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1. Introduction 

 

In the last two decades, there have been considerable 

developments in the area of Structural Health Monitoring 

(SHM). Worden et al. (2007) stated that the fundamental 

problem of SHM is damage identification. Different 

damage detection and identification techniques have been 

developed and investigated in the literature, for example 

using modal parameters (Yin et al. 2017, Ng and Au 2018) 

and time domain vibration data (Lam et al. 2017). One of 

the important and rapidly evolving approaches in the area of 

damage detection using vibration data is time series 

analysis. Originally, it was developed to analyze regularly 

sampled long sequences data and is inherently suitable to 

SHM. Time series analysis has been employed to extract 

damage sensitive features from measured vibration data. 

The time series analysis algorithms aim at fitting a time 

series model to vibration data, and the damage features can 
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be extracted from the constructed time series models for 

damage detection purpose. These algorithms make use of 

linear Auto-Regressive (AR) (Gul and Catbas 2009, 

Jayawardhana et al. 2015), Auto-Regressive models with 

eXogenous outputs (ARX) (Zhang 2007, Fasel et al. 2010), 

and/or Auto-Regressive moving average (ARMA) models 

(Carden and Brownjohn 2008, Bao et al. 2013, Fan et al. 

2016) to provide a statistical damage detection. In general, 

the time series analysis algorithms have been used to 

diagnose either linear or nonlinear damage in structures. 

A number of researchers have employed traditional 

linear time series analysis algorithms, e.g., AR, ARX and 

ARMA models, and developed damage sensitive features 

(DSFs) using the coefficients of these models, as well as the 

mean square deviation of the residual errors, to detect the 

linear damage in structures. Noh et al. (2009) developed 

time series based damage detection algorithms using both 

acceleration and strain data to model AR processes, and the 

DSF was defined using the first three AR coefficients. 

Carden and Brownjohn (2008) proposed a statistical 

classification algorithm. In their algorithm, the structure’s 

time-series responses are fitted with ARMA models, while 

classifier was fed with the ARMA coefficients. Lautour and 

Omenzetter (2010) proposed an algorithm consisting of AR 

models and artificial neural network (ANN) for damage 

classification and estimation. The coefficients of the AR 
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Abstract.  Majority of the damage in engineering structures is nonlinear. Damage sensitive features (DSFs) extracted by traditional 

methods from linear time series models cannot effectively handle nonlinearity induced by structural damage. A new DSF is 

proposed based on vector space cosine similarity (VSCS), which combines K-means cluster analysis and Bayesian discrimination to 

detect nonlinear structural damage. A reference autoregressive moving average (ARMA) model is built based on measured 

acceleration data. This study first considers an existing DSF, residual standard deviation (RSD). The DSF is further advanced using 

the VSCS, and then the advanced VSCS is classified using K-means cluster analysis and Bayes discriminant analysis, respectively. 

The performance of the proposed approach is then verified using experimental data from a three-story shear building structure, and 

compared with the results of existing RSD. It is demonstrated that combining the linear ARMA model and the advanced VSCS, 

with cluster analysis and Bayes discriminant analysis, respectively, is an effective approach for detection of nonlinear damage. This 

approach improves the reliability and accuracy of the nonlinear damage detection using the linear model and significantly reduces 

the computational cost. The results indicate that the proposed approach is potential to be a promising damage detection technique. 
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models were treated as DSF and treated as inputs of the 

ANN in damage detection. The performance of the 

algorithm was verified and evaluated using experimental 

data of a 3-story shear building structure from Los Alamos 

National Laboratory (Figueiredo et al. 2009). Other 

researchers used the residual error generated by the time 

series model for damage detection. Lu et al. (2008) used AR 

and ARX to determine damage in two near full-scale single-

story reinforced concrete frames. The measure of damage 

was residual error calculated by the ARX model. Rao and 

Ratnam (2012) presented an AR model for health 

monitoring of welded structures by determining residual 

errors through Shewhart and exponentially weighted 

moving average control charts. Roy et al. (2015) proposed 

different DSFs based on ARX models, such as ARX model 

coefficients, Kolmogorov–Smirnov (KS) test statistical 

distance, and model residual error. 

In addition to detecting the existence of damage, studies 

have focused on determining the damage location. Gul and 

Catbas (2011) presented two approaches to extract DSFs 

from ARX models. The first approach is to quantify simple 

ARX models and noise free data, by which the coefficients 

of the ARX models are directly employed as the DSF. The 

second approach is to use the ARX model fitting ratios as 

the DSF, which was successfully applied to different cases 

for locating and identifying the damage based numerical 

and experimental data under noisy condition. Zheng and 

Mita (2007, 2008, 2009) presented a two-stage damage 

detection method for detecting and locating damage using 

ARMA models. Two distance measures were introduced 

using the cepstral metric and subspace angles of ARMA 

models, respectively. 

All the aforementioned studies for damage identification 

are inherently limited to linear models and ignored the 

nonlinearities of the structural. The structure may originally 

act linear but subsequently behave nonlinear because of the 

inchoation of damage (Prawin and Rao 2018). One of the 

challenges in SHM is to distinguish and categorize linear 

and nonlinear damage, and nonlinear damage and 

nonlinearities in the healthy structures (Adams and Farrar 

2002). Linear damage is defined as the situation when the 

initially linear-elastic structure remains linear-elastic after 

damage. Nonlinear damage is defined as the situation when 

the initially linear-elastic structure behaves in a nonlinear 

manner after the damage has been appeared. An example of 

nonlinear damage is the formation of a fatigue crack that 

subsequently opens and closes under the normal operation 

environment (Doebling et al. 1996). Therefore, the 

nonlinear characteristics of structural response need to be 

taken into damage detection. Sohn et al. (2003) 

demonstrated that although nonlinear responses of 

structures have often been overlooked in the developments 

of SHM, they can provide useful information for damage 

detection. 

Traditional linear time series analysis methods using 

AR, ARX, or ARMA models are unable to reliably detect 

nonlinear damage. Because the linear time series methods 

assume that the residual error gained from the models 

follows normal distribution, and adopts standard statistical 

analysis. However, when nonlinear damage occurs, the 

distribution of the responses no longer follows the normal 

distribution. As a result, the damage detection accuracy is 

affected by the nonlinear effect of the responses and this 

may lead to false alarm in damage detection if the 

nonlinearities are neglected (Fan and Yao 2006, Farrar and 

Lieven 2007). 

In this study, two algorithms are proposed to detect 

nonlinear damage using the linear ARMA models. The 

existing residual standard deviation (RSD) employed in this 

study is defined as the ratio of RSD in the unknown state to 

that in the benchmark state. First, the cosine similarity of 

the DSF is proposed to improve the performance of the 

existing DSF in damage detection. To enhance the 

capability of the nonlinear damage detection, this advanced 

DSF is then combined with either cluster analysis based on 

K-means or Bayes discriminant approach to further improve 

the reliability of the nonlinear damage detection based on 

the linear model and a new damage index. To verify and 

compare the performance of the proposed algorithms, 

experimental data of a three-story shear structure is used to 

construct the ARMA models, and then the ARMA models 

with existing DSF is compared with the performance of the 

advanced DSF. The results demonstrate that the proposed 

advanced DSF proposed can effectively diagnose the 

nonlinear damage. 
 

 

2. Two proposed algorithms based on linear ARMA 
model 
 

This section describes the background of the ARMA 

model and a damage index. The proposed DSF and 

associated classification algorithms are then presented. 
 

2.1 Description of ARMA model 
 

The equation below gives the conditional mean in a 

general linear ARMA model. 
 

𝑦𝑡 = 𝑐 + ∑ 𝛼𝑖𝑦𝑡−𝑖

𝑝

𝑖=1

+ ∑ 𝛽𝑗𝑦𝑡−𝑗 + 𝜀𝑡

𝑞

𝑗=1

 (1) 

 

The time series to be modeled is represented with 𝑦𝑡. c 

in the right portion is a constant. The order of the AR and 

moving average (MA) processes are expressed by 𝑝 and 

𝑞, respectively. AR and MA coefficients are expressed by 

𝛼𝑖 and 𝛽𝑗, respectively. 𝜀𝑡 is the error term. At the right-

hand side of Eq. (1), the first three terms are deterministic, 

and can be taken as the prediction of the current state based 

on previous observations and errors. The error term ε is a 

random variable that stands for the random component in 

the mean of yt. Commonly, ε is taken as a variable whose 

mean is zero and variance is constant, i.e., (i) E(εt) = 0, (ii) 

E(εt εT) = 0 for t ≠ T, and (iii) E(εt
2) = σ2. 

 

2.2 Definition of RSD 
 

When damage occurs in the structure, the previously 

constructed model based on the signals of the benchmark 

state would be unable to reproduce the time series acquired 
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from damage conditions. The residual errors in damage or 

nonlinear states are assumed to be large and exhibit greater 

variance when it is compared to the benchmark model. 

Therefore, the standard deviation of the residual errors from 

the ARMA model can be defined as a damage factor. Chen 

et al. (Chen and Yu 2013, Chen et al. 2015) proposed the 

residual standard deviation (RSD), which is defined as the 

ratio of the standard deviation of residual error in the 

unknown condition to that in the benchmark condition and 

is given by 

RSD =
std(𝜀𝑡

Test)

std(𝜀𝑡
Ref)

 (2) 

 

when RSD = 1, the structure is deemed as healthy. RSD > 1 

means damage exists in the structure. 
 

2.3 The proposed VSCS based on vector space 
cosine similarity 

 

It is ineffective if the nonlinear damage detection only 

relies on the existing damage index extracted using linear 

models due to the loss of nonlinear damage information. In 

order to enhance nonlinear damage detection, the advanced 

VSCS is proposed in this study, which is derived from the 

existing RSD using cosine similarity. Cosine similarity in 

the vector space is defined as a weighted sum of the 

similarity between two high order vectors. The fundamental 

nature of the cosine similarity is the cosine of the angle 

between two vectors, which stands for the difference in 

direction between two vectors. Thus, cosine similarity of 

two vectors 𝑋 and 𝑌 is given by Zhu et al. (2011) as 

follow. 

sim( 𝑋, 𝑌) = cos 𝜃 =
⟨𝑋 ⋅ 𝑌⟩

‖𝑋‖ ⋅ ‖𝑌‖
 (3) 

 

In Eq. (3), sim is used as an abbreviation for similarity, 

thus sim(X, Y) represents the cosine similarity between the 

vectors X and Y. The numerator is the inner product of two 

vectors and denominator is the product of the L2 norm of 

the two vectors. The cosine similarity always has a range of 

values from -1 to 1, where 1 means the two vectors are very 

similar. The value in [-1,1] means there is a certain degree 

of variation between the two vectors. 

In this study, a new DSF is proposed and it is defined as 

VSCS between the RSD of benchmark condition and test 

condition, which is given by 
 

VSCS =
∑ RSD𝑖𝑘

RefRSD𝑗𝑘
Test𝑚

𝑘=1

√(∑ (RSD𝑖𝑘
Ref)

2𝑚
𝑘=1 ) (∑ (RSD𝑗𝑘

Test)
2𝑚

𝑘=1 )

 
(4) 

 

where RSD𝑖𝑘
Ref is the RSD of benchmark model from the k-

th component of the characteristic vector in i-th category, 

and RSD𝑗𝑘
Test  is the RSD of test model from the k-th 

component of the characteristic vector in j-th category. 
 

2.4 Classification algorithms based on K-means 
cluster analysis and Bayes discriminant 
analysis 

 

Generally, the DSF needs to be used in a pattern 

classification framework to detect damage, which assumes 

the distribution of response data from the structures are 

normal. However, structural damage affects dynamic 

properties of structures, resulting a change of the extreme 

values in the data (Fan and Yao 2006). Thus, the assumption 

of normality imposed may lead to improper damage 

detection, especially when the damage is nonlinear. There 

are two approaches proposed in this study. The first 

approach is to use K-means cluster analysis. The second 

approach is to use Bayes discriminant analysis, which is 

based on the value of the posterior probability to distinguish 

between health and damage state. The following two sub-

sections describe the details of K-means cluster analysis and 

Bayes discriminant analysis. 
 

2.4.1 K-means cluster analysis 
K-means cluster analysis algorithm was originally 

introduced by McQueen (1967), which has been one of the 

most popular and widely used cluster analysis methods. The 

basic idea of K-means cluster analysis algorithm is to group 

similar data points together and determine the underlying 

patterns. The word “means” in the name of the algorithm 

refers to averaging of the data, i.e., finding the centroid. In 

the K-means cluster analysis algorithm, K number of 

centroids is first identified. Each individual data point is 

then allocated to the nearest cluster according to certain 

similarity measure standard, while keeping the centroids as 

small as possible. The centers are re-identified as centers of 

mass of their assigned points. This process is repeated until 

it is stabilized or the maximum number of iterations is 

reached. The aim of the K-means cluster analysis is to 

partition the m data in multivariate data set into K clusters, 

where each data in the dataset is assigned to a specific 

cluster. K-means cluster analysis is a hard-partitioning 

algorithm and an iterative process. 

Firstly, data are assigned to groups. After calculating the 

mean of each group, the data is assigned by allocating each 

datum to its nearest means cluster position (Weatherill and 

Burton 2009, Novianti et al. 2017). The process is 

summarized as below. 
 

(1) The K-means method aims to determine the cluster 

centers (𝜆1, 𝜆2, ⋯ , 𝜆𝑘) to minimize the sum of the 

squared distances, i.e. distortion, of each data point 
(𝑥𝑚) to its nearest cluster center (𝜆𝑘) as 

 

min ∑ ∑ ‖𝑥𝑚 − 𝜆𝑖‖

𝑥𝑚∈𝐶𝑖

𝐾

𝑖=1

2

 (5) 

 

where 𝜆𝑖 is the center of the cluster 𝐶𝑖, 𝑀 is the 

number of objects in the cluster 𝐶𝑖, 𝑥𝑚 is the m-th 

object of the i-th cluster. 

(2) To reduce the squared error, the database is put into 

the cluster whom represented by the nearest 

centroid. An instance 𝑥𝑚 ∈ 𝐶𝑡  in the relocation 

step can change its cluster membership 𝑥𝑚 ∈ 𝐶𝑘, if 

‖𝑥𝑚 − 𝜆𝑘‖ ≤ ‖𝑥𝑚 − 𝜆𝑗‖  for all 𝑗 = 1,2, ⋯ 𝑚, 𝑗 ≠

𝑡. 

(3) The centroids of the cluster 𝐶𝑡  and 𝐶𝑘 , and the 

squared error is recomputed. The entire process is 
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continuously repeated until no further reduction can 

be achieved for the squared error, when its cluster 

membership cannot be further changed by any 

instance. 
 

In the subsequent clustering analysis, K-means cluster 

will be chosen. The similarity of the characteristic vectors 

of benchmark and test states will be calculated and 

compared with the center of each category (one cluster 

representing damage and the other cluster representing 

health), then each test state will be assigned to the category 

with the highest similarity. 

 

2.4.2 Bayesian discrimination 
Bayesian methods take into account the structural prior 

information including historical data or experience of expert 

and the measured data of the structure comprehensively, 

and determine the posterior probability distribution of the 

structure parameter based on the optimal probability model 

(Yuen 2010, Xin et al. 2019). This means it allows 

determine the probability by combining expectation based 

on previous experience (prior probability) with information 

from measured data. The advantages of Bayesian methods 

are that they fully utilize the prior information and update 

the probability distribution (posterior probability) of 

structural parameters based to the measured data. Finally, 

the condition of the structure can be judged based on the 

posterior probability distribution of the structural 

parameters. The executive process of Bayesian methods is 

consistent with the ideology of on-line structural health 

monitoring. 

As the core of Bayesian theorem, the Bayes formula can 

be expressed as 

 

𝑃(𝑤𝑖|𝑋) =
𝑝(𝑋, 𝑤𝑖)

𝑝(𝑋)
=

𝑝(𝑋|𝑤𝑖)𝑃(𝑤𝑖)

𝑝(𝑋)
,  𝑖 = 1,2 ⋯ 𝑐 (6) 

 

where 𝑃(𝑤𝑖|𝑋) is the posterior probability of 𝑤𝑖  under 

the condition of 𝑋 . The parameter 𝑤𝑖  is defined as a 

random variable represented for the condition of the 

structure. 𝑋 is the measured data for observations. 𝑃(𝑤𝑖) 

is the prior probability known or artificial hypothesis. 

𝑝(𝑋|𝑤𝑖)  is the conditional probability of 𝑋  under the 

condition of 𝑤𝑖, e.g., the probability of the observations of 

𝑋  fall into the i-th cluster. The overall density is 

represented by 𝑝(𝑋). The joint probability density of 𝑋 

and 𝑤𝑖 is expressed as 𝑝(𝑋, 𝑤𝑖). 

Following the Eq. (6), the essence of Bayesian inference 

is that under the conditions of parameter 𝑤𝑖 , 𝑃(𝑤𝑖) is 

revised continuously according to the measured data 𝑋 and 

their conditional probability 𝑝(𝑋|𝑤𝑖), and finally to get the 

estimated value of 𝑃(𝑤𝑖|𝑋). Thus, Bayesian decision can 

assign the observations to their clusters of the highest 

posterior probability based on Bayesian formula, by which 

we can keep the overall error rate minimum when the 

conditional probability and priori probability are obtained 

(Zhang 2009). For instance, decision criterion of the cluster 

problem for structural damage detection is described in Eq. 

(7) as follow 

 

If     𝑝(𝑋|𝑤1)𝑃(𝑤1)＞𝑝(𝑋|𝑤2)𝑃(𝑤2), 

then     𝑋 ∈ 𝑤1,     otherwise,     𝑋 ∈ 𝑤2 
(7) 

 

where 𝑋 is the test state, 𝑤1 is the cluster “Healthy”, 𝑤2 

is the cluster “Damaged”. 
 

2.5 Discussion and comparison of the two 
proposed algorithms 

 

When a structure is healthy, the time-domain responses 

under normal operating conditions are generally expected to 

follow stationary random process and the performance of 

structural characteristic is almost linear. Thus, the responses 

can be constructed as stable ARMA models, while the 

prediction error from ARMA model follows the white noise 

distribution. When the damage exists in the structure, the 

structure may still behave linearly with only change of 

geometric dimensions, but the structure may also 

demonstrate nonlinear characteristics with structural 

response being non-stationary and nonlinear, e.g. the cracks 

open and close under the loading condition. If the 

benchmark state ARMA model is used to predict the 

response signals that contain nonlinearities, the prediction 

errors will increase. The prediction errors may follow 

colored noise with nonlinear characteristics rather than 

white noise distribution (Zhu and Yu 2012, Wang 2013). 

Colored noise can be approximated by linear regression 

using white noise, which means that the prediction error 

from ARMA model can be expressed as a linear 

combination of white noises, i.e., the MA model. The 

process can only ensure the prediction error of the 

benchmark state follows the white noise distribution, but it 

cannot guarantee the prediction error of damage state 

follows the white noise distribution. Carden and Brownjohn 

(2008) used ARMA model coefficients as damage features. 

Although AR coefficient can reflect the linear features of 

structures when the AR model residuals follows colored 

noise distribution, the MA coefficient may reflect some 

other characteristics. Unfortunately, the ARMA linear 

models are not applicable to nonlinear phenomena (Fan and 

Yao 2006). 

Mean and variance values are common statistical 

description of the white noise. Eq. (4) expresses the DSF 

based on the statistical properties of white noise in residual 

signal. On the contrary, it could not reflect the structural 

characteristics when the residual signal does not obey the 

white noise distribution. Therefore, the traditional method 

can effectively detect the structural linear damage. But if 

there is nonlinear damage, the traditional method may 

misdiagnose due to ignoring the nonlinear characteristics of 

the responses and leakage of nonlinear damage information. 

To improve the performance of nonlinear damage 

detection using linear model, the proposed method is based 

on linear ARMA model and proposed damage index VSCS. 

Then it is classified by the K-means cluster analysis or 

Bayes discriminant analysis, respectively. Vector space 

cosine similarity measures the difference between the two 

individuals by comparing the cosine value of the angles 

between two vectors, and paying more attention to the 

difference of the two vectors in the direction rather than the 

distance or length. 
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3. Identification of structural nonlinear damage 
using ARMA model 
 

This section presents a process for constructing the 

ARMA model based on the time series data of the 

acceleration response and applies the proposed DSF to 

identify the structure damage. The procedure using the 

ARMA model to diagnose the structural nonlinear damage 

is summarized below, and the procedure is shown in Fig. 1. 

First, the ARMA model is built using the acceleration 

responses of the structure benchmark state. To eliminate the 

influence of environmental factors on the amplitude of the 

response data, all data are standardized as below 

 

𝑥𝑖𝑗(𝑡) =
𝑋𝑖𝑗(𝑡) − 𝜇𝑖𝑗

𝜎𝑖𝑗
 (8) 

 

where 𝜇𝑖𝑗 and 𝜎𝑖𝑗 is the mean and standard deviation of 

the j-th stream of sensor i, respectively. 𝑋(𝑡) is the original 

time series data and 𝑥(𝑡)  is time series data after 

normalization. This standardization procedure is applied to 

all the response data in this paper. 

Once the pre-processing of the initial data is completed, 

the optimal ARMA order can be determined using the 

Akaike Information Criteria (AIC) (Chen and Yu 2013), and 

its parameters are estimated based on the prediction error 

method in The Mathworks (2014). ARMA(14,15) in Chen 

and Yu (2013), which was chosen based on the AIC plots 

for the same damage detection problem, is adopted in this 

study. After that, substituting this into the benchmark 

ARMA model using standardized 𝑦𝑡  obtained from 

unknown state according to Eq. (1), we can get 

 

 

𝜀𝑡 = 𝑦𝑡 − (𝑐 + ∑ 𝐴𝑅𝑖𝑦𝑡−𝑖

𝑅

𝑖=1

+ ∑ 𝑀𝐴𝑗𝑦𝑡−𝑗

𝑀

𝑗=1

) (9) 

 

If the test state is a healthy state, time series data 𝑦𝑡 

from the unknown state will satisfy the benchmark model, 

and hence, there is no significant difference between 𝜀𝑡
Ref 

and 𝜀𝑡
Test . However, 𝑦𝑡  cannot satisfy the benchmark 

model when the unknown state has damage in the structure, 

which leads to significant difference between 𝜀𝑡
Ref  and 

𝜀𝑡
Test. 

 

 

4. Application to three-story shear building 
structure 
 
In this section, the experimental data of a three-story 

shear building from Los Alamos National Laboratory 

(Figueiredo et al. 2009) is employed to validate the 

proposed methods. 

 

4.1 Description of the shear building structure 
 

The three-story shear building structure shown in Fig. 2 

is composed of aluminum columns and plates assembled by 

bolted joints, which only allow sliding on rails in the x-

direction. A center column (15.0 × 2.5 × 2.5 cm3) is 

suspended from the top floor when it contacts a bumper 

mounted on the next floor, and this is the source of 

nonlinear damage. The bumper’s position can be adjusted to 

vary the extent of impact for a particular excitation level. 

The purpose of this is to simulate the effect of fatigue crack 

 

Fig. 1 Procedure of damage identificaiton using proposed method 
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that opens and closes under operational and environmental 

conditions. (Figueiredo et al. 2009). The environmental and 

operational uncertainties were simulated by reducing 

stiffness and adding mass at several locations of the shear 

building structure. The time domain data of force and 

acceleration are recorded. 

In the experiment, ten tests were carried out for each 

case in order to take into account the variability of the 

measured data. A Hanning window was employed in the 

time-domain data for the purpose of leakage reduction and 

five averages were used to decrease the influence of random 

effect. The measured real-world data always contains 

measurement noise that can obscure the actual state 

condition of the structure. The reliability of identification 

results may be influenced if the real data measured from the 

structures contains measurement noise. Thus, the robustness 

of the proposed method against the measurement noise 

effect is very important (Ding et al. 2019). 

As listed in Table 1, various structural conditions are 

considered in this study and they are classified into four 

groups. The first group (State #1) is taken as the baseline 

condition. States #2-#9 can be taken as the second group, in 

which different mass and stiffness conditions were tested to 

simulate the variation of environmental and operational 

condition. An example can be found in Fig. 1(a), “State #4” 

in Table 1 stands for the case that the stiffness of the 

columns located between the base and 1st floor was reduced 

to 87.5% of its original value. Sated #4 is abbreviated as 

1BD since these columns are at the intersection of planes B 

and D, and they can be abbreviated in similar way. To 

perform the stiffness reduction, cross-section thickness of 

the column in the direction of excitation is reduced to half. 

 

 

Nonlinear damage States #10-#14 formed the third group. 

Nonlinearities was introduced into this group by using a 

bumper and a suspended column. The nonlinearity is 

variable since gaps between the bumper and suspended 

column is changeable. Other than the nonlinear damage as 

in the third group, the fourth group (States #15-#17) 

additionally involves variation of the mass and stiffness, as 

in the second group. 
 

4.2 Damage detection results of the proposed DSF 
based on ARMA model 

 

In this section, the results using the existing DSF and 

the proposed DSF based on ARMA model are compared 

and discussed. 
 

4.2.1 Results of nonlinear damage detection based 
on linear ARMA model and the existing RSD 

Fig. 2 shows the existing RSD based on linear ARMA 

model for nonlinear damage detection in the three-story 

shear building structure. When RSD = 1, the test state is 

determined as a healthy condition. When RSD > 1, 

indicating the structure is in damage condition. The 

following conclusions are drawn from the results presented 

in Fig. 3. 
 

(1) The location of the damaged potion is determined 

between Channels 4 and 5. States #1-#9 are 

identified as health states, while States #10-#17 are 

assumed to be damage states. 

(2) State #5 and State #9 are obviously misjudged in 

Channel 2 for health states; State #6 and State #7 

are obviously misjudged in Channel 3 for health 

 

 

Table 1 Cases and their corresponding structural state conditions (Figueiredo et al. 2009) 

 State# Cases Condition 

Configuration 

Perturbation Damage 

Content Magnitude Location Content Magnitude 

Benchmark 1 1-9 Healthy / / / / / 

Operating 

conditions 

2 10-19 Healthy Mass 1.2 kg Base / / 

3 20-29 Healthy Mass 1.2 kg 1st floor / / 

4 30-39 Healthy Stiffness -87.50% 1BD / / 

5 40-49 Healthy Stiffness -87.50% 1AD and 1BD / / 

6 50-59 Healthy Stiffness -87.50% 2BD / / 

7 60-69 Healthy Stiffness -87.50% 2AD and 2BD / / 

8 70-79 Healthy Stiffness -87.50% 3BD / / 

9 80-89 Healthy Stiffness -87.50% 3AD and 3BD / / 

Damage 

conditions 

10 90-99 Damaged / / / Gap 0.20 mm 

11 100-109 Damaged / / / Gap 0.15 mm 

12 110-119 Damaged / / / Gap 0.13 mm 

13 120-129 Damaged / / / Gap 0.10 mm 

14 130-139 Damaged / / / Gap 0.05 mm 

Operating + 

Damaged 

15 140-149 Damaged mass 1.2 kg Base Gap 0.20 mm 

16 150-159 Damaged mass 1.2 kg 1st floor Gap 0.20 mm 

17 160-169 Damaged mass 1.2 kg 1st floor Gap 0.10 mm 
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(a) 
 

 

(b) 

Fig. 2 (a) Details of the shear building structure; and (b) experiment setup (Figueiredo et al. 2009) 

 

Fig. 3 The existing RSD based on linear ARMA model for States #1-#17 from Channels 2 – 5 
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states, and four significant misjudgments (States 

#13-#14, State #15 and State #17) for damage 

states. It indicates that the RSD based on this 

algorithm are sensitive to environmental and 

operational condition changes. 

(3) State #10 and State #16 are easily misjudged in 

Channels 4 and 5 for damage states. The results 

show that this method and RSD are not sensitive to 

small damage. 
 

4.2.2 Approach I: Improvement of nonlinear 
damage detection by combining the proposed 
VSCS and K-means cluster analysis 

Taking the advantage of K-means cluster analysis, the 

RSD’s cosine similarity in vector space is computed and 

compared, subsequently. Fig. 4 illustrates the cosine 

similarity of test case for each cluster using K-means cluster 

analysis. As shown in Fig. 4, values of similarity all fall 

between -1 and 1. It is worthy mention that the algorithm 

used in K-means cluster analysis sorts the structural states 

with data set. In the K-means cluster analysis, all data are 

configured in groups. This mechanism benefits the 

classification by eliminate the necessity of providing the 

threshold value to distinguish between healthy and damaged 

states. 

The procedure, which is based on the ratio of the 

standard deviation of residual errors for ARMA model due 

to the loss of nonlinear damage information, has lower 

reliability in nonlinear damage detection. The proposed 

VSCS on account of linear time series analysis combined 

 

 

 

 

cosine similarity with K-means cluster analysis improves 

the reliability of the nonlinear damage detection and this is 

evidenced by only one case of State #11 is misjudged. 
 

4.2.3 Approach II: Improvement of nonlinear 
damage detection by combining the 
advanced DSF and Bayesian discrimination 

The analysis results in Section 4.2.2 uses 90 as 

condensation point. The data of the advanced VSCS fall 

into two categories, such as “Healthy” and “Damaged” 

using the Bayes discriminant analysis. The sorted results are 

listed in Table 3. 

As shown in Table 3, CLMat is a square matrix whose 

size equals the number of categories. This is a count of 

observations known to be in category i but it is predicted to 

be in category j. Diagonal elements of CLMat is the correct 

classified categories number. Diagonal elements in CLMat 

stands for the correct classified categories number. As 

shown in Table 1, health states are numbered into Cases 1–

89 (States #1-#9), while damage states are numbered 

into90–169 (States #10-#17). The classification results 
 

 

Table 3 Square matrix (CLMat) of two categories 

Observations 

Predicted results 

State #1- 

State #9 

State #10- 

State #17 

State #1-State #9 89 0 

State #10- State #17 0 80 

Condition Healthy Damaged 
 

 

 

 

 

 

Fig. 4 The cosine similarity of test case for each cluster using K-means cluster analysis 

Table 2 damage identification results with the cosine similarity 

State 

Damage Index 
#1 #2 #3 #4 #5 #6 #7 #8 #9 

False 

positive 

Cluster 1 (*/#) 0/9 0/10 0/10 0/10 0/10 0/10 0/10 0/10 0/10 0/89 

State 

Damage Index 
#10 #11 #12 #13 #14 #15 #16 #17 / 

False 

negative 

Cluster 2 (*/#) 0/10 1/10 0/10 0/10 0/10 0/10 0/10 0/10 / 1/80 
 

*Note: False Positive manifests misjudged health state from damage. 

False Negative manifests misjudged damage state from health. 

*/# manifests that there are * cases misjudgment among # cases 
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show that all discriminations for the structure states are 

correctly determined using the Bayesian discrimination. 

Table 4 shows the results that classify every state into a 

category. 

States #1-#9 are “health” and States #10-#17 are 

“damage”. It shows that one case of State #1 is incorrectly 

sorted into State #2; two cases in State #2 are incorrectly 

sorted into State #1; one case in State #12 is incorrectly 

sorted into State #11; and two cases in State #13 are 

incorrectly sorted into State #15. The incorrect results are 

underlined in Table 4. But the cases from States #1-#9 are 

all classified as “health” and the cases from States #10-#17 

are all classified as “damage” correctly. 

 

 

 

 

According to Bayesian decision theory, when the class 

conditional density and priori probability are obtained (or 

estimated), it can assign the sample to its cluster with the 

highest posterior probability. Thus, we can take the 

posterior probability distribution into consideration. 

It should be noted that 𝑝(𝑋𝑗, 𝑤1) indicates the posterior 

probability of j-th test sample belonging to Category 1 

(health) and 𝑝(𝑋𝑗 , 𝑤2) indicates the posterior probability 

of j-th test sample belonging to Category 2 (damage). The j-

th sample will be grouped into the category, in which the j-

th sample carries the highest posterior probability. It is 

shown in Fig. 5 that 𝑝(𝑋𝑗 , 𝑤1) >> 𝑝(𝑋𝑗 , 𝑤2),  (𝑗 =

1,2, ⋯ ,89), 𝑝(𝑋𝑗 , 𝑤2) >> 𝑝(𝑋𝑗 , 𝑤1),  (𝑗 = 90,91, ⋯ ,169)  
 

 

Table 4 Square matrix (CLMat) with size equal to the total number of categories 

Observations 

Predicted 

results 

#1 #2 #3 #4 #5 #6 #7 #8 #9 #10 #11 #12 #13 #14 #15 #16 #17 

#1 8 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

#2 2 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

#3 0 0 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

#4 0 0 0 10 0 0 0 0 0 0 0 0 0 0 0 0 0 

#5 0 0 0 0 10 0 0 0 0 0 0 0 0 0 0 0 0 

#6 0 0 0 0 0 10 0 0 0 0 0 0 0 0 0 0 0 

#7 0 0 0 0 0 0 10 0 0 0 0 0 0 0 0 0 0 

#8 0 0 0 0 0 0 0 10 0 0 0 0 0 0 0 0 0 

#9 0 0 0 0 0 0 0 0 10 0 0 0 0 0 0 0 0 

#10 0 0 0 0 0 0 0 0 0 10 0 0 0 0 0 0 0 

#11 0 0 0 0 0 0 0 0 0 0 10 0 0 0 0 0 0 

#12 0 0 0 0 0 0 0 0 0 0 1 9 0 0 0 0 0 

#13 0 0 0 0 0 0 0 0 0 0 0 0 8 0 2 0 0 

#14 0 0 0 0 0 0 0 0 0 0 0 0 0 10 0 0 0 

#15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 10 0 0 

#16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 10 0 

#17 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 10 

Condition Healthy Damaged 
 

*Note: #1-#17 represent State #1-State #17 

 

Fig. 5 Posterior probability distribution of each category based on Bayesian discrimination 
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and 𝑝 = [0,1]. 
As mentioned above, combining the VSCS with K-

means cluster analysis and Bayes discriminant analysis 

provides effective approach for nonlinear damage 

estimation and classification, meanwhile reduces the 

computational cost. Only one case of State #11 is misjudged 

using Approach I, and all cases are correctly classified by 

using Approach II. This study has analyzed the existing 

damage index RSD based on linear ARMA model, and has 

demonstrated that the reliability of the nonlinear 

identification results is influenced by the leakage of the 

damage information. Thus, this study has developed the 

advanced VSCS and classified algorithms, K-means cluster 

analysis or Bayesian discrimination, based on linear ARMA 

model. The results have shown that the proposed 

approaches improve the efficiency and reliability in 

identifying nonlinear damage over the existing methods in 

the literature. 
 

 

5. Conclusions 
 

This study has presented two algorithms for improving 

nonlinear damage detection using linear ARMA model. As 

an improved detection methodology of nonlinear damage, 

DSF is extracted using linear time series analysis. An 

approach that combines cosine similarity with K-means 

cluster analysis and Bayes discriminant analysis has been 

proposed in this study. The performance of the algorithms 

has been verified and evaluated using the experimental data 

of a three-story shear building structure. The current study 

demonstrated that by combine linear ARMA model and the 

advanced DSF with cluster analysis or Bayes discriminant 

analysis, effective approaches can thus be formed for 

damage detection in nonlinear situation. Furthermore, the 

accuracy is improved and the computational cost is reduced 

in the proposed two approaches. 

Main advantages of the proposed two approaches are 

that no sophisticated finite element is required, and the 

complicated nonlinear damage detection can be complicated 

with simple linear time series model. Knowledge gained 

from the two approaches and with VSCS is that, rather than 

the distance or length, majority of the nonlinear damage 

information lies in direction of the feature vectors. When 

Bayesian discrimination is utilized to calculate the posterior 

probability of the structural parameters from different state 

conditions, the results of this algorithm have indicated that 

the information of the structural states can be distinguished 

through the posterior probability. The proposed algorithms 

have to implement the structural damage identification by 

evading extreme values that are related to imposed noise or 

singular values, which indicates the methodologies put 

forward in this paper has better robustness to noise. 

The study has mainly focused on determining damage 

existence. Further work can extend the proposed methods to 

determine the location and severity of the damage. 
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