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1. Introduction 

 

1.1 Motivation 
 

Civil infrastructures undergo deterioration over time 

owing to overloading or unfavorable environmental 

conditions. This calls for periodic inspection of structures in 

order to prevent sudden failure or to avoid any untoward 

human casualties caused by unserviceable infrastructure 

conditions. The existing inspection techniques are 

predominantly manual, and consequently time consuming, 

expensive, subjective, and risky. Numerous studies in recent 

years focused on autonomous inspection techniques based 

on the latest advancements made in the areas of computer 

vision and deep learning (Jahanshahi and Masri 2014, 

Adhikari et al. 2014, Duan et al. 2019). Spencer et al. 

(2019) provides an exhaustive review of available literature 

on this topic. A number of investigations in the past 

explored autonomous damage identification from visual 

data exploiting various image processing (Yamaguchi and 

Hashimoto 2010), machine learning and convolutional 

neural networks (CNN) (Cha et al. 2017, Kim et al. 2019, 

Chen and Jahanshahi 2018, 2019) based approaches. 

Damage quantification also gained some attraction from the 

research community (Jahanshahi and Masri 2013, Shan et 
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al. 2016, Jahanshahi et al. 2017a). However, most of the 

previous studies found in literature were invariably agnostic 

to the time dimension. It is often important to understand 

how fast a damage is progressing and how long it may take 

to reach the limit state of collapse. However, disregarding 

the temporal information in the state-of-the-art damage 

assessment pipeline makes such information scarce, 

preventing the inspectors act preemptively to minimize the 

cost incurred due to the damage. It is therefore necessary to 

address this knowledge gap existing in this important area 

of research, which is the focus of this study. 

 

1.2 Related works 
 

A number of studies in the past explored time-based 

evaluation of structural defects. Digital image correlation 

(DIC) is exploited by many researchers (Ghorbani et al. 

2015) to measure full-field displacement and strain. 

However, this technique relies on static camera, and 

therefore can only be used in situations where the damage 

location is known a priori. Moreover, it necessitates 

painting of speckle patterns on the structure under 

investigation to produce distinct visual features, which is 

not feasible in large structures like buildings and bridges 

and in situations where the surface of the structure is 

physically inaccessible. The approach presented in the 

current study is free from all such limitations. A movable 

(hand-held) SLR camera and a camera mounted on an 

unmanned aerial vehicle (UAV) are used for data collection 

which eliminated the need of prior knowledge about 

damage locations. Besides, this method is contactless in true 
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sense of the term, as it does not require any speckle pattern 

to be painted on the surface to be inspected. Kong and Li 

(2019) used image overlapping technique to detect fatigue 

cracks in civil infrastructures. The authors relied on 

differential image features engendered by crack breathing as 

indicators for crack identification. The proposed approach 

permits camera movement and environmental changes to a 

certain extent. However, it requires prior knowledge about 

the defect location. Detection of fatigue crack in steel 

bridges was also studied by Kong and Li (2018) exploiting 

video-based feature tracking. Movement of each feature 

was tracked through a video stream and the presence of a 

crack was indicated by differential movement pattern 

exhibited by the feature points inside a localized circular 

region. However, optical flow-based feature tracking 

process cannot effectively deal with viewpoint changes 

(Tanathong and Lee 2013) requiring fixed camera 

orientation. These limitations are dispelled in the current 

study in many ways. The approach presented in this study is 

scale invariant, and robust against noise intrusion and 

changes in illumination condition to a great extent. It can 

detect large motion. Moreover, it affords the flexibility of 

capturing images from varied camera positions and 

orientations, which is a major advantage of this approach. 

Jahanshahi et al. (2011) proposed a vision-based approach 

for estimating damage evolution through multi-image 

stitching and scene reconstruction. However, the camera 

was constrained in this study in regard to translation. In the 

present study, this constraint is relaxed enabling the camera 

to rotate and translate without any restrain. Besides, the 

approach presented in this study (Jahanshahi et al. 2011) is 

not fully autonomous in the sense that a human inspector 

needs to compare the current scene with its previous 

condition and deduce the damage evolution manually. In 

other words, the proposed technique relied on inspector’s 

judgment vis-à-vis evolution of the damage. This makes the 

entire procedure tedious, labor-intensive, subjective and 

qualitative. The present study addresses this limitation by 

including an autonomous localization and quantification 

module in the damage assessment pipeline making the 

entire process faster and more efficient. Additionally, 

quantitative and time-based evaluation of damage severity 

makes it possible to predict residual life of a structure and 

to take precautionary measures, if necessary. 

 

1.3 Contribution 
 

This study presents a novel comprehensive approach to 

health monitoring of civil infrastructures by introducing a 

time dimension into the vision-based condition assessment 

pipeline. It is shown that useful information can be 

extracted from an archive of inspection images by 

employing computer vision-based algorithms. Identification 

of a damage during the course of a recent inspection 

initiates an exhaustive search into the historical data 

collected during the previous rounds of inspection. 

Corresponding images are identified and synthesized to 

generate a reconstructed view of the scene pertaining to 

each inspection round. Regions of interest are subsequently 

extracted from the reconstructed scenes leveraging a CNN-

based detection model. This is followed by damage 

segmentation and quantification exploiting state-of-the-art 

morphological and image processing techniques paving the 

way for time-based evaluation of damage severity and 

cognizant decision making. The methodology presented in 

this work is robust against noise intrusion and changes in 

illumination condition. It does not assume any prior 

knowledge about damage locations and provides a great 

deal of flexibility with regard to camera poses and 

orientations. The proposed approach can be applied to data 

collected by human inspectors using hand-held cameras 

(e.g., smartphone camera). However, it is most appropriate 

for autonomous inspection assisted by vision systems 

mounted on mobile robots including UAVs (Aliakbar et al. 

2016, Jahanshahi et al. 2017b, Aliakbar et al. 2019). Cracks 

on concrete surface is used as a case study to demonstrate 

the feasibility of this approach. However, it can be extended 

to other defect categories such as spalling and corrosion, 

with appropriate modifications. Availability of an inspection 

database which is complete in terms of coverage of the 

damaged areas and that affords adequate overlap with 

adjacent images is a prerequisite for this approach. Besides, 

the algorithm may not perform well in absence of adequate 

visual features in the inspection images. In such situations, 

IMU and GPS information can be exploited for accurate 

scene reconstruction which is a scope for future research. 

 

1.4 Scope 
 

The remaining of the manuscript is arranged in the 

following order. Section 2.1 presents an overview of the test 

protocol and data collection procedure. Section 2.2 deals 

with various components of the correspondence 

identification technique adopted in this study. The details of 

damage detection approach are presented in Section 2.3. 

The necessary theoretical background for damage 

quantification is presented in Section 2.4. The results are 

presented and discussed in Section 3. Conclusions are 

summarized in Section 4. Finally, scope for future research 

is outlined in Section 5. 

 

 

2. Methodology 
 

As a case study, cracks on concrete surface are used to 

illustrate the nuts and bolts of this approach. A reinforced 

concrete beam was tested in the laboratory subjecting it to a 

gradual load increment in order to simulate a progressive 

damage. Cracks appearing on the beam surface were 

photographed after every stage of load increment and the 

images were time-stamped and saved in specific folders. 

This was accomplished by a hand-held SLR camera and a 

camera mounted on a UAV to emulate actual robot-based 

data collection where camera positions and orientations are 

not fully controllable. After the final round of load 

increment, the entire data set representing time evolution of 

concrete cracks were available for further analysis. Fig. 1 

presents an overview of the proposed algorithm. 

Identification of damage in the most current data set 

engenders an exhaustive search in the immediately 
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preceding image set looking for correspondences. Speeded 

up robust features (SURF) (Bay et al. 2006) algorithm is 

used to identify interest points in the current inspection 

image and also in every single image in the previous data 

set. Feature matching is carried out based on Euclidean 

distance between two descriptor vectors and the candidates 

with large number of matched features are designated as 

potential correspondences. Homography transformation is 

computed for each selected correspondence through linear 

least square method and subsequent nonlinear refinement 

using Levenberg-Marquardt algorithm (Levenberg 1944, 

Marquardt 1963), which is followed by registration of the 

corresponding images onto the plane of the current 

reference image. The warped images are then stitched to 

 

 

form a complete 2D reconstructed view of the concerned 

damage region from the immediately preceding data set. 

This procedure is repeated for all the previous data sets 

captured at different points in time considering the 

reconstructed view from the immediately succeeding data 

set as the reference. Temporally ordered set of 2D 

reconstructions thus produced chronicles the evolution of a 

damage in a manner conducive to time-based reasoning and 

lucid visual interpretation, and forms the basis for the next 

stage of the proposed algorithm, namely, damage 

identification and quantification. A notable detection 

algorithm called Faster RCNN (Ren et al. 2015) is 

leveraged to this end to localize the cracked area in the 

reconstructed images. The relevant portion of the images 

 

(a) 
 

 

(b) 

Fig. 1 The layout of the proposed approach – (a) Correspondence identification from the preceding data set based on spatial 

proximity, registration of the best correspondences onto the plane of the current reference image, and repetition of the 

same procedure over all previous data sets to generate a temporally ordered set of 2D reconstructions of the concerned 

damaged area. (b) Detection of damage on the reconstructed views from the past, extraction of interest area to remove 

nonessential background, damage segmentation, followed by quantification and time-based visualization 
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containing the cracks are then cropped out to get rid of the 

remaining nonessential background (undamaged), inclusion 

of which may have debilitating effect on the performance of 

the subsequent segmentation and quantification processes 

due to noise infusion. The cropped pixels are then 

segmented using a morphological approach, forming the 

basis for crack thickness quantification using distance 

transform method (Lee et al. 2013, Zhu et al. 2011). The 

approach presented in this study can be extended to other 

defect categories such as spalling and corrosion, with 

appropriate modifications. 

 

2.1 Experimental setup and data collection 
 

The database required for validation of the proposed 

approach was generated by testing a reinforced concrete T-

beam in the laboratory under gradually increasing load in 

four-point bending configuration as shown in Fig. 2(a). The 

beam was tested in displacement control mode, and the 

applied displacement is shown in Fig. 2(b) as a function of 

loading step. After every step of displacement increment, an 

intermission was appropriated during which the entire span 

of the beam was photographed using a hand-held SLR 

camera as well as a camera mounted on a UAV to capture 

the cracks that appeared on the surface (Fig. 2(c)). The SLR 

 

 

camera was displaced laterally to photograph different 

segments along the span and depth of the beam ensuring 

adequate overlap between successive images (Fig. 3). The 

camera movement was not controlled, and the data 

collection path varied over inspection round as evident from 

Fig. 3. An archive of time-stamped images representing 

various levels of degradation was thus produced mimicking 

time-evolution of damage in concrete structures. This data 

set formed the basis for subsequent analyses which are 

described in the following sections. 

 

2.2 Correspondence detection and alignment 
 

Theoretical formulation of this algorithm presupposes 

the availability of a comprehensive visual data set built 

perennially through collection of images over several 

rounds of routine inspection by a human inspector or by an 

inspection robot (Esser and Huston 2005, Boller et al. 2015, 

Myung et al. 2014). If a defect is detected during the 

inspection of a structure, it becomes necessary to know the 

history of evolution of the defect. That necessitates probing 

into the data collected during previous rounds of inspection. 

The first challenge that is confronted to this end is 

identifying the relevant images corresponding to the 

defective region from a large database of archival images 

 

(a) Experimental setup 
 

 

 

(b) Loading protocol (c) Data collection 

Fig. 2 Experimental setup for data collection 
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(Yeum et al. 2017, 2019). This can be achieved through a 

sequence of widely used computer vision algorithms such 

as feature detection, feature matching and image 

registration, as explained in the following sections. 

 

2.2.1 Feature detection 
The first step in the correspondence identification 

pipeline is the detection of features or interest points (Fig. 

4(b)). Features are unique patterns which can be easily 

tracked and compared across several images. There are a 

number of techniques available in literature for detecting 

interest points in images. SURF algorithm is one such 

technique which is leveraged in this study. This algorithm 

locates high-variance interest points in an image which are 

invariant to scale, viewpoint and illumination changes. A 

local dominant direction is associated with each interest 

point and a 64 element normalized descriptor vector 

representing the local gray level variations with respect to 

the dominant direction is computed at each such point. The 

reader may refer to the original paper by Bay et al. (2006) 

for more detailed discussion about this algorithm. 

 

 

2.2.2 Feature matching 
Feature detection is followed by feature matching (Fig. 

4(c)), the objective of which is to identify the best match for 

a feature in one image from all the features in another 

image. Number of matched features is an indication of 

degree of resemblance between two images. Brute-Force 

matcher is used in this study, where the Euclidean distance 

between two descriptor vectors is used for similarity 

comparison. Two best matches are drawn for each feature in 

the first image. On occasion, the second best match is found 

to be very close to the best match owing to noise or other 

reasons. Such anomalies are tackled by computing the ratio 

of the closest distance to the second closest distance, and 

discarding all matches where this ratio is greater than 0.75 

as suggested by Lowe (2004). This eliminates 95% of the 

false matches as shown in Fig. 5. However, a small number 

of outliers are retained at this stage. 

 

2.2.3 Image registration 
The image in the immediately previous data set having 

the largest number of matched features vis-à-vis the 

 

(a) Inspection round - 1 
 

 

(b) Inspection round - 2 
 

 

(c) Inspection round - 3 
 

 

(d) Inspection round - 4 
 

 

(e) Inspection round - 5 

Fig. 3 Data collection path of a hand-held SLR camera for different inspection rounds. The rectangular boxes denote the 

camera poses and orientations, and the point clouds denote the 3D scene reconstructions of the beam for each 

inspection round. It should be noted that the data collection path was not constant and it varied over inspection round 
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(a) Raw data (b) Feature detection (c) Feature matching 
 

   

(d) Best correspondence (e) Warping (f) Registration 
 

   

(g) Revised search region (h) Next best correspondence (i) Warping 
 

   

(j) Registration (k) Revised search region (l) Next best correspondence 
 

   

(m) Warping (n) Registration (o) Final reconstruction 

Fig. 4 Illustrative diagrams outlining the steps for generating reconstructed view from previous data set 

 

(a) Initially matched features 
 

 

(b) Matched features after applying Lowe’s ratio test 

Fig. 5 Feature detection and matching 
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reference image in the current data set is designated as the 

best correspondence (Fig. 4(d)). Damage chronology can 

only be established when the corresponding images from 

previous data sets are aligned to the plane of the reference 

image. This requires estimation of the homography matrix 

between the reference image and the correspondences in the 

immediately preceding data set. It may be noted here that 

the homography is a 3 × 3 transformation matrix which 

maps the points in one image to the corresponding points in 

another image. Linear least square method is exploited in 

combination with an outlier rejection algorithm called 

RANdom SAmple Consensus (RANSAC) (Fischler and 

Bolles 1981) to obtain an initial estimate for the 

homography matrix. This is followed by a nonlinear 

refinement of the estimated homography matrix using 

Levenberg-Marquardt algorithm based on the inlier points 

alone. The estimated homography matrix is then used to 

warp (Fig. 4(e)) and register (Fig. 4(f)) the best 

correspondence on the plane of the reference image. 

Following this, the matched features corresponding to the 

best correspondence are eliminated from the list of available 

features for the reference image (Fig. 4(g)), and the next 

best correspondence is determined based on the revised list 

of matched features (Fig.  4(h)).  This next best 

correspondence is then registered on the plane of the 

reference image (Figs. 4(i) and (j)) in a similar fashion 

following the same procedure mentioned previously in this 

section. This process of correspondence identification and 

alignment is continued until the number of residual matched 

points corresponding to the reference image drops below 

 

 

a predefined threshold (100 in this study) or the number of 

identified correspondences reaches a preset value (which is 

set to 10 in this study). Upon completion of this process, all 

the warped correspondences are stitched together producing 

a complete 2D reconstruction (Fig. 4(o)) depicting the prior 

condition of the scene in the reference image (Fig. 6). The 

reconstructed view acts as a reference image for the next 

round of iteration, where the correspondences are identified 

from the immediately preceding data set. Eventually, an 

ordered set of reconstructed views are obtained portraying 

the evolution of a scene through time. 

 

2.3 Damage detection 
 

This section describes the process for autonomous 

segmentation of damages in the chronologically ordered 

reconstructed views of the scene under consideration. 

Previous studies primarily focused on two approaches for 

detecting cracks in images, namely, edge-based techniques 

and morphological techniques. Jahanshahi et al. (2009) 

compared the pros and cons of the two approaches and 

concluded that morphological techniques outperform edge-

based techniques in presence of non-crack edges. Therefore, 

morphological approach is adopted in this study for 

extracting cracks from the images. However, presence of 

surface irregularities may produce false positives leading to 

inaccurate segmentation (Jahanshahi and Masri 2013). This 

can be averted by secluding the damaged region of interest 

from the remaining image. Deep learning-based approaches 

have been used by several researchers in the past (Cha et 

 

 

   

(a) (b) (c) 
 

   

(d) (e) (f) 

 

 

 

  

 (g)  

Fig. 6 (a)-(f) Warping and registration of correspondences, (g) View synthesis producing complete 2D reconstruction 
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al. 2017, 2018, Chen and Jahanshahi 2018, 2019) to 

localize defects in images. This study leverages Faster 

RCNN algorithm to this end. This eliminates a large part of 

the nonessential background significantly diminishing the 

scope of noise infusion in the morphology-based 

segmentation process. 

 

2.3.1 Damage localization using Faster RCNN 
In Faster RCNN, a CNN is first used to generate a 

feature map from the input image. Inception-ResNet-v2 

network (Szegedy et al. 2001a), which incorporates 

Residual connections (He et al. 2001) and Inception module 

 

 

 

 

(Szegedy et al. 2001b), is used to this end in this study. 

Thereafter, Region Proposal Network (RPN) (Ren et al. 

2015) is used to generate region proposals. RPN is a fully 

convolutional network trained to predict object bounds and 

objectness scores. Following this, Fast RCNN (Girshick 

2015) module is utilized to classify the region proposals and 

to refine the bounding box coordinates. The RPN and the 

Fast RCNN modules are unified into a single network 

enabling sharing of convolutional layers (Fig. 7). The 

details of Faster RCNN algorithm can be found in Ren et al. 

(2015). 

 

 

 

 

 

 

Fig. 7 Faster RCNN architecture 

   

(a) (b) (c) 
 

   

(d) (e) (f) 
 

  

(g) (h) 

Fig. 8 Damage chronology produced by successive view synthesis and alignment of correspondences from previous 

inspection data sets. Cracks detected by Faster RCNN algorithm are highlighted by rectangular bounding boxes 
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The Faster RCNN algorithm is implemented using 

TensorFlow open-source library. The input images are 

horizontally flipped randomly with a probability of 0.5 to 

execute data augmentation. Subsequently, features are 

extracted from the input image using a sequence of 

convolutional layers which are a part of the Inception-

ResNet-v2 network. A 3 × 3 sliding window is applied to 

the feature map generated by the last shared convolutional 

layer mapping it down to a lower dimension. At each 

sliding window location, a set of 9 anchor boxes having 

different scales and aspect ratios are considered as region 

proposals. The anchor boxes are strided by 8 pixels along 

the height and the width. A large number of region 

proposals are generated for each image leading to multiple 

detections. Duplicate boxes are eliminated using a greedy 

technique called non-maximum suppression (NMS) 

(Hosang et al. 2017). The weights of the Inception-ResNet-

v2 network are initialized by a model pretrained on 

MSCOCO data set (Lin et al. 2001) and fine-tuned thereon 

using Stochastic Gradient Descent (SGD) algorithm (Bottou 

2010) with a momentum value of 0.9. Gradient clipping is 

employed to avert the problem of exploding gradient. The 

initial learning rate is set to 0.003 and is gradually reduced 

 

 

thereafter with training steps. 

The network is trained on 686 images containing 1023 

crack instances. The training data is generated by loading a 

T-beam as shown in Fig. 2 and taking pictures of the 

resulting cracks by means of a movable (hand-held) SLR 

camera and a camera mounted on a UAV. The performance 

of the trained network is evaluated on the test data 

comprising 100 images and 255 crack instances. The test 

data is produced by loading another T-beam with slightly 

different cross-section and reinforcement distribution, and 

photographing the evolving cracks in a similar manner. The 

predicted bounding boxes (Fig. 8) are compared with 

ground truth boxes and the results are reported in terms of 

precision and recall. The proposed algorithm produces a 

precision of 95.5%, which means that 95.5% of all 

predicted boxes classified as crack can be designated as 

correct detections. On the other hand, the recall value is 

evaluated as 98.6%, indicating that 98.6% of all annotated 

cracks are correctly detected. It takes roughly about 0.95 

seconds at this stage to process a single image of 

5184 × 3456 resolution using a NVIDIA Titan X (Pascal) 

GPU. It is important to ensure that the predicted bounding 

boxes enclose respective damage regions completely. This 

   

(a) (b) (c) 
 

  

(d) (e) 

Fig. 9 Steps involved in the segmentation process – (a) Grayscale image (𝐼); (b) Result of 𝑚𝑎𝑥[ (𝐼 ∘ 𝑆{0∘,45∘,90∘,135∘}) •

𝑆{0∘,45∘,90∘,135∘}, 𝐼]; (c) Crack map (𝑇) generated by Eq. (1); (d) Binary image obtained by applying Otsu’s threshold 

to 𝑇, and; (e) Final segmentation mask obtained after post-processing a noise removal 
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calls for rigorous training of the detection algorithm with 

stringent requirement imposed on the predicted boxes vis-à-

vis overlap with ground truth boxes. 
 

2.3.2 Damage segmentation using morphological 
techniques 

Morphological approach for image segmentation is 

motivated by the developments in the fields of set algebra 

(Minkowski 1989) and topology (Matheron 1975). Dilation 

and erosion are two rudimentary operations which all 

morphological methods are based upon. Dilation expands 

the bright portions of an image, while erosion shrinks the 

same. These operations applied sequentially form important 

building blocks for morphological noise removal. Erosion 

followed by dilation is called morphological opening, which 

removes bright sharp details from the image. On the other 

hand, the same operations when applied in the reverse order 

constitute morphological closing which seeks to remove 

dark details from an image. Salembier (1990) integrated 

these morphological concepts with bottom-hat transform to 

propose an algorithm for identification of dark defects in 

images. The following equation shows a slightly modified 

version of the algorithm (Jahanshahi et al. 2013) which is 

used in this study. 
 

𝑇 = 𝑚𝑎𝑥[ (𝐼 ∘ 𝑆{0∘,45∘,90∘,135∘}) • 𝑆{0∘,45∘,90∘,135∘}, 𝐼] − 𝐼 (1) 
 

where, ‘  ‘ and ‘ • ‘ denote morphological opening and 

closing operations, respectively. 𝐼 is the gray-scale image 

and 𝑆 is a structuring element. A structuring element is a 

matrix that decides which neighborhood pixels are included 

in the morphological operations. The structuring element 

should be suitably chosen as it determines the shape and 

size of the cracks that can be extracted from an image. 

Jahanshahi et al. (2013) proposed an adaptive approach for 

estimating an appropriate structural element size based on 

crack size, camera parameters and camera-to-object 

distance. A linear structuring element (a structuring element 

which is line-shaped) with four different orientations 
(0∘, 45∘, 90∘, 135∘) is used in this study to make the filter 

invariant to crack orientation. The crack map so generated 
(𝑇)  was subjected to Otsu’s thresholding (Otsu 1979), 

followed by a series of post-processing and noise removal 

strategies (Fig. 9) to obtain the final binary segmentation 

mask as shown in Fig. 10. The post-processing scheme 

involves removing small areas, filling small holes, bridging 

unconnected pixels, and removing spur pixels and 
 

 

isolated pixels. The entire crack region is segmented in this 

approach, unlike edge detection-based techniques where 

only the crack boundaries are extracted. Apart from that, 

morphological approaches are divested of the time-

consuming and tedious data annotation and training 

processes which are required by typical deep learning-based 

semantic segmentation algorithms. 
 

2.4 Damage quantification 
 

Thickness is an effective indicator for severity of cracks. 

This section presents the crack thickness quantification 

algorithm that is used in this study. Some researchers in the 

past (Yu et al. 2007) resorted to boundary-to-boundary 

approach to visually measure the crack thickness. In this 

approach, the crack thickness at a boundary point is 

evaluated as the distance to the nearest point on the other 

boundary. However, the limitation of this approach is that 

the crack thickness line is usually not normal to the 

centerline. Moreover, the thickness measured at a boundary 

point may not be identical to the same measured at the 

corresponding thickness point located on the other 

boundary of the crack. These limitations can be redressed 

by employing centerline-based techniques such as 

orthogonal line method (Jahanshahi et al. 2013, Jahanshahi 

and Masri 2013) and distance transform method (Lee et al. 

2013, Zhu et al. 2011). The latter approach is adopted in 

this study. This method begins by finding the centerline of 

the crack. Researchers in the past exploited various methods 

for locating the crack centerline in an image. Jahanshahi et 

al. (2017a) used fast marching algorithm which was 

originally proposed by (Van Uitert and Bitter 2007). A 

number of studies (Jahanshahi et al. 2013, Jahanshahi and 

Masri 2013), on the other hand, employed morphological 

thinning operation on binary crack maps, which is followed 

in this study. The thickness at a given centerline point is 

given by twice the shortest distance to any of the 

boundaries. Quasi-Euclidean distance transform is used in 

this study to find the closest pixel on the boundaries. The 

effectiveness of the segmentation and quantification 

approach adopted in this study was previously established 

by Jahanshahi et al. (2013) and the same is not repeated 

here. Each of the black circles on the tape as observed in 

Fig. 8 had a diameter of 5 mm and was represented by 92 

pixels in the image. This information is exploited in this 

study to convert the unit of crack thickness from pixels to 

mm. 
 

 

 

 

Fig. 10 Illustrative examples of original image and generated segmentation mask for a crack at different points in time 
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3. Results and discussions 
 

The damage evolution dynamics for five different cracks 

scattered along the span of the tested beam was studied and 

is shown in Fig. 11. The distribution of crack thickness 

evaluated at several points along the centerline of the cracks 

is plotted against time which is characterized by inspection 

round. The rectangular boxes denote the range between the 

first and the third quartiles. The horizontal lines inside the 

boxes represent the second quartile, also known as the 

median. The small solid squares inside the boxes symbolize 

the mean values whereas the whiskers protruding out from 

 

 

the boxes signify one standard deviation on either side of 

the mean value. All the parameters discussed above are 

indicators of damage severity and its evolution with time. 

However, the one parameter which is of highest interest to 

the inspectors is the maximum thickness. It is represented 

by small triangles, which are connected by straight lines for 

better depiction of its evolution with time. It was observed 

that the maximum as well as the mean crack thickness 

increases almost monotonically with increase in load. The 

segmentation algorithm used in this study presumes that the 

cracks are darker compared to the background. However, 

this hypothesis is violated at times when light penetrates 

  

(a) Crack 1 (b) Crack 2 
 

  

(c) Crack 3 (d) Crack 4 
 

 

(e) Crack 5 

Fig. 11 Time evolution of crack thickness distribution for five different cracks. The rectangular boxes denote the range 

between the first and the third quartiles. The horizontal lines inside the boxes represent the second quartile, also 

known as the median. The small solid squares inside the boxes symbolize the mean values whereas the whiskers 

protruding out from the boxes signify one standard deviation on either side of the mean value. The small triangles 

outside the rectangular boxes represent the maximum values 
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inside thick cracks making a portion of the crack interior 

appear bright. This leads to inaccurate segmentation and 

therefore underestimation of crack thickness as indicated by 

abrupt dip in the maximum thickness value (Fig. 11(b)). 

However, similar dip observed at lower stages of loading 

(Fig. 11(a)) can be attributed to the debilitating effect of 

image noise on segmentation of very thin cracks. Increase 

in load also resulted in higher dispersal in the thickness 

values due to increase in crack thickness as well as 

appearance of new branches. Besides, increase in loading 

intensity increased the difference between the maximum 

and mean thicknesses. 

Many a time, evolution of old crack is accompanied by 

appearance of new branches, which are not accounted for 

by the maximum thickness. Therefore, total crack thickness 

together with total area of the cracks, which take into 

account the main crack as well as its branches, are plotted 

against time (characterized by inspection round) in Fig. 12. 

Total crack thickness is estimated as the summation of 

crack thicknesses at different locations. On the other hand, 

the area of a crack is measured by evaluating the number of 

pixels in a region enveloped by an 8-connected component 

in the binary crack map. This figure (Fig. 12) presents an 

overall estimate of how fast the crack is growing as a 

whole. 

The deterioration rate (rate of change in crack thickness) 

is plotted against time (inspection round) in Fig. 13. It is 

nothing but the first derivative of crack thickness with 

respect to time. It is evident from the figure that rate of 

change in thickness is not monotonic, in contrast with 

thickness itself. This indicates that the growth rate is not 

proportional to the applied load. An illustration of this sort 

will make it possible to single out the two inspection rounds 

in between which a crack has grown at the fastest pace. For 

instance, it can be inferred from Fig. 13 that the crack-5 

suffered the worst degradation in between the fourth and the 

fifth rounds of inspection. Similar conclusions can likewise 

be drawn for other cracks as well. Such information may 

prove to be crucial for chronologically connecting the 

extent of degradation with extreme events from the past 

such as seismic vibration, fire, mechanical overload, etc. 

This will facilitate zeroing in on the most probable reason 

for damage among several possibilities which are otherwise 

equally likely. 
 

 

There are occasions when the inspectors are privy to the 

data recorded by accelerometers or displacement sensors 

installed in different floors of a building or at different 

places along the span of a bridge, in addition to images 

captured by visual sensors. This provides a scope for 

correlating component level damage severity with peak 

acceleration or displacement experienced by the structure. 

Fig. 14, which shows the variation of crack thickness with 

the displacement induced by the actuators at loading points, 

illustrates this concept. The abscissa in this figure should be 

suitably chosen so as to serve the specific need of the 

problem at hand. Peak seismic ground motion, mid-span 

deflection of a bridge or top story deflection of a building 

are some of the possible alternatives, to name a few. An 

analysis as such will enable the structural engineers to 

anticipate the possible damage in a structure that may be 

induced by a future earthquake of any given intensity. 

All the figures presented in this section provide a clear 

picture of how fast the crack is growing and thereby 

facilitate an informed decision making with regard to any 

immediate follow-up action where necessary. The state-of-

the-art approaches for autonomous condition assessment of 

civil infrastructures are deprived of this crucial time 

dimension which prohibits any rationale prognostication 

about an imminent structural failure. However, inclusion of 

precious chronological intelligence, as suggested in this 

study, into the condition assessment and monitoring 

framework, will significantly narrow down this limitation, 

making it possible to estimate the residual life of a 

structural component and take preemptive measures as 

needed. It will also be instrumental in recommending any 

requisite adjustment in the frequency of future routine 

inspections. 

Success of the proposed approach depends greatly on 

the quality of inspection data. Therefore, certain standards 

should be followed during data collection, omission of 

which may lead to inaccurate scene reconstruction. First of 

all, each point on the structure under investigation should be 

visible at least in two images. Successive images should 

have more than 60% overlap to secure best possible results. 

This can be achieved by taking pictures at a regular time 

interval in case of a UAV flying at a constant speed (Choi et 

al. 2018). The flight path of the UAV should be designed so 

as to ensure complete coverage of the area under inspection. 
 

 

  

    (a) Total thickness      (b) Total area 

Fig. 12 Time evolution of total crack thickness and area 
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  (a) Maximum crack thickness     (b) Total crack thickness 
 

 

      (c) Total crack area 

Fig. 13 Deterioration rate during the intervening time between successive inspections 

  

   (a) Maximum crack thickness      (b) Total crack thickness 
 

 

     (c) Total crack area 

Fig. 14 Variation of crack thickness and area with respect to induced displacement 
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However, capturing multiple images from the same position 

should be avoided as it creates panoramic effects giving rise 

to complication in image alignment. High resolution images 

contain more visual details. Therefore, pictures should be 

taken with the highest resolution possible, and saved as raw 

images without any compression. Good lighting condition is 

paramount for efficient scene reconstruction, particularly in 

indoor environment. Static light produces better results as 

light movement creates a false impression of moving 

features. Still photos are preferred to videos as slow shutter 

may introduce blurring effect in sequential frames of 

videos. If rolling shutter cameras are used, care should be 

taken that the camera is not shaky while taking pictures. 

This is particularly challenging in UAV-based data 

collection where vibration dampers are normally used to 

alleviate the effect of platform instability. Depth of field of 

the camera should be suitably chosen as high depth of field 

causes diffraction resulting in sharpness reduction. Lens 

with low distortion is better than fish-eye lens having 

considerable barrel distortions. Exposure of the camera 

should be carefully set, as under or over exposure causes 

loss of useful details, and on the other hand, inconsistent 

exposure produces bright and dark patches. 

Civil infrastructures undergo visual changes with time 

due to accumulation of dirt, rust, stains, etc. Although 

SURF algorithm is used for feature detection which is 

invariant to illumination changes, the performance of the 

correspondence identification process can be affected by 

contamination of visual features leading to reduction in the 

number of matched points. In extreme cases, this may result 

in the failure of feature matching and image alignment 

exercises if there are not sufficient features to estimate the 

homography matrix accurately. However, in presence of 

adequate interest points, as in the case of present study, the 

proposed algorithm will perform reasonably well without 

any appreciable loss of accuracy. The detection algorithm 

can be made robust against such surface irregularities by 

diversifying the training data with regard to all possible 

noise intrusion and illumination conditions. A lot of noises 

will be disposed of at this stage by rejection of nonessential 

background. Furthermore, proper pre- and post-processing 

techniques can reduce the image noise significantly. 

The beam specimens considered in this study were 

subjected to flexural failure. Therefore, most of the cracks 

that appeared on the surface were predominantly vertical. 

However, inspectors often run into situations where 

structural elements fail in shear giving rise to cracks that are 

primarily diagonal. In such cases, the Faster RCNN 

algorithm will predict a larger bounding box enhancing the 

scope for noise ingression. However, an appropriate post-

processing in the segmentation stage will ensure that the 

noises are duly identified and eliminated. Moreover, linear 

structuring element with different orientations (Eq. (1)) 

renders the segmentation technique invariant to crack 

orientation. In the same way, the quantification approach 

used in this study is efficient for vertical and diagonal 

cracks alike. It is not uncommon to encounter situations 

where two initially unconnected cracks intersect and 

become inseparable with increase in load. In such 

situations, it is recommended that the pair of cracks should 

be treated as a single entity and evaluated jointly. Cracking 

in concrete is used as a case study to validate the efficacy of 

the proposed approach. However, the same techniques can 

be extended to any other defect category or to multiple 

defect categories with appropriate modifications. The data 

sets used for training and validation of the detection 

algorithm should be suitably updated to include instances 

from all the defects being investigated. Defect-specific 

segmentation and quantification algorithms should be 

invoked to put in place a comprehensive condition 

assessment pipeline. 

 

 

4. Conclusions 
 

This study was motivated by the observation that most 

of the published works in the area of vision-based 

autonomous structural inspection and health monitoring are 

agnostic to the time dimension. Ignoring vital historical 

information, which can otherwise be a key to time-based 

analysis of damage growth, makes it impossible for 

inspectors to act preemptively to avert any imminent 

structural failure and consequent human and financial 

losses. This study aimed at filling this research gap by 

proposing a novel computer vision-based approach to 

leverage from the crucial chronological intelligence 

embedded in archival images captured by mobile inspection 

robots or UAVs. Strategies are proposed for autonomous 

exploration into the erstwhile inspection data looking for 

correspondences, view synthesis from multiple 

correspondences and alignment to the current scene under 

consideration, localizing damage in the reconstructed 

scenes from the past, segmenting damage, and finally 

quantifying the damage to extract necessary information 

and derive meaningful conclusions, after a damage is 

detected in the current data set. Time history of damage is 

graphically presented facilitating easier interpretation in 

addition to predictive and quantitative evaluations. Cracks 

on concrete surface are used as a case study to demonstrate 

the feasibility of this approach, which can be potentially 

extended to any type of structural defects, namely, spalling 

and corrosion. However, effective implementation of the 

proposed algorithm makes it necessary to have complete 

coverage of the damaged areas and adequate overlap 

between successive images at each batch of inspection data. 

Besides, this algorithm will fail if there are insufficient 

visual features or if the structure under investigation is not 

planer. Incorporation of IMU and GPS information may 

lead to more robust scene reconstruction in such situations, 

which is a scope for further study. Future research should 

also investigate the feasibility of the proposed approach 

through field experiments with varieties of inspection 

robots (Jahanshahi et al. 2017c) endowed with online data 

processing capability (Wu et al. 2019). 

 

 

5. Future work 
 

Estimating the service life of a structure is important for 

the sake of scheduling future maintenance. Mechanics-
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based models are widely used and usually most reliable in 

this matter (Cruse and Besuner 1975, Dhawan et al. 2019, 

Besuner 1976). However, in absence of proper analytical 

model, statistical data driven approaches are adopted which 

rely on observed data from the past (Wang et al. 2014, 

Agrawal et al. 2010, Mohanty et al. 2010). Probabilistic 

evaluation of historical damage evolution data helps predict 

the expected timeline for a specified serviceability limit 

state. This calls for establishing the chronology of a damage 

by exploring an archive of visual inspection data, which 

was not thoroughly studied by researchers in the past. The 

present study will potentially fill that knowledge gap and 

will make it possible to anticipate the remaining life of a 

civil infrastructure system by exploiting a statistics-based 

prognostic model, the detailed investigation of which is 

beyond the scope of the present study. 

Besides, estimation of loss due to possible seismic 

events is an important interest area for planners, 

government organizations and insurance agencies. It helps 

them in disaster planning, formulating risk reduction 

policies, decision making on retrofit and mitigation 

strategies, and in calculating insurance rating. Evaluating 

the probability of reaching or exceeding a damage state 

given a specific value of intensity measure is a prerequisite 

for seismic loss estimation and risk assessment of 

infrastructure systems. This probability represented 

graphically is known as the fragility curve. Professional 

judgment provided by a panel of experts is one of the 

commonly used approaches for generating fragility curves, 

even though it lacks credibility on account of being 

subjective and dependent on expertise of individual experts. 

The damage prognostication approach alluded in this paper 

can open up a new avenue of research in the direction of 

image-based fragility curve generation exploiting the 

chronological information embedded in archival data. 
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