi-view 

graph convolutional network, should be applied to 

efficiently handle the complex graph data of various lifeline 

facilities, such as water treatment plants, water storage 

tanks, and water pumping plants. 
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