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1. Introduction 

 

After the completion of a bridge, the three main types of 

measurement taken during bridge management phase are 

(1) inspection, (2) assessment and (3) maintenance and 

repair. With prediction intervals time, the inspections are 

planned and reduplicated. Visual inspections are normally 

used, testing and measurements also can be included. An 

assessment is only carried out whenever it is required. The 

good assessment can predict the earliest possible time of the 

damage, then maintenance and repair can be considered. 

Any change affecting the bridge’s performance is 

considered as damage. Damage includes the change of 

material and geometric properties, system connectivity, and 

boundary conditions. Structural health monitoring (SHM) is 

the process of implementing a damage identification 

strategy for a structure. Analyzing damage-sensitive 
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features can determine the current state of system health. 

These features are extracted from periodically spaced 

measurements taken over time of the structure or 

mechanical system. SHM plays a crucial role in increasing 

the lifespan, boosting operational efficiency, and reducing 

maintenance costs of the structure. The challenge for SHM 

is that damage may not crucially affect the lower-frequency 

global responses, which are usually considered during the 

system operation. SHM of real civil structures, outside 

laboratory conditions, is also a challenge. Advanced 

statistical algorithms need to address the problem that 

distinguishes damage effects from environmental influences 

and from damage events (Wahab and De Roeck 1997, 

Peeters et al. 2001). The Switzerland pre-stressed concrete 

bridge Z24 was selected for testing in the framework of the 

BRITE-EURAM project SIMCES (Roeck 2003). 

Researchers monitored this bridge for almost one year 

before damaging it. They presented a new approach method 

using eigen frequency to discover abnormal changes due to 
damage (Peeters and De Roeck 2001). Many test-setup and 

damage scenarios were performed in this bridge. From that 

research, many methods had been proposed to detect 
damage (Maeck et al. 2001, Brincker et al. 2002, Wahab 

and De Roeck 1999). Normally, it is difficult to develop a 
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Abstract.  This paper proposes the use of transmissibility functions combined with a machine learning algorithm, Artificial Neural 

Networks (ANNs), to assess damage in a truss bridge. A new approach method, which makes use of the input parameters calculated 

from the transmissibility function, is proposed. The network not only can predict the existence of damage, but also can classify the 

damage types and identity the location of the damage. Sensors are installed in the truss joints in order to measure the bridge 

vibration responses under train and ambient excitations. A finite element (FE) model is constructed for the bridge and updated using 

FE software and experimental data. Both single damage and multiple damage cases are simulated in the bridge model with different 

scenarios. In each scenario, the vibration responses at the considered nodes are recorded and then used to calculate the 

transmissibility functions. The transmissibility damage indicators are calculated and stored as ANNs inputs. The outputs of the 

ANNs are the damage type, location and severity. Two machine learning algorithms are used; one for classifying the type and 

location of damage, whereas the other for finding the severity of damage. The measurements of the Nam O bridge, a truss railway 

bridge in Vietnam, is used to illustrate the method. The proposed method not only can distinguish the damage type, but also it can 

accurately identify damage level. 
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statistical model for recognizing characteristics between the 

undamaged and damaged bridge. Recent years, the number 

of research related to SHM has increased rapidly 

(Brownjohn 2006). Many bridges in the world are put in 

monitoring, such as Tamar suspension bridge in Plymouth, 

UK (Koo et al. 2013), Pioneer Bridge, Singapore 

(Brownjohn et al. 2004), Powder Mill bridge, in Barre, 

Massachusetts, USA (Sanayei et al. 2011), etc. 

Damage assessment of bridge structures using vibration-

based method has been studied since the early 1980s (Farrar 

and Worden 2006). Modal properties such as frequency 

response functions (FRF) (Thyagarajan et al. 1998), mode 

shape curvature (Wahab and De Roeck 1999), stiffness 
matrix (Maia et al. 2003, Yan et al. 2007), modal data 

(Kaveh and Maniat 2015), correlation and cross-correlation 

coefficients (Nguyen et al. 2019b) are usually used to 

identify damage in bridge structures. However, these 

properties are very sensitive to the environment and 

operating condition of the bridge. Applying these methods 

for small localized damage areas faces challenges (Cruz 

and Salgado 2009). Three new parameters including 

kurtosis, skewness of signals, and statistical density 

function are proposed for evaluating crack defects (Nguyen 

et al. 2019c). On the other hand, the advantages of 

transmissibility in detecting damage are remarked in many 

research works (Johnson and Adams 2002, Devriendt and 

Guillaume 2008). The response ratio between two degrees 

of freedom is described as the transmissibility function. 

Local damage, which affects the local responses between 

these degrees of freedom, is expected to be more sensitive 

to transmissibility than FRF. The damage index based on 

changes in transmissibility function between undamaged 

and damage structure is normally used to detect damage. 

Maia et al. (2011) proposed a damage indicator based on 

correlations of the transmissibility functions and the modal 

assurance criterion (MAC) in modal analysis. These 

researchers are in the research team of Maia at IST in Porto 

(Sampaio et al. 2001) and focus on the study of using 

transmissibility functions to detect and locate damage. Zhou 

et al. (2017) proposed a new method combining 

transmissibility, hierarchical clustering analysis, and 

similarity measure to detect damage. The ten-floors 

structure simulated results and the free-free beam laboratory 

tests were used to prove the good performance of 

transmissibility in detecting damage. Transmissibility has 

been studied to explore structural damage in many research 

provided by Zhou et al. (Zhou et al. 2015, 2018, Zhou and 

Wahab 2016, Zhou 2015). The more recent review on the 

application of transmissibility-based system identification 

for SHM was provided in Ref. (Yan et al. 2019). This paper 

is categorized as global, local transmissibility functions, and 

limits the usage of several methodologies to the following 

principal features: model updating, modal analysis, and 

damage detection. 

The vibration responses of the bridge under excitation 

could be used to identify the bridge parameters. The recent 

developments in vibration measurement instruments and 

analysis computing technology support this (Deraemaeker 

et al. 2010). Most of the new improvements in the field of 

SHM has a high contribution from machine learning 

technology. ANNs are among the most widely used 

machine learning techniques and has been trained to 

discover, localize, and quantify damage in bridge structures. 

A method of identifying damage through the evaluation of 

response data from an instrumented bridge proposed in Ref. 

(Weinstein et al. 2018). Lee et al. (2005) was used to assess 

damage of multiple-girder simply supported bridges by 

using the input of the neural networks as the ratios of the 

mode shape components between damaged and undamaged 

scenarios. Mehrjoo et al. (2008) presented a method using a 

back-propagation based neural network for estimating the 

damage intensities of truss bridge joints. ANNs worked well 

for assessing the damage in a simply supported beam 

(Nguyen et al. 2018). Vibration -based damage method are 

based on the principle that can change both the physical 

properties and dynamic properties. These changes can be 

used as input for ANNs and the output is the prediction of 

damage, location, and severity in structures. Sahin and 

Shenoi (2003). In the last 10 years, many researchers used 

natural frequencies and mode shape curvatures as inputs for 
ANNs (Hakim and Razak 2014). FRF data was applied to 

present the healthy conditions of each member in a three-

story building and used as the input of ANNs (Wu et al. 

1992). The measured FRF data reduced via principal 

component project was handled as the ANNs input variable 

alternatively of raw FRF (Zang and Imregun 2001). The 

results showed that the trained ANNs could distinguish 

between intact and damaged states with a high degree of 

accuracy. As discussed above, transmissibility is proved to 

be more sensitive with local damage than FRF. Therefore, 

in this paper, a novel method that makes use of 

transmissibility damage indexes as input data of ANNs is 

proposed. Using transmissibility combined with machine 

learning has been done before by some authors. Meruane 

(2015) used transmissibility information to identify anti-

resonant frequencies. The changes in the anti-resonant 

frequencies with respect to the intact were used as the input 

of ANNs, which could locate and quantify the structural 

damage. Zhou and Abdel Wahab (2017) used the indicators 

taken from the transmissibility function as input and then 

predicted the damage. Nguyen et al. (2019a) succeeded in 

detecting the location and severity of damage in a multiply 

girders bridge using transmissibility and ANNs. A new 

approach method is proposed in this paper and makes use of 

the input parameters calculated from the transmissibility 

function. The network not only can predict the existence of 

damage but also can classify the damage types and identity 

the location of the damage. In this paper, a new application 

to a large-scale truss bridge, i.e. the Nam O bridge, is 

considered as a case study to illustrate the proposed method. 

The results show that the proposed method is successful in 

assessing large-scale truss bridge damage for most 

simulated damage scenarios. 

This paper has four main sections. The first section is 

the introduction section. In the second section, we recall 

some definitions of machine learning, ANNs, and 

transmissibility. Some proposed ANNs and proposed 

procedure for detecting damage in a truss bridge are 

introduced. In the third section, the Nam O bridge is 

introduced as a case study. The results of the proposed 
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method are presented. Finally, in the last section, some main 

conclusions are summarized. 
 

 

2. Methodology 
 

2.1 Machine learning algorithm 
 

The scientific study of algorithms and analytical models 

that can be leanred from experience to improve its 

performance, without human intervention is called Machine 

Learning (ML). “Training data” is a mathematical model of 

sample data built by machine learning algorithms. 

Supervised learning, semi-supervised learning, and 

unsupervised learning are three main categories of the 

machine learning algorithm. Supervised learning algorithms 

using a collection of data carry both the inputs and the 

desired outputs to create a mathematical model. Semi-

supervised learning algorithms work with half-done training 

data, where a part of the sample inputs does not have 

desired outputs. In unsupervised learning algorithms, the 

training data only contains the inputs and no desired 

outputs. In this paper, we use classification and regression 

algorithms, which are types of supervised learning. The first 

task is called classification, which includes designating 

input originals to one of the discrete classes. These classes 

are the number and location of damages in the bridge. The 

second task, which we mention as regression, is treated with 

foretelling the severity of the damage. 
 

2.1.1 Artificial Neural Networks (ANNs) 
ANNs were designed to contain a family of 

mathematical models. Inverse, ANNs can be used for 

solving math (Anitescu et al. 2019). The structure of 

biological neural networks is the source of ANNs creation. 

Pattern recognition problem, as we have indicated, must 

find out the non-linear mappings between a collection of 

input and output variables. The mapping is therefore created 

as mathematical functions. Adjustable parameters in these 

functions are resolved from training data. The output 

variables of ANNs is the results of the combination function 

between the bias function or hidden functions 𝑧𝑗(𝑥) with 

weight parameters 𝜔𝑘𝑗 
 

𝑦𝑘(𝑥) = ∑ 𝜔𝑘𝑗𝑧𝑗(𝑥) (1) 

 

Where 𝑦𝑘(𝑥) represents the output variables. 

The neural network has a number of the layers. The first 

layer is the input layer and the last layer is the output layer. 

The hidden layers are between these two layers. Each layer 

have a series of nodes. Each node represents one neuron. 

The number of hidden layers and the number of nodes are 

decided based on the relationship between input and output 

data and on the number of nodes in the input and output 

layers. The goal is to train the network maps new inputs 

correctly and not to over-fit the data. The ANNs structure is 

illustrated in Fig. 1. 

If the network has one hidden layer, the bias functions 

themselves contain adaptive parameters and are expressed 

by 

 

Fig. 1 A neural networks structure 

 

 

𝑧𝑗(𝑥) = 𝑔 (∑ 𝜔𝑗𝑖𝑥𝑖 + 𝑏𝑗) (2) 

 

Where 𝜔𝑗𝑖 and 𝑏𝑗 are the weight and bias parameters 

and 𝑥𝑖 represents the input variables. If the network has 

more than one hidden layer, the procedure will continue 

with more hidden functions. The function g(.) is called an 

activation function. Many kinds of activation function can 

be examined to optimize the network parameters. The most 

common used functions are expressed below. 
 

𝑔(𝑎) = 𝑡𝑎𝑛−1(𝑎)    𝑔(𝑎) =
1

1 + 𝑒−𝑎
 

𝑔(𝑎) = tanh(𝑎) =
𝑒2𝑎 − 1

𝑒2𝑎 + 1
 

(3) 

 

2.1.2 Pattern classification 
The ANNs considered above for classifying the types 

and locations of damages was designed to take the input 

data and to assign it to one of those classes, e.g., Damage 

Case 1 (DC1), Damage Case 2 (DC2), Damage Case 3 

(DC3), etc. We can present the outcome of the classification 

in terms of variable yk (output variable), where k is the 

number of class. If the sample represents DC1, then y1 takes 

the value 1, whereas y2 and y3 take the value 0. Similarly, if 

the sample represents DC2 then y2 takes the value 1, 

whereas y2 and y3 take the value 0. 

Consider the problem of two classes’ prediction between 

Damage Case 1 (DC1) and other Damage Cases (DC#). The 

two classes are labeled as DC1 (Positive) and DC# 

(Negative). Fig. 2 illustrates the Probability Density 

Functions of this case. For each threshold, there are four 

achievable results from a binary classifier. It is named a true 

positive (TP) if the actual class is DC1 and the results from 

the prediction is also DC1. It is named a false positive (FP), 

 

 

 

Fig. 2 Distributions from the class DC1 and other classes 

DC# 
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Fig. 3 The receiver operating characteristic (ROC) curve 

 

 

Table 1 The confusion matrix for classifying DC1 and DC# 

Outcome 
Observed 

 
Positive Negative 

Positive 
True positive 

(𝑇𝑃) 

False positive 

(𝐹𝑃) 

𝑃𝑃𝑉 

𝐹𝐷𝑅 

Negative 
False negative 

(𝐹𝑁) 

True negative 

(𝑇𝑁) 

𝐹𝑂𝑅 

𝑁𝑃𝑉 

 
𝑇𝑃𝑅 𝐹𝑃𝑅 

𝐴𝐶𝐶 
𝐹𝑁𝑅 𝑇𝑁𝑅 

 

 

 

if the actual class is DC# and the results from the prediction 

is also DC1. For a negative results, there can be either true 

negative (TN) if prediction class the same as actual class as 

DC# or false negative. 

Both TP and FP are zero if the threshold is located at the 

right of the null distribution and DC1 is not detected. The 

area below the null distribution extends if the threshold 

moves to the left. The four outcomes can be formulated in a 

confusion matrix, as show in Table 1, where the correct 

classifications are presented by numbers along the major 

diagonal. 

Where: 
 

𝑃𝑃𝑉: Positive Predictive value; 𝑃𝑃𝑉 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
 

𝐹𝐷𝑅: False Discovery Rate; 𝐹𝐷𝑅 =
𝐹𝑃

𝑇𝑃+𝐹𝑃
 

𝐹𝑂𝑅: False omission rate; 𝐹𝑂𝑅 =
𝐹𝑁

𝐹𝑁+𝑇𝑁
 

𝑁𝑃𝑉: Negative Predictive value 𝑁𝑃𝑉 =
𝐹𝑁

𝐹𝑁+𝑇𝑁
 

𝑇𝑃𝑅: True Positive Rate; 𝑇𝑃𝑅 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
 

𝐹𝑁𝑅: False Negative Rate; 𝐹𝑁𝑅 =
𝐹𝑁

𝑇𝑃+𝐹𝑁
 

𝐹𝑃𝑅: False Positive Rate; 𝐹𝑃𝑅 =
𝐹𝑃

𝐹𝑃+𝑇𝑁
 

𝑇𝑁𝑅: True Negative Rate; 𝑇𝑁𝑅 =
𝑇𝑁

𝐹𝑃+𝑇𝑁
 

𝐴𝐶𝐶: Accuracy; 𝐴𝐶𝐶 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝐹𝑁+𝐹𝑃+𝑇𝑁
 

 

Another general and graphical way to review the 

achievement of classifiers is by using receiver operating 

characteristic (ROC) curves (Fawcett 2004). Fig. 3 plots the 

ROC curve, where the horizontal axis is the false positive 

rate (FPR) versus the vertical axis is the true positive rate 

(TPR). The TPR and FPR are often called as sensitive and 

specificity, respectively. The ROC space is divided into two 

parts by the diagonal line. If the classifier understands the 

classes, the points in ROC is in the upper left triangle. The 

practical way to see the accuracy of the method is to 

analyze the area under the curve; i.e., the value 1 for 

perfection and value 0.5 for worthless. 

 

2.1.3 Regression analysis 
Assigning new inputs to one of the discrete classes is the 

main task of classification problems. However, if there are 

many other pattern recognition tasks, we shall refer to as 

regression problems, in which the outputs represent the 

value of continuous variables. In this paper, the severity of 

the damage in one element varies from 10% to 60%. The 

output of the network should be continuous variables 

corresponding to the target output, i.e. the severity of 

damage. 

Linear regression is the simplest form of regression. Our 

task is to find the best weight parameters and active 

function providing the best fit to our data. One way to 

measure the fit is measuring the mean square error (mse) as 

defined in Eq. (4), where 𝑦𝑘  represents the network 

outputs y and 𝑡𝑘 represents the desired outputs. In order to 

find the best fit, we must minimize mse. 

 

𝑚𝑠𝑒 =  
1

𝑁
∑(𝑒𝑖)

2

𝑁

𝑘=1

=
1

𝑁
∑(𝑡𝑘 − 𝑦𝑘)2

𝑁

𝑘=1

 (4) 

 

2.2 ANNs approach for structural damage 
assessment 

 

2.2.1 Structural damage 
Steel bridges are often selected in a case where the live 

load is large or the effective span is long, as in railway 

bridges. Steel truss bridges have higher adaptability than 

other kinds of bridges. For example, when one truss 

member is damaged, it’s not difficult to replace it by a new 

one. There are various types of damages in steel truss 

bridges including damage in joints (Mehrjoo et al. 2008) 

and main members (Lee et al. 2005, Barai and Pandey 

1997, Yeung and Smith 2005). Most metals exist in the 

form of oxides. Therefore, corrosion may appear on steel 

material in the atmosphere, water and seawater. The 

appearance of corrosion in a truss member reduces its 

stiffness. Defining ki as the stiffness reduction in the truss 

member i, the undamaged truss and completely damaged 

truss are represented by ki = 0 and ki = 1, respectively. Eq. 

(5) expresses this definition, where 𝐾𝑖 and 𝐾𝑖
𝑑  are the 

undamaged and damage stiffness of the i element, 

respectively. 
 

𝐾𝑖
𝑑 = 𝐾𝑖(1 − 𝑘𝑖) (5) 

 

2.2.2 Transmissibility damage index as input data 
Consider the structural vibration, the transmissibility 

𝑇𝑖,𝑗(𝜔)  is described simply as the ratio between two 

responses in the frequency domain when an excitation force 

is applied, i.e. 
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𝑇𝑖,𝑗(𝜔) =
𝑋𝑖(𝜔)

𝑋𝑗(𝜔)
 (6) 

 

Where: 𝑋𝑖(𝜔) and 𝑋𝑗(𝜔) are the responses at location 

i and j in the frequency domain, respectively. 

When used for detecting damage, the transmissibility is 

more effective if restricted to specific frequency bands 

(Worden et al. 2003). The indicator 𝑇𝐼𝑖,𝑗 is defined in Eq. 

(7) to enhance the sensitivity of transmissibility associative 

with the structural deterioration or damages. 
 

𝑇𝐼𝑖,𝑗 = ∫ 𝑇𝑖,𝑗𝑑𝑓
𝑓𝑚𝑎𝑥

𝑓𝑚𝑖𝑛

 (7) 

 

Where 𝑓𝑚𝑖𝑛 and 𝑓𝑚𝑎𝑥 are the low and high boundary 

of frequency band. 

The indicator 𝑇𝐼𝑖,𝑗 of intact bridge at all locations is 

used to calculate the damage indicator. The damage 

indicator value is the difference between the transmissibility 

indicator at all locations of the damaged bridge and intact 

bridge for a given frequency band. 
 

𝐷𝐼𝑘 =
𝑇𝐼𝑖,𝑗

𝑢 − 𝑇𝐼𝑖,𝑗
𝑑

𝑇𝐼𝑖,𝑗
𝑢  (8) 

 

Where, 𝑇𝐼𝑖,𝑗
𝑢  is the transmissibility indicator of the 

undamaged bridge and 𝑇𝐼𝑖,𝑗
𝑑  is the transmissibility 

indicator of the damaged bridge. 

The damage indicator should take the mean value of all 

measurement times. The damage indicators of all 

transmissibility functions will be stored and then used as the 

input data of ANNs. 

 

2.2.3 Procedure for damage detection 
Step 1: The procedure starts with the sensors setup. For 

truss bridges, the sensors are placed at the nodes, where the 

desired mode shapes of the bridge can be measured. The 

model of the bridge, which is created by using a finite 

element software, is updated with the help of these data. 

Step 2: The displacement response of selected nodes in 

step 1 is calculated from updated FEM and then 

transformed to the frequency domain. The load excitation is 

the moving vehicle, running across the bridge with the 

constant velocity. The weight of the vehicle is assumed to 

be constant, too. Several vehicle weights are considered in 

this step. Random Gaussian noise is added to the simulated 

responses. Damage indicators are estimated based on 

transmissibility, Eqs. (6)-(8). This procedure is applied to all 

considered vehicle weight potential damage locations and 

severities. Then the damage indicators are stored as input 

and the damage locations and the severities are stored as the 

desired output of the ANNs. 

Step 3: ANNs training and testing are performed and the 

best performance ANNs is stored. 

Step 4: Implementation for the real bridge (see step 1) is 

carried out. The sensors are installed in the damaged bridge 

at the same location at step 1. The displacement response of 

those sensors is recorded then transformed into the 

frequency domain. The load excitation should be in the 

range of vehicle weight considered in step 2. Damage 

indicators are estimated based on transmissibility, Eqs. (6)-

(8) again. Then all these damage indicators are used as 

input of the best ANNs created in step 3. The output of this 

ANNs is the location and the severity of the damage in the 

bridge. 
 

 

3. Case study 
 

3.1 The Nam O bridge 
 

The Nam O bridge is a long-span railway bridge opened 

in 2011, under the support of the Ho Chi Minh City - Hanoi 

Line traffic Safety Improvement Project. The Nam O bridge 

is located at Da Nang city, Vietnam. The bridge across Cu 

De river, hold the train traffic from the North to the South. 

The bridge consists of four simply supported spans, with the 

length of 75 m for each span. The rail track is directly 

fastened to the stringers of the bridge deck. The view of the 

bridge from the downstream side is displayed in Fig. 4 

while Fig. 5 shows the main structural elements of the 

bridge. Main structural elements included top chords, 

bottom chords, verticals, diagonals, portal frames, and 

stringers. The cross-sectional properties of the truss 

members are presented in Table 2. The steel material has 

elastic modulus of 2.05 × 1011 N/m2, density of 7850 kg/m3
 

and Poisson’s ratio of 0.3. 
 

3.2 Experimental Measurements and FEM 
updating 

 

The ambient vibration was performed on the first span 

from the upstream side of the river. The bridge free 
 

 

 

Fig. 4 The Nam O bridge (Tran-Ngoc et al. 2018) 
 

 

 

Fig. 5 The Nam O bridge main structural elements 

(Tran-Ngoc et al. 2018) 
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Table 2 Cross-sectional properties of main structural 

members 

Member 
Area 

A (m2) 

Moment of 

inertia 

Iz (m4
) 

Moment of 

inertia 

Iy (m4) 

Upper 

chord 

Type 1 0.056 6.70 ×10-04 3.1 ×10-03 

Type 2 0.054 6.46 ×10-04 2.93 ×10-03 

Type 3 0.034 4.30 ×10-04 1.90 ×10-03 

Type 4 0.034 4.3 ×10-04 1.90 ×10-03 

Lower chord  0.020 2.10 ×10-04 6.30 ×10-04 

Vertical chord 

Type 1 0.010 5.49 ×10-05 1.15 ×10-04 

Type 2 0.023 1.60 ×10-04 6.50 ×10-04 

Type 3 0.014 1.24 ×10-04 2.78 ×10-04 

Diagonal 

chord 

Type 1 0.014 1.24 ×10-04 2.78 ×10-04 

Type 2 0.015 1.20 ×10-04 3.40 ×10-04 

Type 3 0.015 1.20 ×10-04 4.00 ×10-04 

Stringer  0.020 2.07 ×10-04 6.27 ×10-04 

Transverse 

beam 

Type 1 0.026 2.03 ×10-04 3.61 ×10-03 

Type 2 0.026 9.25 ×10-04 3.20 ×10-03 

Strut 

Portal 

Frame 
0.053 6.25 ×10-04 2.80 ×10-03 

Type 1 0.020 1.48 ×10-04 1.86 ×10-03 

Type 2 0.022 1.50 ×10-04 3.20 ×10-03 

Type 3 0.021 1.60 ×10-04 2.00 ×10-03 

Upper wind 

bracing 

Type 1 0.0036 8.00 ×10-04 1.09 ×10-05 

Type 2 0.0019 1.90 ×10-06 1.40 ×10-06 

Lower wind 

bracing 
 0.0049 2.38 ×10-06 4.38 ×10-06 

 

 

 

 

Setup 1: 106z 206y 302z 402y 101z 103z 301z 303z 305z 

Setup 2: 106z 206y 302z 402y 102z 104z 107z 304z 306z 307z 

Setup 3: 106z 206y 302z 402y 102y 103y 104y 304y 306y 307y 

Setup 4: 106z 206y 302z 402y 101y 105y 107y 301y 303y 305y 

Setup 5: 106z 206y 302z 402y 102y 103y 104y 304y 306y 307y 

Setup 6: 106z 206y 302z 402y 100x 100y 300y 300x 308x 

Setup 7: 106z 206y 302z 402y 403y 404y 405y 406y 

Setup 8: 106z 206y 302z 402y 201y 207y 401y 407y 

Fig. 6 The measurement grid, the position of reference 

sensors and setups 
 

 

vibration after train passage was measured. Eight setups 

were carried out with four fixed reference sensors, 

distributed on the two-bay of the span at both lower node 

and upper one as shown in Fig. 6. Accelerometers and 

 

Fig. 7 Placement of accelerometers and LDVTs at 

one node of Nam O bridge 

 

 

LVDT sensors are set up on the bridge to measure 40 DOFs 

(Fig. 7). The DOFs in each setup can be found in Fig. 6, 

where the x-axis is in the longitudinal direction of the 

bridge; the y-axis is in the transverse direction (to the river 

flow direction) and the z-axis is in the vertical direction. 

Nodes 100, 300, 308 and 108 are the location of bearings. 

Three sensors in x-axis direction were placed at three nodes 

100, 300 and 308. Two sensors along y-axis were placed at 

three nodes 100, 300 and no sensor at the fixed node 108. 

The real bearings operational conditions are updated by 

using these five sensors. The measurement time was about 

ten to twenty minutes per setup and the sampling rate was 

1651 Hz. 

Table 3 shows the summary of the first 10 extracted 

mode shapes, within the frequency range from 1.45 Hz to 

6.05 Hz. In order to solve the model updating problem, 

these ten modes are enough. The finite element model of 

 

 

Table 3 The first ten natural frequencies from FEM 

updating compared to the measurement 

Mode 

No. 

FEM 

updating –

PSO (Hz) 

Measurement 

(Hz) 

Differences 

(%) 
Mode type 

1 1.45 1.45 0 Transverse mode 

2 3.10 3.11 0.3 Transverse mode 

3 3.27 3.28 0.3 Lateral torsion 

4 4.66 4.62 0.8 First bending 

5 6.55 6.05 7.6 
Local mode of the 

two bays at ends 

6 7.15 7.12 0.4 
Local mode of the 

two bays at ends 

7 7.33 7.30 0.5 Transverse mode 

8 8.10 7.46 8.57 Transverse mode 

9 9.00 8.29 7.94 Combination mode 

10 9.57 8.89 7.10 
Second vertical 

bending 
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Nam O Bridge was built based on the geometry from the as-

built drawings using the MATLAB toolbox StaBil (Dooms 

et al. 2010). The FE model includes 137 nodes and 227 

beam elements. The elements are Timoshenko beams, 

which estimate the impacts of shear-deformation. Each 

node of elements includes 6 degrees of freedom consisting 

of translations around the x, y, and z axes and rotations in 

the x, y, and z axis. Rotational springs were used to model 

the connections between truss members and the springs 

were employed to model the bearings. Tran-Ngoc et al. 

(2018) used the Particle Swarm Optimization algorithm 

updating the model so that the frequencies from the FE 

model and from measurement match. Considering Table 3, 

the results from modes 1 to 3 perfectly match and the 

differences between FEM and measurement for other 

natural frequencies are less than 10%. More details about 

the measurement, FEM bridge, and model updating can be 

found in Ref. (Tran-Ngoc et al. 2018). 
 

3.3 The proposed ANNs method 
 

In the Nam O bridge, each span has got two main 

trusses as shown in Fig. 6. Each main truss has 29 elements 

and 16 nodes, which have been labeled. In the experiment, 

eight setups were used to measure 40 DOFs. Therefore, in 

the first step of detecting damage, we proposed finding the 

displacement responses of these DOFs for all damage 

scenarios. Damage in all lower chords was taken into 

account in this paper. Three cases of damage including 

damage in single element (DC1), damage in two elements 

(DC2) and damage in three elements (DC3) were 

introduced. We reduced the stiffness of each element to 

reflect the damage severity. In DC1, the stiffness is reduced 

from 10% to 60% with an interval of 1%. In DC2, the 

stiffness is reduced from 1% to 60% with an interval of 5% 

for both elements and we use the same reduction and 

interval for three elements in DC3. We use 16 single 

damaged elements from S1 to S16 in DC1, so that we have 

800 sampling data. Six cases of DC2; from M1 to M6 are 

introduced and 864 sampling data are restored. Only one 

case of 3 elements damage (M7) is considered, and then 

1728 scenarios and sampling data are restored. Table 4 

shows the damaged elements in the three cases, where one 

element is denoted by two nodes, for example element 100-

101 connects node 100 and 101. All the damage scenarios 

are simulated using FEM in Matlab. 

As Nam O bridge is a railway bridge, a locomotive is 

proposed as an excitation force. Three locomotive weights 

(35 tons, 33 tons, and 30 tons) are used to get the data for 

training the network. This locomotive has three axels and 

the distance between the two axels is 1.5 m. The weight is 

divided equally on the three axels. The displacement 

responses at 40 DOFs are calculated based on FE results. 

The axle load is modelled using a forced matrix in the finite 

element model. When the locomotive runs on the bridge, 

the force is transmitted to the longitudinal beam, and then 

transmitted to the truss joints in the direction of DOF. 

Gaussian noise is considered in the numerical displacement 

response. The signal to noise ratio ranges from 70 dB to 50 

dB. 

 

Table 4 Details of damage elements in three damaged cases 

Mode 

No. 

FEM 

updating –

PSO (Hz) 

Measurement 

(Hz) 

Differences 

(%) 
Mode type 

1 1.45 1.45 0 Transverse mode 

2 3.10 3.11 0.3 Transverse mode 

3 3.27 3.28 0.3 Lateral torsion 

4 4.66 4.62 0.8 First bending 

5 6.55 6.05 7.6 
Local mode of the 

two bays at ends 

6 7.15 7.12 0.4 
Local mode of the 

two bays at ends 

7 7.33 7.30 0.5 Transverse mode 

8 8.10 7.46 8.57 Transverse mode 

9 9.00 8.29 7.94 Combination mode 

10 9.57 8.89 7.10 
Second vertical 

bending 
 

 

 

There are four fixed sensors in the measurements. These 

reference sensors are located at the points of significant 

modal displacements of many modes that measure 4 DOFs 

106z, 206y, 302z, 402y. To calculate the transmissibility 

indicators, these 4 DOFs are used as reference joints. The 

displacement responses are transform to frequency domain 

to calculate the transmissibility. Those transmissibility 

functions are: 
 

Reference node 106 in z direction: 

𝑇100,106,  𝑇101,106, 𝑇102,106, 𝑇103,106, 𝑇104,106, 𝑇107,106. 
 

Reference node 206 in y direction: 

𝑇100,206, 𝑇101,206 , 𝑇102,206, 𝑇103,206, 𝑇104,206, 

𝑇105,206, 𝑇201,206, 𝑇207,206. 
 

Reference node 302 in z direction: 

𝑇301,302, 𝑇303,302, 𝑇304,302, 𝑇305,302, 𝑇306,302, 𝑇307,302. 
 

Reference node 402 in y direction: 

𝑇300,402, 𝑇301,402, 𝑇303,402, 𝑇304,402, 𝑇305,402, 𝑇306,402, 

𝑇307,402, 𝑇401,402, 𝑇403,402, 𝑇404,402, 𝑇405,402, 𝑇406,402, 

𝑇407,402. 
 

In x direction: 𝑇100,308. 
 

In total, from 40 DOFs, 34 transmissibility functions 

𝑇𝑖,𝑗(𝜔) are calculated using Eq. (6). The transmissibility 

indicators are then calculated using Eq. (7) at frequency 

band from 0.8 Hz to 2.5 Hz. Finally, 34 damage indicators 

DI are determined using Eq. (8) and restored as input of 

ANNs. This procedure is repeated for all scenarios. 

The combination of two machine learning algorithms 

are proposed for detecting damage in Nam O bridge. The 

ANNs using pattern recognition algorithm is trained to 

classify the damage. The ANNs using regression algorithm 

is trained to find the severity of the damage. The 

classification problems can be solved by using a two-layer 

feed-forward network. From the input data and desired 

output, the network divides data into training, validation, 
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and testing sets, which define the network architecture and 

train the network. The three classes used are DC1, DC2, 

and DC3. We choose the network with two hidden layers. 

Hidden layer 1 has 350 neurons and hidden layer 2 has 50 

neurons. The network architecture is shown in Fig. 8. This 

network then will be trained and validated using trainscg 

(Scaled conjugate gradient back propagation) training 

function in Matlab, cross entropy are used as loss function. 

After classifying the damage cases, the severity of the 

damage can be found by using the second machine learning 

algorithm. The structure of this ANNs is shown in Fig. 9, 

Figs. 10 and 11 for DC1, DC2 and DC3, respectively. The 

number of hidden layers and neurons should be taken into 
account (Guo et al. 2019). In this work, the structure of 

ANNs is chosen by trial and error. These regression 

networks were trained by using mean square error (mse) 

performance and Levenberg-Marquardt training algorithm. 

The results of these networks working will be shown in the 

next section. Fig. 12 shows the procedure to create ANNs 

from the numerical model data set. These networks can be 

stored and used for any new cases. 
 

 

 

Fig. 8 The structure of the pattern recognition neural 

network 
 

 

 

Fig. 9 The structure of the regression neural network 

for DC1 
 

 

3.4 Results and discussion 
 

3.4.1 Intact bridge 
The transmissibility function is calculated following the 

procedure discussed in Section 3.3. These transmissibility 

functions are taken from the simulated responses of the 

considered DOFs and locomotive weight. Fig. 13 shows the 

function 𝑇100,106  before and after using the GRNN 

function for approximation. The load excitation is the 35-

ton locomotive. The peaks and the valleys of these two 

functions appear at the same frequencies instead of the 

oscillation of the functions got from the numerical model. 

This function is oscillating because of the numerical 

response and the moving load being calculated every 0.005 

s, instead of being a continuous variable. GRNN are single-

pass associate memory feed-forward type ANNs suggested 
by Specht (1991). Using this method, we can calculate 34 

transmissibility functions described above for the intact 

bridge. Only three functions 𝑇100,106, 𝑇102,106, 𝑇104,106 are 
plotted in Fig. 14. Other functions have similar shape. 

 

 

 

Fig. 10 The structure of the regression neural network 

for DC2 

 

 

 

Fig. 11 The structure of the regression neural network 

for DC3 
 

 
 

 

Fig. 12 The procedure for create ANNs used in damage detection of the Nam O Bridge 
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Fig. 13 𝑇100,106 calculated from numerical model and 

GRNN approximation function, excited by 35 

tons locomotive 
 

 

 

Fig. 14 Transmissibility functions of intact bridge excited 

by 35 tons locomotive 

 

 

3.4.2 Damaged bridge 
As discussed in section 3.3, 34 transmissibility functions 

are calculated and the damage indicators (DI’s) are 

determined based on the TI indicator. Fig. 15 shows the 

transmissibility functions T102, 106. The percentages, 10%, 

40%, and 60%, are the stiffness reduction of the element 

307-308. The first peak is chosen for the calculation of TI, 

frequency range from 0.8 Hz to 2.5 Hz. We can see that 

when the severity of the damage increases, the 

transmissibility function changes and then increases. 

There are three cases of damage DC1, DC2, and DC3 as 

discussed above. In the first task, we use ANNs shown in 

Fig. 8 to classify these 3 damage cases. There is 2400 

samples of DC1, 2592 samples of DC2 and 5184 samples of 

DC3. These data are divided into 3 parts: 70% for training, 

15% for validation and 15% for a test. In the confusion 

matrix shown in Fig. 16(a), the numbers 1, 2, 3 means DC1, 

DC2 and DC3, respectively. We see that 57.0% of the times 

 

Fig. 15 Transmissibility functions T102,106, for the case 

of damage at element 307-308 
 

 

 

(a) Confusion matrix 
 

 

(b) Performance progress 

Fig. 16 DC1, DC2, DC3 classification results 
 
 

in the training confusion matrix, 53.5% of the times in the 

validation confusion matrix, 57.4% of the times in the test 

confusion matrix, classifies DC1 correctly.  The 

performance progress in Fig. 16(b) indicates that the 
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iteration at which the validation performance reached a 

minimum is epoch 104. The training progresses well, the 

cross-entropy loss decreases when the number of epoch 

increases. Similarly, ANN classifies DC2 correctly for 

71.3% of the times in the training confusion matrix, 71.0% 

of the times in the validation confusion matrix, 70.6 % of 

the times in the test confusion matrix. The DC3 has the 

biggest samples and the highest percentage of correct 

classification, too. 92.8% of the times in the training 

confusion matrix, 92.2% of the times in the validation 

confusion matrix, 92.3 % of the times in the test confusion 

matrix are classified correct. In all cases, 78.7% are 

correctly classified. As discussed above, DC1 have 16 cases 

of damage, from S1 to S16, DC2 have 8 cases of damage 

from M1 to M6. Pattern networks are used again for 

classification. Fig. 17 shows the ROC curves and 

performance progress from M1 to M6. Fig. 18(a) draws 

some ROC curves, each corresponds to different scenario 

S1 to S16. The area under the ROC curve, which is close to 

1, means that the method’s accuracy is high. The correct 

percentage, in this case, is 80.0% of 2598 samples being 

classified correctly in DC2 and the correct percentage for 

DC1 is 77.8%. The figures of performance progress indicate 

 

 

 

(a) ROC curves 
 

 

(b) Performance progress 

Fig. 17 DC2 classification results 

a very similar trend between validation and test data (Figs. 

17(b) and 18(b)). The overfitting does not occur in this case. 

These results proved that ANNs are successful in finding 

out the type and the location of the damage. 

To find out the damage severity, we use regression 

networks as shown in Fig. 19. The output of this network is 

the severity of the damage. For DC1, the input of the 

network is the 34 transmissibility indicators and the target 

of the network is the percentage of the stiffness reduction in 

the damaged element. For DC2, there are two targets of the 

network that are the percentages of the stiffness reduction at 

the two damaged elements. Similarly, for DC3, there are 

three targets corresponding to 3 damaged elements. Fig. 

19(a) shows a relationship between the outputs of the 

network and the target in S1 scenario. There are four plots 

corresponding to the training data sample, validation data 

sample, testing data sample, and all datasets. The dashed 

line in each plot presents the perfect line outputs = targets. 

𝑅-value is the correlation coefficient between the outputs 

and targets. It is a measure of how well the variation in the 

output is explained by the targets. R = 1 indicates that the 

network outputs are perfectly fit the targets. All four R- 
values in Fig. 19(a) are approximately 0.9 indicating a 

nearly perfect fit. The variation of mean square error versus 

the different number of epochs was plotted in Fig. 19(b). 
 

 

 

(a) ROC curves 
 

 

(b) Performance progress 

Fig. 18 DC1 classification results 
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(a) Regression analyses 
 

 

(b) Performance progress 

Fig. 19 S1 scenario regression analysis results 
 

 

Table 5 R-value of the network 

Scenario S1 S2 S3 S4 S5 S6 

R-value 0.905 0.918 0.852 0.938 0.940 0.981 

Scenario S7 S8 S9 S10 S11 S12 

R-value 0.983 0.944 0.981 0.953 0.85 0.968 

Scenario S13 S14 S15 S16 M1 M2 

R-value 0.980 0.935 0.965 0.90 0.867 0.86 

Scenario M3 M4 M5 M6 M7 

R-value 0.901 0.956 0.871 0.942 0.773 
 

 

 

The 𝑚𝑠𝑒 decreases with the increase in the number of 

epochs. The best performance is in epoch 3. The training 

continued for six more iterations before it stopped. The 

validation and test curves are similar. No problem occurred 

in the training progress. 

Table 5 shows the R-value of the networks for all 

damaged scenarios. M7 is the most complicated scenario 

with 3 damaged elements having the lowest R-value. All the 

R-value is larger than 0.75, most of them larger than 0.90. 

This proves that ANNs are successful in finding out the 

severity of the damage in each damaged element. This 

ANNs then can be stored and used for any new case. 

Therefore, we can conclude that using machine learning 

algorithms of the different types can help us in assessing the 

damage of Nam O bridge. 

 

 

4. Conclusions 
 

A novel methodology has been here proposed, based on 

the machine learning algorithm, to provide an approach for 

assessing damage in a truss bridge with acceptable 

accuracy. The transmissibility damage indicator was 

calculated from an updated FE model of the bridge and then 

used as the input data of ANNs. There are many kinds of 

machine learning algorithms that can be used depending on 

the desired purpose. In this paper, the author proposes using 

a combination of two algorithms. The Pattern Recognition 

algorithm was used to classify the type and location of 

damages. The Regression algorithm was applied to find the 

damage severities. First, the FEM is used to train the 

network. Then, the user provides the input data (the damage 

indicators calculated from experiments). The results 

indicated that the ANNs could distinguish the damage 

appearing at one element, two elements or three elements 

and found out the severity of the damages. 

Transmissibility and machine learning algorithm are two 

methods that only based on output responses only. 

Therefore, the combination of these two methods is very 

interesting. It is important to note that the proposed method 

needs a large number of measurement points. The more 

DOFs we consider, the more accurate the networks. The 

actual technology permits this to occur. The vibration 

response of the bridge can be measured at many points. 

This shows a promising future in real applications of  

SHM. 

Several excitation loads are used to train the network in 

this research. The results are still good. This proved that if 

the number of samples is big enough, the real excitation 

load doesn’t have to be the same as the load used for the 

numerical simulations. But the real excitation load should 

be in the range of trained excitation load. This research 

doesn’t consider the effect of temperature, the roughness of 

the bridge slab, humidity, wind load, etc. But ANNs work 

very well with big data. All of the conditions that influence 

the response of the bridge can be considered in the input of 

the network. Considering these effects will be the subject of 

our future research. 
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