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Abstract.

By employing a quasi-3D plate formulation, the present research studies static stability of magneto-electro-thermo-

elastic functional grading (METE-FG) nano-sized plates. Accordingly, influences of shear deformations as well as thickness
stretching have been incorporated. The gradation of piezo-magnetic and elastic properties of the nano-sized plate have been
described based on power-law functions. The size-dependent formulation for the nano-sized plate is provided in the context of
nonlocal elasticity theory. The governing equations are established with the usage of Hamilton’s rule and then analytically solved for
diverse magnetic-electric intensities. Obtained findings demonstrate that buckling behavior of considered nanoplate relies on the
variation of material exponent, electro-magnetic field, nonlocal coefficient and boundary conditions.
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1. Introduction

An example for a smart material is piezoelectric-
magnetic-elastic material in which magnetic-electric
environments may lead to mechanical deformation (Aboudi
2001). This means that there is a coupling between
magnetic-clectric and elastic performances in such
materials. In such materials, the material properties can be
characterized by elastic, piezoelectric and magnetic
constants. Structural components (beams, shells and plates)
made of such smart materials are broadly utilized in
actuators, sensors and intelligent systems. The material
distribution in these structures may be homogenous or non-
homogenous. When the material profile is variable thorough
the thickness of a structure, the material distribution may be
non-homogenous. As an example, a functional graded
material is a non-homogenous material in which two
materials are involved and all material properties change
from one material to another (Li and Hu 2017a, b). Based
on the percentage and volume fraction of each material, the
complete behavior of the structure can be defined. There are
several investigations on smart piezoelectric-magnetic-
elastic structures having functionally graded distribution
(Pan and Han 2005, Ramirez et al. 2006, Wu et al. 2010,
Kattimani and Ray 2015).

According to recent experiments and atomistic
simulations, it is reported that the mechanical character of
nano-size piezo-electric and piezo-magnetic structures are
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relied on small scale effects. However, owning to the fact
that classic continuum mechanical modelling is classified as
a size free model, analyzing and investigating mechanical
characteristics of small size structures based on the classic
continuum theory yields inaccurate findings and
accordingly wrongful designs. Howbeit, the atomistic
modeling and molecular simulations are powerful tools for
describing the size-dependent characteristics of small size
structures, their application is not more economical because
of the extra computational attempts. To prevail over such
problems, a variety of size-dependent elasticity models
including the nonlocal elasticity theory (Eringen and Edelen
1972, Eringen 1983), strains gradient elasticity theory
(Alimirzaei et al. 2019) refined couple stresses theory and
etc, are established for incorporating small size effects via
standardizing some scale parameters and have been broadly
exerted for the designing and study of the mechanical
character of micro or nano structures (Zhu and Li 2017a, b,
Ke and Wang 2014, Ke et al. 2014, Li et al. 2014, Farajpour
et al. 2016). The smart material discussed in previous
paragraph has been extensively applied in nano-structures
and nano-devices. However, at the nanoscale, the behavior
of structure is dissimilar to macro scale counterparts. This is
owning to the existence of small size effects (Tounsi ef al.
2013, Akbas 2016, Barati 2017, Besseghier et al. 2017).
Such small size effects are incorporated in non-classical
elasticity theories such as Eringen’s theory which is also
used by other authors.

Finally, it can be mentioned that reported papers on
buckling of magneto-electro-elastic plates are limited in the
literature, especially those at nanoscale. In this article,
critical buckling characteristics of MEE-FG nanoplates
under magneto-electrical field are examined in the
framework of a quasi-3D sinusoidal theory. The presented
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model takes into account both shear deformations and
thickness stretches impacts via high order variations of
displacement components over the thickness. Material
properties of nanoplate are graded in the lateral orientation
according to the power-law modeling. The governing
equations have been achieved via employment of Hamilton
rule and Eringen’s nonlocal elasticity and are solved via an
analytical solution. The voluminous mathematical findings
have been represented while the assertion is placed on
studying the impacts of some factors such as external
electrical voltages, magnetic potential, power-law indices
and nonlocal factor on buckling properties of size-
dependent MEE-FG nanoplates.

2. Theory of non-local elasticity for piezo-magnetic
materials

According to the theory of non-local elasticity for smart
magnetic-piezoelectric-elastic materials, stresses o;; electric

displacement D; and magnetic induction B; can be defined
in below form (Ansari and Gholami 2016)

0 = faﬂx’ —x|,7) [Cijri€ra (X)) = emijEm(x)
v

(1a)
—qnijHn(x) — CijkzaklAT]dV(x )
D; = fa(|x' - x|,r) [eii€ri (X)) + SimEm(x)
v , , (1b)
+dinHn(x) — p;AT]dV (x)
B; = j“(|xl — x|, 7) [qiri € (X)) + dimEpn (x)
v (1c)

+Xian (x ,) - AiAT] dV(x ')

Above relations are associated with strains &;, and
electric-magnetic field (E,,, H,). Till to now, mechanical
analysis of piezo-magnetic nano-structures is performed
based on diverse values for nonlocal parameter. Some of
papers used actual value of nonlocal parameter with unit of
nm, but some papers used normalized values for nonlocal
factor in such a way that nonlocal parameter is normalized
with respect to the length of nano-structure. Ke and Wang
(2014) used normalized values for nonlocal parameter as p
= epa/L = 0.1~0.3 for studying vibrations of smart
nanobeams with length L. Also, Ansari and Gholami (2016)
used normalized values for nonlocal parameter as u = epa/a
= 0.02~0.04 to investigate nonlinear vibrations of smart
nanoplates with length a.

All ingredients of stress field, electrical field
displacement (D;) and magnetic induction (B;) for a size-
dependent plate relevant to nonlocal theory may be written
as

O-ij - (eoa)szal-j

2a
= Cijki€xi — emijEm — QnijHn — Cijra @ AT 22)

D; — (e0a)*V2D; = ej€q + SimEm + dinHn — p; AT (2b)

B; — (e0a)*V?B; = Qixi€r + dimEm + XinHn — AT (2¢)

where V2 is the Laplacian operator.

3. Governing equations

3.1 Power-law functional grading material (P-FGM)
plate

Each material property (P) for a smart nanoplate shown
in Fig. 1 can defined as

P:P2V2+P1V1 (3)

P, and P; define the material factors at top and bottom
surfaces, V, and V; define the volume fractions of top and
bottom surfaces which have below definition (Draiche et al.
2016, El-Haina et al. 2017, Abdelaziz et al. 2017, Addou et
al. 2019, Bellifa et al. 2017a, b, Bouadi et al. 2018, 2019,
Bourada et al. 2018, Kaci et al. 2018)

z 1
V2: E‘l’z p, V1:1_V2 (4)
where (p = 0) define the material index which evaluates
the material dispersion over the lateral orientation (Zarga et
al. 2019, Zaoui et al. 2019). Next, the effective material
properties for MEE-FG plate takes the below definition

p
P =P =P)(543) +P ©

In this study, the top surface with z=+4+h/2 | is
selected to be CoFe,0,, and the bottom surface with z =
—h/2 is selected to be BaTio; and the details are
provided in Table 1.

3.2 Basic equations

In order to develop linear elastic formulation for free
vibrations of the nano-scale plate, well-known refined plate
theory has been used in the present paper. Thus, the
displacements of nano-scale plate (1, u2, u3) may be written
based on axial (#) and transverse (ws, w;) field variables as
(Bousahla et al. 2014, Bourada et al. 2015, Bennoun ef al.
2016, Hebali et al. 2014, Khiloun et al. 2019, Mahmoudi et
al. 2019, Meksi et al. 2019, Mokhtar et al. 2018, Semmah
et al. 2019, Tlidji et al. 2019, Yazid et al. 2018, Youcef et
al. 2018)

aZ

Piezo — magnetic phase

[ oY

ot

b . .
Piezoelectric phase

Fig. 1 A FG nano-size plate under magnetic-electrical field
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Table 1 Magnetic-electric-elastic coefficients of the two
phases (Ramirez et al. 2006)

Properties BaTiO3 CoFe,0,

€11 = €55 (GP) 166 286
C33 162 269.5
C13 = 3 78 170.5
C1z2 77 173
Css 43 4523
Ces 445 56.5

e3; (Cm?) -4.4 0

ess 186 0

es 116 0
q31 (N/Am) 0 580.3
Gss 0 699.7
qis 0 550
s11 (1079C2m2N1) 11.2 0.08
S33 126 0.093
X11(107SNs2C2/2) 5 590
X3 10 157

di1 =dj; =d33 0 0

u,(x,y,2) =ulx,y) — z% - T(2) 661/;5 (6)
w2 = v -1 52T T )

uz(x,,2) = wp(x,y) + ws(x,y) + g(@w,(x,y) ()

in such a way that w. defines transverse deflection related to
thickness stretching. Based on a secant function, 7{(z)
defines shear function according to below definition

T(z) =z—zsec (%Z) + z sec (g) [1 +£tan (g)] )
r=0.1

Considering the fact that METE nano-scale plate is
under electro-magnetic field with electrical potential (®)
and magnetic potential (Y), one can define the potentials in
following forms as functions of electrical voltage (Vg) and
magnetic potential intensity (€2) (Ke and Wang 2014)

®(x,y,z,t) = —cos(éz) p(x,y,t) + ZTZV (10)

2z
Y(x,y,2,t) = —cos(&z) y(x,y,t) + TQ (11)

with é =m/h. Next, V and Q define the exterior
electrical voltages and magnetic potentials induced to the
smart plate. For the refined plate formulation, the strain
field including thickness stretching deflection (w.) might be
expressed by

& 5;2 K2 K
£ £ b K
Y= bz ey o [
&z g &y 0 . (12)
Yxy y;?y} K;lgy Kxy
ol o1
)/XZ YJ?Z ’ aZ
where
Z_u 0%w,,
0 X >
S’é ov K2 62x
&y _l3 > b _6 wy,
£0 y ’ y ayz ’
ZO We Kgy | 92 |
Vxy 8u+6v ) Wp
3y " ox 0xdy) (13
_OZWS )
s dx? owg 0w,
e 9*w, ; ay 9
o t=d-gm o = 2
> 2y? vid ~ \ow,  ow,
Xy 62 k
_ Wg ox ox
dx0y

Calculating the three-dimensional gradient of electro-
magnetic potentials gives the electrical field components
(Ex, Ey, E;) and magnet field components (Hx, Hy, H,) as
follows

Ey =~ = cost) 22, (14)
E, = —b, = cos(¢2) %, (15)
E, =, = —£sin(E2) ¢ — (16)
H, ==Y, = cos(¢z) Z_Z' (17)
H, = -7, = cos(é2) %, (18)
H, =1, = ~EsinEn)y — o (19)

Using Hamilton’s rule, the equations of motion might be
determined via

t
f §(Ils + I, )dt = 0 (20)
0

Here IIg defines strain energy, Il defines works
done via exterior forces. The variation of strain energy
might be written by

61_[5 = fo-ijé‘gijdv
H (21a)
= f(ax&x + 0,0, + 0,0¢, + 0y 6Vyy
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D,8E, — D,0E,

+0_y25yyz + sz(gyxz (21 )
— B,6H, — B 6HZ)dV

-D,86E, — B,6H,

Placing Egs. (10) and (11) into Eq. (19) gives

66u ,0%0w, 926w,
SHS_IJ- M axz  * gx?
a6v ba Swy, 028w
Ny MY M o + R,w,
(66u+66v> b 026w,
> 6y 0x YV 9xdy
oM 02 5WS+ (adws 66wz)
Y 0xdy dy dy
déwy 66wz
+sz( ax + )]d dy (21b)

+ foa fob ﬁ [—Dx cos(£2)8 (%)
—D, cos( f;)s (g—f) + D, sin(£2)8¢
B, cos(¢2)8 (3—1) — B, cos(£2)8 (%)
+ B,¢ sin(£2)dy | dzdxdy

where

(Ny MP, M§) = j LzTadd, i=@yxy) (@2
A

Q= f goidd, i=(xzy7), R,= f go,dA  (23)
A A

The variation for works done by exterior forces might be
determined as

6(Wb + WS + g(@w,) 06wy, + w, + g(2)w,)
STy = f j ( 3

a(wp +ws + g(Z)W ) 96wy + ws + g(2)w,)
dy dy
I(wp +ws + g(@Qw,) 0wy, + ws + g(2)w,)
)dxdy
0x dy

+N? 24)

+26NY,

where N2, Ny, o N2 xy are membrane exerted forces. Herein,
this is supposed that the METE-FG nano-sized plate is
affected by outer -electrical voltages and magnetic
potentials; however, the shear forces have been discarded.
Accordingly, Ny, =0 and N, Ny define the in-plane
loading owning to external electncal voltages V, magnetic
potentials Q, temperature field (7), respectively and are
defined as

Ny =N) =N+ NE 4+ N# 4+ NT (25a)

h
2V 20
NE = —£E€317d2, NH IEQ31 A dz
2

N

(25b)

h/2
NT = J‘ Cllal(T - To)dz,
-h/2

For a METE nano-size plate, the governing equations
based on refined plate theory and nonlocal stress effects

may be expressed by

N, N ON,,, o
0x dy
ONxy + 6& =0
0x dy
0?ME _0*ME, 9ME

0x? + dxdy + dy?

—(N? + NE + N + NP2 (w), + ws + gw,) =0

0*M; N 0*M;, 0*M;  0Q,, N 0Q,,
dx? dxdy  dy? dx dy
—(N? + NE + NP2 (w), + wg + gw,) = 0

0Qy, +aQyz
0x dy
+N? + NP2 (wy, + wg + gw,) =0

— R, — g(N? + NE

3 D, aD,
J- (cos(Ez) —+ cos({z) —_—

2

+¢& sin(fz)DZ> dz=0

2 9B, 0B,
f . (Cos(g‘z) M + cos(¢é2) E

+ Esin(fz)Bz) dz =0
The constitutive equations can be expressed by

1- MVZ)Uxx = éllgxx + C~12€yy + C~13£zz
—€3,E, — §3:H, — c1104AT

(1 - ,UVZ)O-yy = C~12€xx + C~11€yy + C~13€ZZ
_é31EZ - C731Hz

(1 - :uVZ)O-ZZ = C~13£xx + C~138yy + C~33£zz

—é33E, — q33H,

1- .UVZ)ny = C66ny
(1 = uV®)0y, = Css¥uz — €15Ex — GusHy
1- HVZ)Uyz = C~55Vyz — &5k, — q,sH,,
(1 = uV?)Dy = &15Yy, + 511 Ex + dig Hy
a- .“VZ)Dy = é15Vyz + S11Ey + dnHy

1- ”VZ)DZ = €318 + é~315yy + 3385,

(26)

27

(28)

29)

(30)

€3]

(32)

(33)

(34

(35)

(36)
37)
(38)
(39)

(40)

(41)
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(1 — VB, = GuisVar + di1Ex + JaaHy
(1 — uV®B, = Gis¥y, + di1Ey + 711H,

(1 —uV?®B, = 6~13"15xx + G318y + 433822
+ds3E, + ¥33H;

(42)

(43)

(44)

So that u is nonlocal scale factor; AT is temperature rise.
Elastic, piezoelectric and magnetic material characteristics
have been respectively marked by Cj, e; and ¢;. For
considering plane stress conditions, all material properties

are expressed in a new form a follows

Ch Cts
Ci1=Cy — _C , G =G — _C , Ce6 = Cop,
33 33
~ Cizes3
€15 = €15, €31 = €31 — ,
C33
~ ~ C13933
q15 = 415, q31 = 431 — C ,
e
5 ~ ~ ~ 33633
dqyy = dqs, d33 =dsz3 + ’
) C33
I I €33
$11 = S11s S33 = S33 + o
33
T o d33
X11 = X110 X33 = X33+ o
33

(45)

By integration Egs. (35)-(46) through the thickness
direction, the below resultants for the nano-size plate would
be derived:, as represented in Appendix. The governing
equations of quasi-3D MEE-FG nanoplate based upon the
displacement components and potential components might
be achieved by placing Eqgs. (A1)-(A9), into Egs. (26)-(32)

as
0%u 0%u 0%v
A= 522 + A6 5 3y + (A2 + Aee) 5= dxay
23w, 23w s 0%w;
—Bi1—4—= 33 — (B12 + 2Bg) I 6 2~ By
03w, d¢ dy
—(Bi, + 2366)0 3y =+ A% —— ox +A13n1£
+X W _ 0
13 ax -
0%v 0%v 0%u
Age 2 + Ay ay? + (A12 + Aee) axdy
23w, 23w, s 0%w;,
—Byo——= 3y — (B2 + 2B66) X20y — B3, 3y3
3w 6<;b dy
85, +2B5) LY 44, 00 g
( 12+ 66)axzay+ 31 ay+ 3lay
ow,
+X13W =0
23u 2%u
By, Pyl (B12 + 2Bge) 9x0y?
2%v 2%v *wy,
+(Biz + 2Bs6) 55— 25,5~ Puga

0% 9% 0% 9%
B¢ 9PN e (22,29
* (a z+ 6y2> is (ax2 * 5y

(46)

(47)

(48)

o*w, 0*wy, s 0%wg
—2(Dyz + 2D66) Zay 22 58 — D1y e

4W azy 62]/
—2(D$, + 2D66) %207 + E (W + a—yz

62]/ L% 0%y _ps 0*wy iy 2%w, N 0%w,
ax2 | dy? 2 gyt T3 gx2 T gy

+(1 = uV?»)(—=(N? + N + N” +NT)

VZ(wp, + w, + gw,)) =0

S a3u S S °
By o5+ (Bt ZBee)W
v v o*
+(Bia + 28 5 o+ Biag s = D L
_ae 0 ¢+62q.’> azw s 07w
dx?  0y?
0*wy, 6 wy,
9x20y? — D3 ay* -
4w s 64WS (49)
_2(H12 + 2H66) 26y H22 ay4
92 2 2
¢  0°¢ 0%y 9%
+F31<ax2 + 35z )+ 2r zr

2%y 0%y
—ATs < + 3y2 + (435 + Y13) —22

—2(Di; + 2D§e)

0x2
92w

+(45, + Y23)
+NH + NT)VZ(Wb +ws+gw,)) =0

ou 0dv 02w, 0%w,
(o4 52 v (W + W)
0%ws,  0%w,
9y ' 9y? )

o (0%ws  0%w, . m
+A4zs (W + W) — Z33w, — H33¢ — H3zy
+g(1 — uV¥)(—(N? + N + N*)

V2(wp +ws + gw,)) =0

2 (au N 6v) o (07w N 0%w,,
31\ox * ay 31\ ox2 dy?
w,  0%w, 2%¢p 0%¢
—(F51 — Efs) ( axzs + ayzs> + F11(W + —) (51)

=+ (1 —uV?)(—(N” + N*

(50)

2%y 0%y
+F11<a 2+6 )+H33Wz Fi3¢ — Fi5y =0

am (au N 81]) £m (62wb N 62Wb>
31| 5. 5. E31\ 7.7 a2

dx 0dy d0x? dy?
w, 02wy 2%¢ ¢
—(FT —ER) ( 922 + 3y? ) + F1 <ﬁ + a—y2> (52)

0%y 9%y m .
+X11 %2 +t5— 9y? + H33w, — F35¢ — X33y =0

4. Solution procedure

Based on Galerkin’s method, it is possible to provide a

solution for buckling problem of quasi-3D piezo-magnetic
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nanoplates based on the boundary conditions:
e Simply-supported (S):

when x=0,a
when y=0,b

M,=w, =N, =w, =0

M,=w,=N,=w;=0 (53)
In next step, the seven variables based on quasi-3D

piezo-magnetic plate model can be defined by

u= mi i TR NG (s4)
v= mii e (55)
wy = mi Z Womn R () Ru(3) (56)
w, = mi Z Worn R (6) R () (57
W, = ni Z W) R 3) (58)
b= mz i BB () Ra3) (59)
y= mZZ ViR () Ra ) (60)

where (Umn, Vimns Womns Womns Womn> Pmns> Vmn)
define the max displacmemnts and the function R(x) =
sin(ax) and R(y) = sin(By) are for simply-support
boundary conditions (@ = mm/a, = nm/b). By finding
the coefficient of stiffness matrix from above equations, one
can write
U
an
Wbmn
(K177 | Wemn | = 0 (61)
VVZmn
l‘Umn
L Yo |

The non-trivial solution has been achieved while the
determinant of stiffness matrix is set to zero (|K| = 0) to
find critical buckling loads. The non-dimension form of
buckling load might be introduced by

2

N=nNte

DC DC = Cf’lh?’ (62)

5. Numerical findings and discussions

In this chapter, impacts of different factors such as
magneto-electrical field, nonlocality, boundary conditions

Table 2 Comparing the critical buckling loads of simple-
supported graded nano-size plates (b =a, a=10 h)

u=0nm? M =2 nm?
Material Sobhy Sobhy
exponent (p)  (2015) Present (2015) Present
0 18.6876 18.6877 10.4425 10.4426
0.5 10.0638 10.0638 5.6235 5.62359
25 6.2593 6.25935 3.4976 3.49769
10.5 4.9677 4.96776 2.7759 2.77596
1.5 [ oo Q=-0.1
= — 0 —0=-0.05 p!
2 —a—0-0 L
® — B - Q=+0.05 2
2, [ —-x--0=r01 7 4
2
£
=] .

0

10 20 30 40 50 60 70 80 90 100
Length-to-thickness ratio (a/h)
Fig. 2 Buckling load curves of the nano-size plate against
length-to-thickness ratios based upon diverse
magnetic intensities (p = 1, p = 1 nm?, V = 0x10™)

and material compositions on critical buckling loads of
graded MEE nanoplates are examined. The length of nano-
sized plate has been chosen to be a = 10 nm. For the
confirmation purpose, critical buckling loads are compared
with those of FG nanoplates presented by Sobhy (2015) and
a worthy agreement is found according to the findings
represented in Table 2. For the verification study, the
material constants have been assumed as: E. = 380 GPa, E,,,
=70 GPa and v¢ = vy, =0.3.

Depicted in Fig. 2 is the buckling load of the graded
piezo-magnetic nanoplate with the changes of length to
thickness ratios (a/h) based on various magnetic potentials.
There is no change in buckling load versus a/h when the
magnetic potential is zero. Also, applying positive of
negative magnetic potentials may increase or reduce the
buckling load with respect to a/h.

In Figs. 3 and 4, changing of non-dimension buckling
loads of graded MEE nanoplates vesus power-law index (p)
is illustrated for different electrical voltages and magnetic
potentials when a = 100 h and p = 0.5 nm?. This is deduced
that critical buckling forces of graded MEE nano-size plate
are significantly influenced by the magnitude and sign of
magnetic and electric potentials for each values of power-
law index. It is concluded that negative magnitudes for
magnetic potentials give lower buckling forces than positive
magnetic intensity factor. While, smaller magnitudes of
electrical voltages result in greater buckling forces.
Actually, the imposed negative/positive magnetic intensities
might generate the in-plane compressive and tensile forces.
Whereas, electrical fields show an opposite influence. It is
also found that larger magnitudes of power-law index have
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Fig. 3 Buckling load curves of the nano-size plate against
gradient index for diverse electrical voltages
(@=100h, AT=0,Q=0x103, u=0.5 nm?)
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Fig. 4 Buckling load curves of the nano-size plate against
gradient index for diverse magnetic intensity
(@=100h, p=0.5 nm?, AT=0,V =0x10%)

1.4 = ===0--- =0
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o

Dimensionless buckling load
=] o
B [ee]

o
¥

o

Applied voltages (V)
Fig. 5 Buckling load curves of the nano-size plate against
applied voltages for diverse nonlocal factors
(a=100h, AT=20K,p=1,Q=0)

no sensible influence on buckling loads. But, smaller
magnitudes of power-law index show more significant
effect on the variations of buckling forces. Also, this is
assumed that the value of electrical and magnetic intensities
become equal to zero at the ends of the FG nanoplate.

Figs. 5 and 6 illustrate the variations of critical buckling
loads of graded MEE nanoplate against electrical voltage
and magnetic potential, respectively for different nonlocal
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Fig. 6 Buckling load curves of the nano-size plate against
magnetic intensity for diverse nonlocal factors
(p=1,a=100h, V=0)

factors when p = 1 and @ = 100 h. This is deduced that
buckling forces of nonlocal graded MEE nano-size plate are
often lower than that of local macro-size plate. Buckling
loads decrease by the increment of the nonlocal factor at a
constant magnetic intensity and electrical voltage. This
incident is because of the reason that the low size impacts,
that describe the reciprocal influences of every points
within the area, might decline the strength of the nano-size
structure. This is also deduced that as the electrical voltages
and magnetic intensity change from negative to positive
magnitudes, the critical buckling loads respectively reduce
and increase.

6. Conclusions

Buckling characteristics of a quasi-3D piezo-magnetic
nanoplate were reported in the present article. The complete
formulation and solution for the problem based on quasi-3D
plate model was presented. There was no change in
buckling load versus side to thickness ratio when the
magnetic potential was zero. Also, applying positive of
negative magnetic potentials led to increasing or reducing
the buckling load against length to thickness ratios. Also,
this was reported that the buckling behaviors of the nano-
sized plate is sensitive to material gradient exponent.
Another observation was that size effects due to nonlocality
changed significantly the buckling behaviors of piezo-
magnetic nano-sized plate. Also, the dependency of
buckling load to negative and positive voltages was clearly
explained.
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