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1. Introduction 

 

Recent seismic disasters, all over the world show the 

importance of controlling structures and preventing 

structural damage. Online system identification (SI) has a 

key role in controlling structures against environmental 

excitations, such as earthquakes and wind forces and one of 

the main objectives of structural health monitoring (SHM) 

is to detect damages in structures in real time. Therefore, 

online SI and structural health monitoring (SHM) have 

received considerable attention over the last decades and 

many methods have been introduced and presented. Chase 

et al. (2005a, b) used the adaptive RLS filtering technique 

and the adaptive least mean square filtering technique for 

identification of structural parameters. Also, Shih employed 

an on-line recursive least-squares (RLS) technique to 

identify the time-varying dynamic parameters of structures 

(Chu and Lo 2011). The two singular value decomposition 

(SVD) and QR decomposition techniques are commonly the 

most used methods in offline SI. They have been adopted 

for online SI by operating on moving time windows of fixed 

lengths: when a new data is observed, the subspace 

identification is updated (Loh et al. 2011). Also, recursive 

Bayesian filters are used by Azam et al. (Azam et al. 2017, 

Azam and Mariani 2018) to detect damage in real-time by 
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means of joint estimation of state and stiffness parameters. 

Adaptive Kalman filters have been widely applied for state 

estimation, parameter estimation and joint state-parameter 

estimation. These methods are classified as recursive 

methods and through updating structural state/parameter 

recursively can be applied for online system identification 

(Song et al. 2020). Machine learning algorithms have been 

also used to detect structural damages in recent years 

(Santos et al. 2016). Rageh et al. (2020) employed machine 

learning algorithms for damage detection in steel railway 

bridges. In their proposed algorithm Proper Orthogonal 

Decomposition (POD) and Artificial Neural Networks 

(ANNs) have been used to identify damage location and 

intensity under train loads. 

In recent decades, the output-only system identification 

methods (Ramazani and Bahar 2015, McNeill and 

Zimmerman 2008, Loh et al. 2012) such as blind source 

separation methods (BSS) (Sadhu et al. 2014, Nagarajaiah 

and Yang 2015) have received attention. The goal of BSS is 

recovering the sources from a mixture of output 

measurements without any prior information about the 

source signals or the mixing process. Among BSS methods, 

the independent component analysis (ICA) and the second-

order blind identification (SOBI) (Poncelet et al. 2007, 

Rainieri 2014) are most popular. 

Most of BSS algorithms are based on the assumption of 

the stationary excitation. However, some researchers effort 

to develop BSS methods for non-stationary excitations 

(Hazra et al. 2010, Abazarsa et al. 2016). Ghahari et al. 

(2017) demonstrated BSS method can be used for system 

identification when we deal with unknown and 
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performance of DESA-1 algorithm with Hilbert transform (HT) method. Compared to HT method, the DESA-1 method requires 
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nonstationary inputs. They use generalized eigen-

decomposition and rough-fuzzy c-means clustering 

techniques together for identifying the mode shapes. Non-

stationary data may vary frequency contents and lead to 

inaccurate separation. To overcome disadvantages caused 

by non-stationary excitations, Guo and Kareem (2016a) 

have proposed novel method based on Time-Frequency 

Blind Source Separation (TFBSS) using spatial time-

frequency distribution (STFD). 

Traditional BSS methods require batch data for the 

separation, so these algorithm aren’t proper for online 

problems when new samples are received one after another. 

Utilization of offline BSS methods for online problems 

wastes a good amount of time. As the size of relevant 

matrices and vectors increases with the number of given 

data, so does the analysis time (Amini and Ghasemi 2018). 

To overcome these disadvantage online BSS methods have 

been introduced for separation. 

Jutten and Herault (1991) initially proposed an adaptive 

BSS, followed by another method based on neural network 

architecture (Sorouchyari 1991). Cardoso and Laheld 

(1996) used the ‘relative gradient’ adaptive algorithm based 

on serial updating to update the separating matrix in each 

step when a new sample is received. The proposed adaptive 

algorithm is called equivariant adaptive separation via 

independence (EASI). Dependence of the convergence on 

source statistics (Jutten and Herault 1991, Comon 1989) 

and complexities of analysis (Comon 1989, Lagunas 

Hernandez 1994) are two main drawbacks of the EASI 

algorithm. 

A novel method was introduced by Zarzoso and Nandi 

(2000) to overcome these disadvantages. Also, different 

adaptive BSS methods to improve the available algorithms 

were developed by some researchers (Samadi et al. 2004). 

Reference (Ye and Jin 2009) proposed an optimized EASI 

algorithm to increase the convergence speed. In Ref. (Amini 

and Ghasemi 2018) EASI algorithm has been applied for 

structural systems. For each time step, the modal matrix and 

modal coordinates of the structure are extracted using the 

EASI algorithm, based only on structural output responses 

received online. In this paper, the DESA-1algorihtm is 

combined with the EASI algorithm to apply on modal 

coordinates for identifying modal parameters in real time. 

There are some methods for frequency estimation. The 

well-known methods are the short time Fourier 

transformation (STFT) (Guo and Kareem 2016b) and 

Hilbert transform (HT) (Feldman 2011). As 

disadvantageous fact, both methods lead to a bad resolution. 

Because of the limited observation length of the signal 

instead of mentioned methods other approaches are utilized 

to determine the instantaneous frequency. 

One of the main approaches in order to obtain the 

instantaneous frequency and amplitude of real-valued 

signals is to use Energy Separation Algorithm (Maragos et 

al. 1993, Liang and Bozchalooi 2010). This method is based 

on the nonlinear differential Teager Energy Operator (TEO) 

(Kaiser 1990). The length of the computing window is 

small in the Teager Energy Operator (TEO) so it is suitable 

for real-time and online problems. At first, TEO developed 

for a speech production modeling. Then, Maragos 

introduced a discrete energy separation algorithm (DESA-1) 

based on TEO to provide instantaneous frequencies and 

amplitudes of signals. The DESA-1 separates a signal into 

its amplitude modulating (AM) and frequency modulating 

(FM) components. TEO and DESA-1 have been used in 

signal processing for demodulation (Dimitriadis and 

Maragos 2006). Recently, TEO has been applied in fault 

detection (Sadhu et al. 2016, Azergui et al. 2018), SHM and 

damage detection (Cao et al. 2014, Ulriksen and Damkilde 

2016). 

In this paper, the Teager energy operator demodulation 

method and EASI method are combined for online modal 

identification of the structures. The conjunction of these 

two methods is called EASI-Teager approach. In the 

beginning, the EASI algorithm is applied to structural 

output responses which are received online in order to 

extract modal matrix and modal coordinates. In free 

vibration case, the extracted modal coordinates are 

sinusoidal signals and parameter estimation is easy. But for 

forced vibration, the extracted modal coordinates don’t 

follow sinusoidal form; this issue makes identification very 

difficult. To overcome this problem, natural excitation 

technique (NExT) is proposed. This technique developed by 

James et al. (1993) to obtain signals with the same 

characteristics as free response data from ambient vibration. 

Then the instantaneous frequencies and damping ratios 

are estimated from information hidden in the modal 

coordinates by using DESA-1 algorithm. The performance 

of DESA-1 algorithm is compared with HT method. The 

results shows the DESA-1 has high resolution, smaller 

computational complexity and faster adaption due to 

instantaneous nature. 

In addition, according to the results. Main disadvantage 

of the DESA-1 algorithm is its sensitivity to presence of 

noise and outliers due to high resolution. Depending on the 

amount of noise, it may deteriorate the DESA-1 efficiency. 

Consequently, in order to achieve accurate results, median 

filter is used to remove outliers from the data. 

The efficacy of the mentioned algorithm is investigated 

utilizing synthetic example simulation studies. The phase I 

IASC-ASCE benchmark building is used for verification of 

this method as well. Results show that the EASI-Teager 

algorithm is efficient and proper for online structural 

identification. In this study, in spite of the fact that, in 

numerical simulations and benchmark, the responses are 

batch, but in order to simulate online identification, it is 

assumed new data is recorded for each time so it is used one 

by one. 

The reminder of this paper is organized as follows: In 

section 2, the problem statement is presented. The EASI 

and DESA-1 algorithms are formulated for structural 

identification in sections 3 and 4, respectively. Comparison 

between DESA-1 and HT methods are performed in section 

5. In section 6, the robustness of proposed algorithm with 

respect to noise and outliers are investigated. The proposed 

EASI-Teager method is presented in section 7. Numerical 

simulation of (2-DOF) shear-beam building for evaluating 

the performance of the proposed method is described in 

section 8. In section 9, the performance of the proposed 

method is addressed using the phase I IASC-ASCE 
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benchmark building. Finally, section 10 concludes the 

paper. 

 

 

2. Formulation for proposed approach 
 

For a linear and lumped-mass n-degree-of-freedom (n-

DOF) structural system under an excitation force vector 

𝐟(𝑡), the governing differential equations can be written as 

Eq. (1). 

𝐌�̈�(𝑡) + 𝐂�̇�(𝑡) + 𝐊𝐱(𝑡) = 𝐟(𝑡) (1) 

 

Where M, C and K are symmetric mass, damping and 

stiffness matrices, respectively. 𝐱(𝑡), �̇�(𝑡) and �̈�(𝑡) are 

the displacement, velocity and acceleration vectors, 

respectively. For proportionally damped systems, the 

displacement responses can be expressed in modal space as 

Eq. (2). 

x = Φq (2) 

 

Where 𝚽 ∈ ℝ𝑛×𝑛 and 𝐪 ∈ ℝ𝑛×1 are the modal matrix 

and modal coordinate vector respectively. For stationary 

white noise excitations the 𝑞𝑗(𝑡)  modal coordinate is 

expressed as Eq. (3). 
 

𝑞𝑗(𝑡) = 𝛼𝑗𝑒𝜁𝑗𝜔𝑗𝑡 sin(𝜔𝑑𝑗𝑡 + 𝜃𝑗) , 

𝜔𝑑𝑗 = 𝜔𝑗(1 − 𝜁𝑗
2)1 2⁄  

(3) 

 

Where 𝜁𝑗 , 𝜔𝑗 , 𝜔𝑑𝑗 , 𝜃𝑗  and 𝛼𝑗  are damping ratio, 

natural modal frequency, damped modal frequency, phase 

lag and constant parameter, respectively.  

 

 

3. Adaptive blind source separation and EASI 
algorithm 
 

Blind source separation (BSS) consists in separating the 

source signals from observed linear mixtures without 

resorting to any a priori information about mixing matrix. 

The BSS model is formulated as Eq. (4). 

 

𝐱(𝑡) = 𝐀𝐬(𝑡) (4) 

 

Where 𝐱(𝑡) = [𝑥1(𝑡), 𝑥2(𝑡), … , 𝑥𝑚(𝑡)] 𝑇 ∈ ℝ𝑚  is a 

vector of measured signals, 𝐀 ∈ ℝ𝑚×𝑛  is an unknown 

mixing matrix and 𝐬(𝑡) = [𝑠1(𝑡), 𝑠2(𝑡), … , 𝑠𝑛(𝑡)] 𝑇 ∈ ℝ𝑛 

is a source vector. When the modal coordinates are mutually 

uncorrelated, they can be considered as independent sources 

and subsequently the modal identification of structures lies 

within the framework of BSS problem. 

In online problems, due to a lack of whole complete 

response signals, adaptive methods are used. The schematic 

illustration of an adaptive BSS is shown in Fig. 1 (Cardoso 

and Laheld 1996). 

In adaptive source separation, the separating matrix 𝐁𝑡 

is a time-varying matrix that is updated each time. One of 

the most useful iterative techniques for BSS is the 

Equivariant Adaptive Separation via Independence (EASI) 

which uses “serial updating” technique (Cardoso and 

Laheld 1996) for updating 𝐁𝑡 according to Eq. (5). 

 

Fig. 1 Schematic illustration of an adaptive BSS 

 

 

𝐁𝑡+1 = 𝐁𝑡 − 𝜆𝑡𝐻(𝐲𝑡)𝐁𝑡 (5) 
 

Where, 𝐲𝑡  is the output of 𝐁𝑡 , function 𝐻(𝐲𝑡)  is 

determined such that 𝐲 → 𝐻(𝐲) and 𝜆𝑡 is a sequence of 

positive adaption steps. Essential assumptions used in the 

EASI algorithm are described below: 
 

a: Matrix 𝐀 is full rank with 𝑛 ≤ 𝑚. 

b: Each component of 𝐬𝑡 is a stationary zero mean 

process. 

c: At each t, 𝐬𝑡 components are mutually statistically 

independent. 

d: 𝐬𝑡 components have unit variance. 
 

When the data is transformed to new data with 

uncorrelated components that equal unity in their variances 

it is said the new data is white and the transform matrix is 

called whitening matrix. The batch algorithms of BSS have 

two main stages as follows: determining of whitening 

matrix 𝐖  and applying to the data, computing the 

orthogonal matrix U and applying to whited data and finally 

the separating matrix B is achieved as the product B = UW. 

In the EASI algorithm, “relative gradient” technique is 

used to update a matrix 𝐖 such that 𝐖𝐑𝐗𝐖 converge to 

unit matrix. Where 𝐑𝐱 is the covariance matrix of x. A 

serial update whitening algorithm is obtained as Eq. (6). 
 

𝐖𝑡+1 ≝ 𝐖𝑡 − 𝜆𝑡[𝐳𝑡𝐳𝑡
𝑇]𝐖𝑡 (6) 

 

Where 𝐳𝑡 is whited data and 𝐖𝑡 is whitening matrix 

in time t. 

Then orthogonal matrix U is update such that the 

contrast function is minimized. A serial updating of 

orthogonal matrix U is obtained as Eq. (7) 
 

𝐔𝒕+𝟏 ≝ 𝐔𝒕 − 𝝀𝒕[𝑯(𝐲𝒕) − 𝑯(𝐲𝒕)𝑻]𝐔𝒕 (7) 
 

The function 𝐻(𝐲𝑡) can be considered as follows 
 

𝑯(𝐲) = 𝒈(𝐲)𝐲𝑻 − 𝐲𝒈(𝐲)𝑻 (8) 
 

Where 𝑔(𝐲) = [𝑔1(𝑦1), … , 𝑔𝑛(𝑦𝑛)]𝑇  is component-

wise arbitrary nonlinear function. According to Eq. (5) and 

Eq. (8), EASI algorithm for Adaptive Source Separation is 

obtained as Eq. (9). 
 

𝐁𝑡+1 = 𝐁𝑡 − 𝜆𝑡[𝐲𝑡𝐲𝑡
𝑇 − 𝐈 + 𝑔(𝐲𝑡)𝐲𝑡

𝑇 − 𝐲𝑡𝑔(𝐲𝑡)𝑇]𝐁𝑡 (9) 

 

 

4. Discrete energy separation algorithm 
 
In this section, the discrete time Energy Separation 

Algorithm (DESA-1) (Maragos et al. 1993) is introduced to 
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online estimation of modal parameters. This algorithm is 

based on the Teager energy operator (TEO), which was 

derived by Kaiser in 1990 to measure the energy of the 

mechanical process. The TEO for continuous time signal 

s(𝑡) is 

𝛹[𝑠(𝑡)] = [�̇�(𝑡)]2 − 𝑠(𝑡)�̈�(𝑡) (10) 

 

Where �̇�(𝑡) and �̈�(𝑡) are first and second derivatives 

of signal, respectively. 𝛹[. ]  denotes the Teager energy 

operator. For a discrete scheme, the TEO is defined as 

follows 

𝛹[𝑠𝑛] = 𝑠𝑛
2 − 𝑠𝑛−1. 𝑠𝑛+1 (11) 

 

As shown in Eq. (11), only three samples are required 

for the energy computation at each time instant. Thus, the 

response of the TEO is fast and approximately 

instantaneous. Also, this issue makes it a high resolution 

energy estimator. The basic assumption in the DESA-1 

algorithm is the positivity of the energy operator outputs. 

Consider a signal with variable amplitude and variable 

frequency, given by the following 

 

𝑠𝑛 = 𝜌𝑛𝑐𝑜𝑠 (𝛺𝑛𝑛 + 𝜃) (12) 

 

Where 𝜌𝑛 is the amplitude, 𝛺𝑛 and 𝜃 are the digital 

frequency and arbitrary initial phase, respectively. Also, n is 

the temporal sampling point. 

In Ref. (Maragos et al. 1993), an alternative approach to 

estimate the amplitude, 𝜌𝑛 , and frequency, 𝛺𝑛 , of 

amplitude modulation and frequency modulation (AM-FM) 

signals is developed which is called DESA-1 algorithm. In 

this algorithm, the energy operator is applied on signal then 

separated into two parts, amplitude and frequency, by using 

energy separation algorithm (ESA). The amplitude and 

frequency based on DESA-1 algorithm are obtained by 

equations below. 
 

∆𝑠𝑛 = 𝑠𝑛 − 𝑠𝑛−1 (13) 

 

𝜌𝑛 ≅ √
𝛹[𝑠𝑛]

1 −
𝛹[∆𝑠𝑛]+𝛹[∆𝑠𝑛+1]

4𝛹[𝑠𝑛]

 (14) 

 

𝛺𝑛 ≅ 𝑐𝑜𝑠−1(1 −
𝛹[∆𝑠𝑛] + 𝛹[∆𝑠𝑛+1]

4𝛹[𝑠𝑛]
) (15) 

 

The algorithm allows estimating the parameters of 

periodic signals with a frequency not exceeding the Nyquist 

frequency. An exponentially damped sinusoidal signal is a 

special case of an AM signal. In structural systems, as 

shown in Eq. (3) we almost deal with signals, that its 

amplitudes decay exponentially with time and frequencies 

are constant as expressed in Eq. (16). 

 

𝑠𝑛
𝑑 = 𝑒−𝜁Ω𝑛𝜌 cos(Ω𝑑𝑛 + 𝜃) ;      Ω𝑑 = Ω√1 − 𝜁2 (16) 

 

Ω𝑑 is damped digital frequency. As stated in (Kaiser 

1993), for constant scalar 𝑏  and arbitrary functions ℎ𝑛 

and 𝑘𝑛, these energy functions are obtained. 

𝛹[𝑒−𝑏𝑛] = 0 (17) 

 

𝛹[𝑘𝑛ℎ𝑛] = 𝑘𝑛
2𝛹[ℎ𝑛] + ℎ𝑛

2𝛹[𝑘𝑛] − 𝛹[𝑘𝑛]𝛹[ℎ𝑛] (18) 

 

Using the above mentioned equations and Eq. (16), one 

can calculate the Teager energy for signal as follows: For 

clarification 

 

𝛹[𝑠𝑛
𝑑] = 𝑒−2𝜁𝛺𝑛𝛹[𝜌cos (𝛺𝑑𝑛 + 𝜃)] (19) 

 

For constant 𝜌 and 𝛺, the Teager energy for cosine 

signal (Maragos et al. 1993) is given by Eq. (20). 

 

𝛹[𝜌 𝑐𝑜𝑠(𝛺𝑛 + 𝜃)] = 𝜌2𝑠𝑖𝑛2[𝛺] (20) 

 

Thus, Eq. (19) can be rewritten as Eq. (21). 

  

𝛹[𝑠𝑛
𝑑] = 𝑒−2𝜁𝛺𝑛𝜌2sin2[𝛺𝑑] (21) 

 

Therefore, the damping coefficient can be determined 

by Eq. (22). 
 

𝜁 =
1

2𝛺
𝑙𝑛 (

𝛹[𝑠𝑛−1
𝑑 ]

𝛹[𝑠𝑛
𝑑]

)  𝑜𝑟  𝜁 =
1

𝛺
𝑙𝑛 (

𝜌𝑛−1

𝜌𝑛
) (22) 

 

As a sequence, Eq. (15) and Eq. (22) provide the 

objective of the modal identification. 
 

 

5. Comparison between HT and DESA-1 methods 
 

In this section, classical estimator of the instantaneous 

frequency, Hilbert transform (HT), has been compared to a 

modern instantaneous frequency estimator, DESA-1 

method. The comparison is performed from viewpoints: 

magnitude of estimation error, resolution, computational 

complexity and adaptability to instantaneous signal 

changes. To clarify these comparisons, an example of 

damped cosine signal is used in Eq. (23). 

 

𝑥(𝑡) = 𝑒−(0.01∗0.7071)𝑡 cos(0.7071𝑡 − 0.01) (23) 

 

For simulations, the time step and total times are 

considered 0.1 and 100 seconds, respectively. 
 

5.1 Resolution 
 

The DESA-1 algorithm needs constant 5 points for 

estimation, so has high resolution. Fig. 2 illustrates the 

number of points needed for HT method to correctly 

estimate the parameters. As seen, the HT method requires at 

least 120 points for accurate estimation. Therefore, 

compared to the DESA-1 algorithm, the HT has less 

resolution. 
 

5.2 Accuracy 
 

For investigation of accuracy of the DESA-1 and HT 

methods, Magnitude of estimation error for two methods is 

compared. The normalized mean square error (NMSE) of 

estimation for the two methods with respect to the length of 
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Fig. 2 Error of frequency and damping ratio estimation by 

HT method with respect to length of window for 

SDOF system 

 

 

Table 1 Accuracy of the identification using HT and 

DESA-1 methods 

Window 

Length 
HT DESA-1 

NMSE of 𝜔 NMSE of 𝜁 NMSE of 𝜔 NMSE of 𝜁 

𝐿 = 100 0.0142 29.0215 0.0000 0.0000 

𝐿 = 120 0.0027 5.0031 0.0000 0.0000 

𝐿 = 150 7.55 ∗ 10−5 0.0188 0.0000 0.0000 

𝐿 = 300 6.36 ∗ 10−7 5.93 ∗ 10−5 0.0000 0.0000 

𝐿 = 500 2.69 ∗ 10−9 1.11 ∗ 10−5 0.0000 0.0000 
 

 

 

window for HT is presented in Table 1. The window and 

overlap lengths are denoted by 𝑊𝐿  and 𝑝 = 𝑊𝐿  − 1 , 

respectively. 

From results, the HT method has good result for length 

of window greater than 150 points. 

 

5.3 Adaptability 
 

To target this issue, it is assumed in seconds 50, the 

signal specifications change and signal is given by the 

following equations 

 

{
𝑥(𝑡) = 𝑒−(0.01∗0.7071)𝑡 cos(0.7071𝑡 − 0.01)      

𝑥(𝑡) = 𝑒−(0.03∗0.6325)𝑡 cos(0.6322𝑡 + 0.8336)
 

𝑡 ≤ 50
𝑡 > 50

 (24) 

 

AS shown in Fig. 3, due to system specification changes 

in seconds 50, the Teager energy of signal has been 

changed. It is clear; the DESA-1 is highly adaptable due to 

its high resolution. 

 

5.4 Computational complexity 
 

In Table 2, the computational complexity of HT and 

DESA-1 methods and the number of consecutive discrete 

signal samples to estimate the instantaneous frequency are 

presented. (The estimation of damping ratio is not 

included). 

From Table 2, it is clear; the DESA-1 algorithm has 

smallest computational complexity and uses a smaller 

 

Fig. 3 Adaptability of DESA-1 and HT methods 

 

 

Table 2 Computational complexity of HT and DESA-1 

methods 

Estimation Method Add/sub Mul/Div arccos (. ) √(. ) 𝑊𝐿 

Frequency 
HT N+4 N+5 0 0 N 

DESA-1 5 6 1 0 5 
 

 

 

number of samples compared to HT. In the following 

section, the effects of noise and outliers are investigated. 
 

 

6. Robustness with respect to presence of noise 
and outliers 
 

6.1 Effect of noise 
 

In practical applications, output responses are always 

corrupted by noise. So it is important to see how well the 

DESA-1 performs in noisy environments. The basic 

assumption in the DESA-1 algorithm is that the operator 

outputs are always positive. In the absence of noise, the 

condition for the positivity of the operator outputs for pure 

sinusoidal inputs is established and the instantaneous 

property is also guaranteed. Noise has a severe impact on 

the performance of the DESA-1, mainly owning to the 

small number of samples used to estimate. Depending on 

the amount of noise, it may invalidate positivity of energy 

operator output and deteriorate the DESA-1 efficiency. This 

problem is investigated in the example introduced in Sec. 5. 

Fig. 4 shows for SNR < 20 dB Teager energy of signal 

becomes negative and the basic condition of the DESA-1 

algorithm is not established. 

 

6.2 Effect of outliers 
 

An outlier is any value that is numerically distant from 

the rest of the data. The outliers can lead to inaccurate data 

processing and system identification. The Ref. (Amini and 

Ghasemi 2018) has investigated the effect of outliers on 
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Fig. 4 Outputs of Teager energy operator for the signal and 

its derivative with respect to noises 
 

 

 

Fig. 5 Outputs of Teager energy operator for the signal and 

its derivative with respect to outliers. (𝑎) shows the 

signal corrupted with outliers, (𝑏) and (𝑐) show 

Teager energy of signal and Teager energy of signal 

derivative, respectively 
 

 

ESAI algorithm. It is found, the EASI algorithm is sensitive 

to presence of outliers. 

In the DESA-1 algorithm, the outliers have same effect 

like noises and deteriorate the algorithm mainly due to the 

differentiators working over a very short time window. To 

investigate this issue, it is assumed that the signal 

introduced in the previous section is corrupted with outliers. 

The following data are added to the signal as outliers 
[(210, −2), (400, −4), (560,6), (800,8)] . First pair and 

second pair of added data represent the time and magnitude 

of outliers, respectively. 

As shown in Fig. 5, at the points where there is an 

outlier, outputs of TEO for signal or its derivative become 

negative and the performance of the DESA-1 deteriorates. 

 

 

Therefore, the DESA-1 algorithm is sensitive to outliers. 

Because of EASI and DESA-1 algorithms’ sensitivity to 

outlier presence, it is necessary to remove the outliers 

before separation. A good solution to remove outliers is to 

use median filter as pre-processing step. Median filter 

reduces the noise and outliers effectively. In this paper, 

three-point median filter is used to pre-process the separate 

and estimate. 

 

 

7. Proposed method 
 

This study combines the advantages of both EASI, 

which can perform signal source separation, and TEO 

(DESA-1), proposing a structural identification EASI-

Teager method. The main steps of proposed method are 

illustrated in Fig. 6. 

 

 

8. Simulation study 
 

For the object of evaluating the performance of the 

proposed method, numerical simulations are performed on a 

simple shear building model with two story. For 

convenience, the damping is assumed to be mass 

proportional, see Fig. 7. The effectiveness investigation is 

carried out in two main stages. Firstly modal shapes and 

modal coordinates are extracted by EASI algorithm then 

modal parameters are estimated by DESA-1 from outputs of 

EASI. 

The equations of motion for this system follow Eq. (1). 

It is assumed that 𝑚1 = 1 𝐾𝑔, 𝑚2 = 2 𝐾𝑔 and 𝑘1 = 𝑘2 =
1 𝑁/𝑚. Also, similar damping ratio for all modes equal one 

percent is considered for simulation. The natural 

frequencies for mentioned building are 𝜔 =
[1.3066, 0.5412].  For free vibration, the initial 

displacements and velocities are considered 𝐱(0) = [1, 0]𝑇 

and 𝐯(0) = [0, 0]𝑇 , respectively. The displacements are 

corrupted by outliers. For forced vibration, Gaussian white 

noise is applied to each floor as random excitation. The 

time step in the simulation is 0.1 seconds, and a total time 

of 197 seconds is considered. 

Obtained mode shapes are compared using a correlation 

coefficient known as the Modal Assurance Criterion (MAC) 

(Zarzoso and Nandi 2000). MAC values vary between 0 and 

1, where a value of 1 means a perfect correlation. MAC is 

defined as Eq. (25) 

 

 

 

Fig. 6 The main steps of EASI-Teager method 
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Fig. 7 A two story shear building model 

 

 

 

Fig. 8 Plots (a): displacement of the structure; plots (b): 

displacement of the structure after removing 

outliers by median filter; plots (c): separated 

sources by EASI. (Free vibration) 
 

 

MAC𝑖 =
(𝝋𝑖

𝑇�̂�𝑖)
2

(𝝋𝑖
𝑇𝝋𝑖)(�̂�𝑖

𝑇�̂�𝑖)
 (25) 

 

Where 𝝋𝑖  and �̂�𝑖  represent ith theoretical and 

estimated mode vectors, respectively. 

In addition, the Euclidian distance of two mode shape 

vectors, Er is used to assess accuracy of separation. 

 

Er𝑖 = ‖𝝋𝑖 − �̂�𝑖‖2 (26) 

 

8.1 Free vibration system 
 

In the free vibration case, there is no external force 

applied to the system. At first, according to sensitivity of 

EASI algorithm to outliers, before separation, median filter 

is applied to remove outliers. Fig. 8 illustrates the system 

response contaminated with the outliers, the responses after 

removing outliers and the sources identified by EASI. 

The next step after separation is to determine the modal 

parameters by means of the DESA-1 algorithm. The results 

of separation and identification are illustrated in Table 3. 

 

8.2 Forced vibration system 
 

For investigation of the forced vibration case, the 

Gaussian white noise is considered as the stationary random 

excitations applied to the system. The identification is 

performed for 100 different 𝐟(𝑡) samples. The parameters 

presented in Table 4. are the mean value of acceptable 

identification when the MAC of each identified mode is 

greater than 0.90 and the obtained modal parameters are 

Table 3 Accuracy of the separation using EASI and 

identification by DESA-1 for free vibration of the 

2-DOF system 

Step Method Mode 1 Mode 2 

Separation 

 MAC1 Er1 MAC2 Er2 

EASI 1.0000 0.0001 0.9989 0.032 

  �̂�1 𝜁1(%) �̂�2 𝜁2(%) 

Identification 
DESA-1 1.3056 0.010 0.5394 0.011 

HT 1.3065 0.010 0.5414 0.009 
 

 

 

Table 4 Accuracy of the separation using EASI and 

identification by DESA-1 for forced vibration of the 

2-DOF system 

Step Method Mode 1 Mode 2 

Separation 

 MAC1 Er1 MAC2 Er2 

EASI 0.9972 0.0316 0.9933 0.0677 

  �̂�1 𝜁1(%) �̂�2 𝜁2(%) 

Identification 
DESA-1 1.3128 0.010 0.5423 0.013 

HT 1.3087 0.0082 0.5428 0.019 
 

 

 

real. 

It should be noted, for forced vibration state, the 

extracted sources are not exponentially damped sinusoid 

like free vibration. 

This is displayed in Fig. 9 for a sample excitation, 

(SeedNum = 23 in MATLAB). This issue complicates the 

identification. To overcome this problem, the Next 

algorithm is applied to transform forced responses to free 

decays, see Fig. 9. Then the DESA-1 is used to estimate the 

modal parameters easily. For all identification samples, the 

source related to first mode is considered as references 

signal. 

As seen in the Table 4. the EASI algorithm has 

separated the responses well. The both of HT and DESA-1 

algorithms have good performance in identification of 

parameters but the DESA-1 is better. 
 

 

 

Fig. 9 Left: separated sources by EASI; Right: Appling 

NExT algorithm on sources (SeedNum = 23) 
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Table 5 Accuracy of the separation using EASI and 

identification by DESA-1 for noisy free vibration 

of the 2-DOF system 

SNR 

(dB) 

Separation Identification 

Mode 1 Mode 2 Mode 1 Mode 2 

MAC Er MAC Er �̂�1 𝜁2(% �̂�1 𝜁2(% 

60 1.0000 0.0001 0.9988 0.0350 1.3076 0.010 0.5425 0.010 

40 1.0000 0.0003 0.9989 0.0330 1.3035 0.009 0.5388 0.008 

20 0.9999 0.0040 0.9826 0.0500 1.3131 0.010 0.5324 0.011 

15 0.9989 0.0625 0.9772 0.0918 1.3221 0.012 0.5521 0.015 

12.5 0.9972 0.0845 0.9726 0.1029 N/A N/A N/A N/A 

10.0 0.9954 0.1036 0.9438 0.2158 N/A N/A N/A N/A 

9.5 0.9728 0.1598 0.9265 0.4215 N/A N/A N/A N/A 

8.5 0.9556 0.2684 N/A N/A N/A N/A N/A N/A 

7.5 0.9202 0.3576 N/A N/A N/A N/A N/A N/A 
 

 

 

8.3 The effect of noise on EASI-Teager method 
 

To study the performance of the proposed method in the 

presence of noise, the outputs of free vibration case are 

corrupted by white Gaussian noise. The signal-to-noise 

ratios (SNRs) considered are 7.5, 8.5, 9.5, 10, 12.5, 15, 20, 

40, 60 dB for investigation. The simulation is undertaken 

for 100 different samples. Given that the robustness of the 

proposed method against noise is affected by the robustness 

of the EASI and DESA-1 algorithms together. Thus, their 

 

 

 

Fig. 10 Analytical model of UBC benchmark building 

 

 

performance are investigated separately. Results presented 

in Table 5. shows, adaptive blind source separation (ABBS) 

method is insensitive to noise and for 𝑆𝑁𝑅 > 9.5 it has 

been able to separate sources well. For 15.0 ≤ 𝑆𝑁𝑅 , both 

DESA-1 and EASI algorithms have good performance. for 

9.5 ≤ 𝑆𝑁𝑅 < 15.0, separation by the EASI algorithm still 

remains accurate but separated sources are very noisy and 

DESA-1 algorithm does not works for this range. For 

𝑆𝑁𝑅 < 9.5, both EASI and DESA-1 algorithms fail. As a 

results, the performance of the proposed method is limited 

to SNR more than 15.0. 
 

 

9. UBC benchmark structure simulation 
 

At the 1996 international workshop on structural 

control, the International Association for Structural Control 

(IASC) created task groups to study the problem of 

structural health monitoring of civil structures. 

In this section, the first phase of this study, based on 

simulated response of a test structure is used to compare 

performances of various algorithms of modal parameters 

identification (Lus et al. 2004). 

The IASC-ASCE structure is located at the earthquake 

engineering research laboratory of the University of British 

Columbia. As shown in Fig. 10 it is a four-story 2-bay by 2- 

bay steel frame with 2.5 m × 2.5 m base, and 3.6 m tall. 

Details of the benchmark problem, including masses, 

stiffness and other specifications is given in reference 

(Johnson et al. 2004). 

The structure is modeled as a 12-DOF system with three 

DOFs per floor (two translations in x and y, and one 

rotation) and by assuming that the floor slabs are rigid in 

and out of the plane. But in order to maintain symmetry, the 

structure model is considered as a 4-DOF shear-beam 

model. 

For identification purposes, two damage patterns for 

case one are studied in this section. The undamaged case 

has already been studied by the authors in their previous 

work (Amini and Ghasemi 2018). These two damage 

patterns are depicted in Fig. 11, and are defined as follows: 
 

(i) All braces in the first story are removed, 

(ii) All braces in both first and third stories are 

removed. 
 

The excitations are modeled as independent Gaussian 

 

 

  

Damage pattern (i): no stiffness in 1𝑠𝑡 floor braces Damage pattern (ii): no stiffness in 1𝑠𝑡 and 3𝑟𝑑 floors braces 

Fig. 11 Considered damage patterns for UBC building 
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white noise to simulate the ambient vibration. They are 

applied to each floor in the weak direction (y-direction). 

The random excitation records are 200 seconds long and 

the acceleration responses are measured at a sample rate of 

200 Hz. The measured responses in two noise-free and 

noisy states will be used for system identification purposes. 

For the noisy case, the acceleration responses were 

corrupted with 10% RMS of each floor response. In spite of 

the fact that, in this benchmark, the acceleration responses 

are batch, but in order to simulate online identification, it is 

assumed new data is recorded for each time. For simplicity 

and considering the limits of EASI, normal modes are 

assumed to exist and the damping ratio is assumed to be 

zero for all modes (Amini and Ghasemi 2018). For effective 

implementation of NExT algorithm, the acceleration of the 

fourth separated source is selected as reference signal 

(Caicedo et al. 2004). 20 different excitation samples are 

selected for identification. So the MACs, error values and 

estimated natural frequencies and damping ratios are 

therefore the mean values of the acceptable identifications. 

 

9.1 Damage pattern (i) 
 

Tables 6-7 illustrate the modal identification results 

containing natural frequencies and damping ratios for 

damage pattern (i) in noise free and noisy cases, 

respectively. 

In order to improve the performance of DESA-1 

algorithm and considering the effect of previous data, an 

average of the last 5 steps are used in the estimation of 

parameters at each time. Then, the modal parameters are 

calculated as Eq. (27). 

 

 

Table 6 Extracted modal parameters of IASC-ASCE 

benchmark building for damage pattern (i) and 

noise free case 

M
o
d
es

 

M
A

C
 

E
r 

Frequency (Hz) Damping ratio (%) 

Theo. 
Est. 

Theo. 
Est. 

DESA-1 HT DESA-1 HT 

1 0.9877 0.0860 6.24 6.26 6.18 0.000 0.005 0.002 

2 0.9882 0.0796 21.53 21.56 21.54 0.000 0.026 0.010 

3 0.9999 0.0092 37.37 37.47 37.39 0.000 0.003 0.008 

4 0.9855 0.0803 47.83 47.86 47.85 0.000 0.009 0.006 
 

 

 

Table 7 Extracted modal parameters of IASC-ASCE 

benchmark building for damage pattern (i) and the 

noisy case 

M
o
d
es

 

M
A

C
 

E
r 

Frequency (Hz) Damping ratio (%) 

Theo. 
Est. 

Theo. 
Est. 

DESA-1 HT DESA-1 HT 

1 0.9963 0.0475 6.24 6.52 6.49 0.000 0.022 0.034 

2 0.9847 0.0888 21.53 21.55 21.54 0.000 0.017 0.008 

3 0.9883 0.0778 37.37 37.38 37.39 0.000 0.000 0.006 

4 0.9827 0.0924 47.83 47.86 47.85 0.000 0.007 0.004 
 

 

 

Fig. 12 Acceleration responses, extracted sources by EASI 

and outputs of NExT algorithm for the noisy cases 

of damage pattern (i) (SeedNum = 319) 

 

 

𝜔𝑛̅̅ ̅̅ =
1

5
(∑ 𝜔𝑖

𝑛

𝑛−5

) , 𝜁�̅� =
1

5
(∑ 𝜁𝑖

𝑛

𝑛−5

) (27) 

 

Where 𝜔𝑖 and 𝜁𝑖 are modal parameters at ith step. So, 

𝜔𝑛̅̅ ̅̅  and 𝜁�̅�  are considered as modal parameters at each 

time. As seen in the tables, the EASI algorithm performs 

well in identifying mode shapes and separating sources. In 

addition, there is good agreement between both exact and 

estimated parameters by DESA-1 and HT algorithms. 

Fig. 12 shows the acceleration responses, extracted 

sources by EASI and outputs of NExT algorithm for 

damage pattern (i) for a sample excitation (SeedNum = 319 

in MATLAB) in the noisy case. 

 

 

9.2 Damage pattern (ii) 
 

The results of estimated natural frequencies and 

damping ratios for damage patterns (ii) in noise free and 

noisy cases are presented in Tables 8-9. The results show 

the good efficacy of the EASI algorithm in identifying 

mode shapes and sources. Similar to previous damage 

pattern, the HT and DESA-1 algorithms have a good 

performance in identifying modal parameters. Also, the 

 

 

Table 8 Extracted modal parameters of IASC-ASCE 

benchmark building for damage pattern (ii) and 

noise free case 

M
o
d
es

 

M
A

C
 

E
r 

Frequency (Hz) Damping ratio (%) 

Theo. 
Est. 

Theo. 
Est. 

DESA-1 HT DESA-1 HT 

1 0.9902 0.0666 5.82 6.10 5.87 0.000 0.000 0.031 

2 0.9912 0.0547 14.89 14.87 14.89 0.000 0.021 0.012 

3 0.9968 0.338 36.06 36.08 0.000 0.000 0.008 0.006 

4 0.9877 0.0694 41.35 41.33 41.37 0.000 0.007 0.007 
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Table 9 Extracted modal parameters of IASC-ASCE 

benchmark building for damage pattern (ii) and the 

noisy case 

M
o
d
es

 

M
A

C
 

E
r 

Frequency (Hz) Damping ratio (%) 

Theo. 
Est. 

Theo. 
Est. 

DESA-1 HT DESA-1 HT 

1 0.9849 0.1619 5.82 6.02 5.82 0.000 0.0001 0.0002 

2 0.9912 0.0644 14.89 14.87 14.82 0.000 0.0007 0.0001 

3 0.9854 0.0882 36.06 36.14 36.05 0.000 0.0005 0.0000 

4 0.9824 0.0931 41.35 41.32 41.37 0.000 0.0002 0.0000 
 

 

 

estimated modal parameters using the DESA-1 algorithm 

are very close to exact values. Fig. 13 presents the extracted 

mode shapes for damage patterns (i) and (ii) in the noisy 

case. It should be noted that similar results were obtained 

for the noise free case. 
 

 

10. Conclusions 
 

This paper has presented the conjunction of equivariant 

adaptive separation via independence (EASI) and Teager 

Energy Operator (TEO) called EASI-Teager approach for 

online identification of structural modal parameters. The 

EASI algorithm is an adaptive blind source separation 

method, updates the separating matrix and sources in each 

time. In this proposed method, in the first step, the EASI 

algorithm is applied to structural responses to extract modal 

matrix and modal coordinates as independent sources. In 

the second step, the instantaneous frequencies and damping 

ratios are estimated from separated modal coordinates using 

TEO based demodulation method, discrete energy 

separation algorithm (DESA-1). In forced vibration state, 

the extracted sourced are not exponentially damped 

sinusoid. To simplify the identification, before applying the 

DESA-1 algorithm, the NExT algorithm is used for 

transferring forced responses to free decays. 

The effects of noise and outliers on the operation of the 

DESA-1 are investigated in this research. This algorithm is 

very sensitive with respect to presence of noise and outliers 

due to its high resolution. Depending on the amount of 

 

 

noise, it may deteriorate the DESA-1 efficiency. 

Consequently, in order to achieve accurate results, 

median filter is used to remove outliers from the data. 

The effectiveness of the proposed approach has been 

investigated using a synthetic example. For both free 

vibration and forced vibration states, the EASI has good 

performance. Also, both of DESA-1 and HT methods can 

estimate modal parameters well. 

The phase I IASC-ASCE benchmark building has been 

used for verification of this method as well. The successful 

modal identification results demonstrate that the EASI-

Teager algorithm is efficient and proper for online structural 

identification. 
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