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1. Introduction 

 

Real-time hybrid simulation (RTHS), combining 

physical testing with numerical simulation, is an efficient 

and cost-effective experimental method to investigate the 

seismic performance of structures subjected to earthquakes. 

Generally, a structure is separated into an experimental 

substructure and a numerical substructure in a RTHS. It is 

noted that the experimental substructure normally contains 

components or devices that are difficult to simulate 

accurately. The boundary degrees of freedom between the 

experimental and numerical substructures are represented 

by servo-hydraulic actuators with steel fixtures or a seismic 

shake table in the laboratory, namely, a servo-hydraulic 

transfer system. A step-by-step integration algorithm is 

required to solve the displacement response at the boundary 

degrees of freedom of the numerical substructure. This 

displacement then becomes the desired displacement to be 

imposed on the experimental  substructure.  The 

corresponding restoring force is measured from the 

experimental substructure and fed back to the step-by-step 

integration algorithm to compute the displacement response 
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for the next time step until the entire RTHS is completed. 

However, the computation, communication, and dynamics 

of the servo-hydraulic system result in time lag and delay 

between the desired and achieved displacement responses, 

introducing negative damping into the hybrid simulation 

loop and leading potential instabilities (Horiuchi et al. 

1999). As a result, RTHS has been recognized as a 

challenging and demanding experimental method for 

earthquake engineering studies as the numerical and 

experimental substructures must transfer the responses at 

the boundary degrees of freedom in real time. 

In order to resolve the unstable issue due to time lag and 

delay, various compensation methods have been proposed 

and applied to RTHS. Horiuchi et al. (1999) proposed a 

compensation method based on linear acceleration 

extrapolation, which can be used to predict the actuator 

displacement by applying the Newmark family integration 

algorithms. Jung et al. (2007) applied the derivative 

feedforward compensation with the HHT α-method 

integration algorithm. Chen et al. (2009) derived a first-

order discrete inverse compensator to compensate actuator 

delay. Chen and Tsai (2013) proposed a second-order 

discrete phase-lead compensator with online delay 

estimation through a gradient adaptive law. Chae et al. 

(2013) developed an adaptive time series compensator 

which updates the coefficients of the system model online. 

Phillips et al. (2014) proposed the backward-difference 
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method to discretize a feedforward controller in RTHS. 

Hayati and Song (2017) proposed a discrete feedforward 

compensator using finite impulse response filter 

formulation. Although these aforementioned methods are 

slightly different with respect to the order and formulation, 

they all aim at compensating the actuator time delay and 

reducing the corresponding effect on the stability of RTHS. 

Experimental results have demonstrated that these 

compensation methods are able to achieve successful and 

stable RTHS. 

Various stability analyses have been conducted in order 

to realize the stability margin of a RTHS. Horiuchi et al. 

(1999) used an energy balance approach to determine the 

critical time delay that causes the instability of a single-

degree-of-freedom (SDOF) structure in RTHS. The 

analytical results indicate that the time delay of actuator can 

be treated as an equivalent negative damping. When the 

negative damping resulted from actuator time delay is larger 

than the inherent damping of the SDOF structure, the entire 

RTHS becomes unstable. Wallace et al. (2005) derived a 

delay differential equation to obtain the critical time delay 

of a SDOF structure in RTHS. Mercan and Ricles (2007) 

used the pseudodelay technique (Rekasius 1980) to solve 

the critical time delay considering the amplitude error and 

delay separately for a SDOF structure. The analytical 

results indicate that an overshoot error adds damping to the 

RTHS, whereas an undershoot error decreases damping. 

Gonzalez-Buelga et al. (2007) demonstrated the effects of 

delay and noise on the stability of the substructuring system 

in which the delay was minimized by using a polynomial 

forward prediction technique and the noise was mitigated 

using a filtering technique. Chen and Ricles (2008) 

investigated the effect of actuator delay and integration 

algorithms on the stability of RTHS through the closed-loop 

transfer function in discrete time domain. Chen and Tsai 

(2013) applied the pseudodelay technique to obtain the 

critical time delay for a SDOF structure considering both 

the amplitude error and delay simultaneously. The 

analytical results conclude that an overshoot amplitude 

error makes the structural system stiffer. As a result, the 

critical time delay decreases when an overshoot amplitude 

error occurs even though it adds a positive damping to the 

structural system. It is noted that the aforementioned 

stability analyses do not consider the effect of numerical 

integration on the RTHS stability. Meanwhile, the dynamics 

of servo-hydraulic system is not considered either. Zhu et 

al. (2015) utilized the discrete-time root-locus technique to 

investigate the stability of multi-degrees-of-freedom 

(MDOF) RTHS which considered the effects of integration 

time step, time delay, structural property, and delay 

compensation. The technique was applied to shake table 

testing in the laboratory. Maghareh et al. (2017) proposed 

predictive stability indicator to evaluate the sensitivity of an 

RTHS configuration to de-synchronization at the interface 

of the physical specimen and numerical model and extended 

it to linear MDOF systems by converting a delay 

differential equation to a generalized eigenvalue problem 

using a set of vectorization mappings. Tang et al. (2018) 

used the gain margin to determine the RTHS stability of a 

SDOF structure considering the combined effect of varying 

amplitude and phase due to the dynamics of the servo-

hydraulic system. Huang et al. (2019) used the Lyapunov-

Krasovskii stability theorem to explore the stability of 

RTHS considering both constant and time-varying actuator 

delay and suggested that the assumption of constant time 

delay is suitable to RTHS of linear SDOF systems as long 

as the stiffness ratio for physical substructure is large 

enough. 

In this study, a robust stability analysis procedure for a 

SDOF structure is proposed and inspected which considers 

the uncertainty of servo-hydraulic system dynamics with 

and without delay compensation. The experimental 

substructure is assumed to be a ratio of the stiffness, mass, 

and damping, respectively. Instead of the pure delay and 

amplitude error model, the servo-hydraulic system is 

represented as a fourth-order transfer function model which 

is treated as the nominal model. Each parameter of the 

nominal model has ±10% perturbation to denote the 

parametric uncertainty of the system. In addition, a 

multiplicative uncertainty model is adopted to describe the 

unstructured uncertainty of the servo-hydraulic system. The 

Nyquist plot of the RTHS loop with the perturbed servo-

hydraulic system is adopted to determine the robust stability 

margin of the RTHS in a graphical interpretation manner. 

Furthermore, three commonly used delay compensation 

methods are considered in the stability analyses. 

Accordingly, the robust stability margin of RTHS in terms 

of the ratio of the stiffness, mass, and damping with respect 

to the natural frequency of the entire SDOF structure can be 

obtained. For the validating stage, a large number of 

numerical simulations are conducted which vary the 

stiffness ratio, mass ratio, and damping coefficient ratio of 

the experimental substructure to the whole structure, 

respectively. Meanwhile, the allow stiffness ratio is further 

verified by conducting RTHS in the laboratory. Finally, the 

results are summarized and discussed. 

 

 

2. Mathematical modeling 
 

The mathematical modeling for robust stability analyses 

of RTHS is introduced in this section including the servo-

hydraulic system modeling, the parametric and unstructured 

uncertainty modeling, and the RTHS loop modeling. 

 

2.1 Servo-hydraulic system modeling 
 

Generally, the dynamics of a servo-hydraulic system in 

RTHS is composed of a servo controller, servo valve 

dynamics, servo-valve flow, an actuator, and a physical 

specimen. The block diagram of a servo-hydraulic system is 

illustrated in Fig. 1 in which the parameter A is the piston 

area and s is a complex number in the Laplace transform. 

The input current that drives the servo-valve is normally 

generated by a proportional-integral-derivative (PID) 

controller; however, merely the proportional gain is used for 

most application in RTHS. Each component of a servo-

valve has its own dynamic characteristics; for example, the 

torque motor dynamics, and the spool valve dynamics. 

Therefore, the mathematical model of a servo-valve is very 
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complicated. Merritt (1967) derived a linearized model of 

each component of a servo-valve which is an eighth-order 

transfer function. However, this high-order model considers 

numerous design factors, which could affect the 

performance of a servo-valve significantly. Mostly, the 

dynamic response of the servo-valve is faster than the other 

components in RTHS. Therefore, a simplified first-order 

model of the servo-valve is representative sufficiently for a 

frequency bandwidth from 0 Hz to 50 Hz. The fluid in the 

servo-valve also has its dynamic characteristics which can 

be represented by linearizing the nonlinear flow equation as 

well as applying the continuity equation and Newton’s 

second law. The linearized flow equation connects the 

control flow to the valve spool displacement and the load 

pressure (the pressure drop across the piston) which can be 

indicated in the load pressure feedback in the block 

diagram. Lastly, the experimental substructure attached to 

the servo-hydraulic actuator has structural dynamics which 

can be formulated as a mass-spring-damper model. Noted 

that there is a feedback from the structural velocity response 

to the hydraulic flow into the actuator which is referred as 

natural velocity feedback. Therefore, the dynamics of the 

specimen directly affects the performance of servo-

hydraulic actuator through this natural velocity feedback. 

The derivation detail of a servo-hydraulic system can be 

referred to Carrion and Spencer (2007). Consequently, the 

mathematical model of a servo-hydraulic system in RTHS 

can be expressed as a four-pole transfer function 
 

𝐺𝑠(𝑠) =
𝑎0

𝑠4 + 𝑎3𝑠
3 + 𝑎2𝑠

2 + 𝑎1𝑠 + 𝑎0
 (1) 

 

where a3, a2, a1, a0 are the identified parameters of the 

servo-hydraulic system that are either directly or indirectly 

related to each component of servo-hydraulic system as 

depicted in Fig. 1. 

 

2.2 Uncertainty modeling 
 

It is difficult to have a mathematical model that can 

precisely represents a physical system in real world. 

Modeling error of the servo-hydraulic system affects the 

stability margin of RTHS. Generally speaking, the 

identified mathematical model of a servo-hydraulic system 

is called the nominal model (Eq. (1)). This nominal model 

can be perturbed in physical practice due to noise 

interference, system nonlinearities, and unmodeled 

dynamics (Zhou and Doyle 1998). The model uncertainties 

can be quantified essentially by two main approaches, 

 

 

namely structured uncertainty and unstructured uncertainty. 

An uncertainty model of the servo-hydraulic system is 

essential for robust stability analysis in this study. 
 

2.2.1 Parametric uncertainty 
One of the structured uncertainty modeling methods is 

to parametrize the coefficients of a transfer function within 

a predefined range which is named parametric uncertainty. 

As aforementioned, the servo-hydraulic system in RTHS 

can be presented by a fourth-order transfer function with no 

zeros. In practice, the coefficients of the transfer function in 

Eq. (1) are obtained by conducting system identification. 

However, the servo-hydraulic system is an inherently 

nonlinear system. The parameters of the linearized servo-

hydraulic system model depend on the operating conditions 

such as the laboratory temperature, signal quality, and etc. 

Therefore, the parametric uncertainty could affect the 

stability margin of RTHS. It is straightforward to consider 

the effects of parametric uncertainty on RTHS stability 

simply by setting a range of parameters for the identified 

mathematical model of the servo-hydraulic system as 
 

�̄�𝑠(𝑠)

= {

𝑎0
𝑠4 + 𝑎3𝑠

3 + 𝑎2𝑠
2 + 𝑎1𝑠 + 𝑎0

𝑎𝑛𝑚𝑖𝑛 ≤ 𝑎𝑛 ≤ 𝑎𝑛𝑚𝑎𝑥;

                                                                                𝑛 = 0,1,2,3
} 

(2) 

 

Each identified parameter lies in a predefined interval, 

which depends on the quality of the testing facilities and 

environment in the laboratory. 
 

2.2.2 Unstructured uncertainty 
The linearized servo-hydraulic system model is 

adequate in low frequency with reasonable force demand. 

However, it may not be appropriate in high frequency 

range. Therefore, unstructured uncertainty is indispensable 

to cover the unmodeled dynamics of a servo-hydraulic 

system, particularly within the high frequency range. Three 

types of unstructured uncertainty models are mostly 

adopted including additive uncertainty, multiplicative 

uncertainty, and coprime factor uncertainty. Each type of 

the unstructured uncertainty model has forward or inverse 

formulation, leading to a large variety of unstructured 

uncertainty models that are available to describe the 

perturbation considered in RTHS. Among them, a disk-like 

uncertainty model has been widely used as it is simple for 

general analysis methods. For this reason, the multiplicative 

uncertainty model is adopted which can be expressed as 
 

�̃�𝑠(𝑠) = [1 +𝑊(𝑠)Δ(𝑠)]𝐺𝑠(𝑠) (3) 
 

 

 

Fig. 1 Block diagram of the servo-hydraulic system for RTHS 
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Fig. 2 Block diagram of a multiplicative uncertainty model 

 

 

 

 

where �̃�𝑠(𝑠) represents the multiplicative uncertain model 

of the servo-hydraulic system; W(s) is a stable weight 

function considering the distribution of the uncertainty 

maximum magnitude over the frequency of interest; and 

Δ(s) is a random stable transfer function that contains the 

uncertainty on the magnitude and phase perturbation. The 

infinity norm of Δ(s) must satisfy the following inequality 

 
‖Δ(𝑠)‖∞ ≤ 1; 𝑠 = 𝑗𝜔 ∀𝜔 (4) 

 

where j represents imaginary unit and ω is the angular 

frequency. The block diagram of the multiplicative 

uncertainty is illustrated in Fig. 2. It is noted that the 

multiplicative uncertainty model can be characterized into 

input multiplicative perturbation and output multiplicative 

perturbation. However, the two types of multiplicative 

models are identical for single-input-single-output systems. 

 

2.3 Real-time hybrid simulation loop 
 

Real-time hybrid simulation forms a closed loop 

between the numerical substructure, servo-hydraulic 

system, and experimental substructure. Fig. 3 depicts the 

relationships between each primary component in RTHS. 

For earthquake engineering studies, the ground motion 

�̈�𝑔(𝑡)  is input to the numerical substructure and the 

corresponding displacement response at the boundary 

degrees of freedom needs to be imposed to the experimental 

substructure through the servo-hydraulic actuator in real 

time. However, the achieved displacement xm(t) could be 

different from the desired displacement xd(t) due to the 

dynamics of the servo-hydraulic system. The restoring force 

f(t) is then measured and fed back to the numerical 

substructure and complete the RTHS closed loop. 

The general RTHS loop can be further investigated from 

the perspective of transfer function as shown in Fig. 4. The 

transfer function from the input acceleration ai(t) to the 

desired displacement xd(t) is denoted as Gns(s). The desired 

displacement is sent to the servo-hydraulic system Gs(s) and 

the corresponding output becomes the achieved 

displacement xm(t). The experimental substructure is then 

deformed and the corresponding force can be measured. 

The specimen dynamics can be represented by the transfer 
 

 

Fig. 4 Equivalent transfer functions of RTHS 

 

 

 

 

function Ges(s) from the input displacement xm(t) to the 

restoring force f(t). Finally, the restoring force can be 

converted into an equivalent input acceleration ae(t) for the 

numerical substructure by a transfer function Gaf(s). 

Accordingly, the corresponding closed-loop transfer 

function of RTHS becomes 

 

𝑥𝑚(𝑡) =
𝐺𝑠(𝑠)𝐺𝑛𝑠(𝑠)

1 + 𝐺𝑎𝑓(𝑠)𝐺𝑒𝑠(𝑠)𝐺𝑠(𝑠)𝐺𝑛𝑠(𝑠)
�̈�𝑔(𝑡) (5) 

 

Noted that Eq. (5) is abuse of notation between time domain 

and s domain for simplicity. 
 

 

3. Robust stability analysis (stiffness term) 
 

3.1 Nyquist stability with system uncertainty 
 

A RTHS closed loop is robust if the internal stability for 

every component in the loop is provided. As mentioned 

before, the multiplicative uncertain model is adopted as it is 

simple for the stability analysis. From the robust stability 

theorem (Doyle et al. 1992), it is known that the closed-

loop RTHS is robustly stable if and only if 
 

‖𝑊(𝑠)𝑇(𝑠)‖∞ < 1 (6) 
 

where T(s) is the complementary sensitivity function of the 

closed-loop RTHS in Fig. 4 
 

𝑇(𝑠) =
𝐺𝑎𝑓(𝑠)𝐺𝑒𝑠(𝑠)𝐺𝑠(𝑠)𝐺𝑛𝑠(𝑠)

1 + 𝐺𝑎𝑓(𝑠)𝐺𝑒𝑠(𝑠)𝐺𝑠(𝑠)𝐺𝑛𝑠(𝑠)
=

𝐿(𝑠)

1 + 𝐿(𝑠)
 (7) 

 

L(s) is the loop transfer function. Substituting Eq. (7) into 

Eq. (6), the following inequality can be obtained: 

 
|𝑊(𝑠)𝐿(𝑠)| < |1 + 𝐿(𝑠)| ; 𝑠 = 𝑗𝜔 ∀𝜔 (8) 

 

From the graphical interpretation, Eq. (8) indicates that 

the distance from (-1, 0) to the nearest point of L(jω) should 

be larger than the disk-like uncertainty made by W(jω) on 

the complex plane. Therefore, the Nyquist plot is helpful to 

providing straightforward information of the stability 

Gs(s)

W(s) Δ(s)

( )sG s

Input Output

+

_

 ( )gx t

ae(t)

Gs(s)

Ges(s)

Gns(s)

Gaf(s)

ai(t) xd(t) xm(t)

f(t)

 

Fig. 3 General real-time hybrid simulation loop 
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margin considering modeling uncertainty. 

Nyquist stability criterion has been widely used to 

evaluate the stability of a linear time-invariant control 

system in which the Nyquist plot is essential for stability 

assessment of the control system. Details of Nyquist 

stability criterion and its derivation can be found in the 

textbooks of control theory (Doyle et al. 1992). Merely the 

most critical part adopted in this study is introduced due to 

the limited pages. From the Nyquist stability criterion, the 

stability of a closed-loop control system can be analyzed 

through its open-loop system transfer function by applying 

Cauchy’s principle of argument. The Nyquist contour is 

formed by connecting the imaginary axis from 0 to +j∞, a 

semicircle of infinite radius that encloses the entire right 

half s-plane, and the imaginary axis from −j∞ to 0. 

Accordingly, the mapped contour in the L(s)-plane encircles 

the point (-1, 0) N times clockwise, which satisfies the 

following condition 
 

𝑁 = 𝑍 − 𝑃 (9) 

 

where Z is the number of unstable closed-loop poles and P 

is the number of unstable open-loop poles. There is no 

unstable pole for each RTHS component shown in Fig. 4 if 

the servo-hydraulic actuator is well-tuned. Therefore, the 

number of unstable open-loop poles is equal to zero (P = 0). 

As a result, the number of clockwise encirclement of the 

point (-1, 0) in the L(s)-plane should be zero (N = 0) if the 

closed-loop RTHS is stable (Z = 0). The loop transfer 

function with multiplicative uncertainty in the Nyquist plot 

is used to determine the stability of RTHS loop in this study. 

Fig. 5 illustrates the Nyquist plot with multiplicative 

uncertainty. Due to the fact that P = 0, it can be found that 

the closed-loop RTHS becomes unstable if the envelope of 

the disk-like uncertainty (dashed-line) encircles the point (-

1, 0). In other words, the closed-loop RTHS is robustly 

stable if and only if the envelope of the Nyquist plot with 

uncertainty does not include the point (-1, 0). Noted that 

even though the nominal loop transfer function has fair gain 

margin, it does not necessarily indicate that the robust 

stability is guaranteed after the system is perturbed. 
 

3.2 Robust stability of RTHS 
 

The stability analysis of RTHS with system uncertainty 

was conducted following the mathematical modeling and 
 

 

 

Fig. 5 Illustration of the Nyquist plot of a system with 

multiplicative uncertainty 

stability criterion stated previously. Consider a SDOF 

structure in which part of the stiffness is experimentally 

tested. Thus, the equation of motion of the SDOF structure 

can be expressed as 
 

𝑚�̈�(𝑡) + 𝑐�̇�(𝑡) + (1 − 𝑝𝑘)𝑘𝑥(𝑡) 
= −𝑚�̈�𝑔(𝑡) − 𝑝𝑘𝑘𝑥(𝑡) 

(10) 

 

where m, c, and k denote the mass, damping coefficient, and 

stiffness of the SDOF structure, respectively; x(t), �̇�(𝑡), 
and �̈�(𝑡) are the relative displacement, relative velocity, 

and relative acceleration of the structure, respectively; pk is 

the ratio of the stiffness of the experimental substructure to 

the entire stiffness of the SDOF structure; and �̈�𝑔(𝑡) is the 

ground acceleration. Henceforth, pk is called the stiffness 

ratio in the paper for simplicity. Accordingly, the transfer 

function of the numerical substructure in Fig. 4 is 
 

𝐺𝑛𝑠(𝑠) =
−𝑚

𝑚𝑠2 + 𝑐𝑠 + (1 − 𝑝𝑘)𝑘
 

              =
−1

𝑠2 + 2𝜉𝜔𝑛𝑠 + (1 − 𝑝𝑘)𝜔𝑛
2
 

(11) 

 

where ξ and ωn represent the damping ratio and natural 

frequency of the structure, respectively. In the paper, the 

damping ratio was assumed 2% for all the robust stability 

analyses. 

The transfer function of the servo-hydraulic system in 

RTHS can be obtained by conducting system identification. 

In the stability analysis, the rational transfer function used 

by Tang et al. (2018) was adopted which can be expressed 

as 

𝐺𝑠(𝑠) =
5.659 ⋅ 109

𝑠4 + 714.5𝑠3 + 3.393 ⋅ 105𝑠2

+6.469 ⋅ 107𝑠 + 5.659 ⋅ 109

 (12) 

 

Conservatively, ±10% identification error was assumed 

and taken as the parametric uncertainty for each parameter 

in Eq. (12). Noted that this range of parameters can be 

modified depending on the facility condition and 

measurement quality in the laboratory. Accordingly, the 

perturbed nominal transfer function of the servo-hydraulic 

system becomes 
 

�̄�𝑠(𝑠) 

=

{
 

 𝑎0
𝑠4 + 𝑎3𝑠

3 + 𝑎2𝑠
2 + 𝑎1𝑠 + 𝑎0

:

643.1 ≤ 𝑎3 ≤ 786.0

3.054 ⋅ 105 ≤ 𝑎2 ≤ 3.732 ⋅ 10
5

5.822 ⋅ 107 ≤ 𝑎1 ≤ 7.116 ⋅ 107

5.093 ⋅ 109 ≤ 𝑎0 ≤ 6.225 ⋅ 10
9}
 

 

 
(13) 

 

Fig. 6 illustrates the frequency response of the nominal 

servo-hydraulic system transfer function with ±10% 

parametric uncertainty for each parameter. It can be found 

that the magnitude varies significantly when the frequency 

is larger than 5 Hz. 

The weight function used for the multiplicative 

uncertain model is critical to robust stability analysis as it 

considers the distribution of the uncertainty maximum 

magnitude over the frequency of interest. An appropriate 

weight function forms an uncertainty envelope that covers 

the maximum magnitude of normalized perturbed servo-

hydraulic system over the considered frequency range even 

Real

Imaginary

(-1, 0)

L(jω)

( ) ( ) W j L j

1 ( )  + L j
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for the worst possible case of parametric uncertainty as 

indicated in Eq. (13). In other words, the distance between 

the weight function and the curves of normalized 

perturbation in the frequency domain should be as small as 

possible. Large distance leads to a conservative stability 

margin in the analysis. Generally, the weight function is 

obtained through trial and error process which is neither 

effective nor systematic. In this study, a simple but 

appropriate weight function is proposed to form the 

multiplicative uncertain model for the robust stability 

analysis of RTHS which can be expressed as 
 

𝑊(𝑠) =
0.85 (𝑠 +

1

𝑝
)

𝑠 + 𝑝
 (14) 

 

where p represents the real part of the stable pole that is 

closest to the imaginary axis in the s-plane. Noted that Eq. 

(14) is proposed based on 10% parametric uncertainty. 

Accordingly, the weight function for the specific nominal 

transfer function (Eq. (12)) can be determined 
 

𝑊(𝑠) =
0.85𝑠 + 3.844 ⋅ 10−3

𝑠 + 221.11
 (15) 

 

Furthermore, Eq. (3) can be normalized with respect to the 

nominal servo-hydraulic system as 
 

|
�̃�(𝑠)

𝐺(𝑠)
-1| ≤ |𝑊(𝑠)| ; 𝑠 = 𝑗𝜔 ∀𝜔 (16) 

 

which provides a graphical interpretation in frequency 

 

 

 

Fig. 6 Frequency response of the servo-hydraulic system 

with parametric uncertainty 

 

 

 

Fig. 7 Bode magnitude plot of the normalized perturbations 

and the proposed weight function 

domain to ensure if the selected weight function is 

appropriate or not. Fig. 7 shows the normalized perturbed 

servo-hydraulic system and the proposed weight function. It 

is found that the proposed weight function formulation 

covers the normalized perturbed servo-hydraulic system 

over the frequency of interest. The distance between the 

weight function and the perturbed systems is trivial from 

0.001 Hz to 100 Hz. Although the distance becomes larger 

when the frequency is higher than 100 Hz, it is on the 

conservative side for RTHS. It is demonstrated that the 

proposed weight function covers the uncertainty maximum 

magnitude fairly over the considered frequency range, 

providing a simple and straightforward method for selecting 

the weight function without trial and error. Accordingly, a 

proper multiplicative uncertainty model can be constructed 

and the corresponding robust stability can be conducted. 

Fig. 8 depicts the stability margin with respect to the 

relationship between the natural frequency of the entire 

structure and the stiffness ratio pk. Merely the natural 

frequencies of a SDOF structure ranges from 0 Hz to 20 Hz 

are discussed in this study as it is common and reasonable 

for buildings. By using the exampled servo-hydraulic 

system, the entire structural stiffness can be represented by 

the specimen in RTHS on condition that the natural 

frequency of the structure is less than 0.5 Hz. In addition, 

the allowable stiffness ratio decreases significantly when the 

natural frequency of the structure increases from 0.5 Hz to 5 

Hz. When the natural frequency of the structure is larger 

than 6 Hz, less than 10% of the structural stiffness can be 

taken out as the physical specimen. As a result, delay 

compensation becomes essential for conducting stable 

RTHS. Furthermore, the stability margin become a stability 

area when the system uncertainty is considered in RTHS as 

the dashed lines shown in Fig. 8. The allowable stiffness 

ratio does not necessarily become smaller or larger after 

applying the uncertainty model. However, merely the 

inferior allowable stiffness ratio is adopted for the following 

analyses from the aspect of safety in RTHS, i.e., the lower 

dashed curve in Fig. 8. 

In order to realize whether the stability margin was 

conservative, a large number of numerical simulations were 

conducted in which the natural frequency of the structure 

was varied from 1 Hz to 20 Hz with an increment of 1 Hz. 

In addition to the allowable stiffness ratio with and without 

considering system uncertainty, i.e., the lower dashed curve 

and solid curve in Fig. 8, quartiles between the two 

 

 

 

Fig. 8 Stability margin of RTHS in terms of stiffness ratio 

considering system uncertainty 
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allowable stiffness ratios were selected for simulation. The 

allowable stiffness ratio with and without considering 

system uncertainty is denoted pku and pkn, respectively. 

Accordingly, a total number of 100 cases (20 × 5) were 

selected in the numerical simulation. For each case, 10,000 

servo-hydraulic systems with randomly assigned parametric 

uncertainties bounded by ±10% of the nominal parameters 

were adopted. In other words, the G(s) in Fig. 4 was 

replaced by �̄�𝑠(𝑠) (Eq. (13)) while the rest of the transfer 

functions remained identical in each case. The unstable 

probability distribution of RTHS obtained from the 

numerical simulations is shown in Table 1. It can be 

observed that there is approximate 50% probability of 

achieving unstable RTHS when the stiffness ratio is pkn 

which clearly indicates that the allowable stiffness ratio for 

the nominal servo-hydraulic system is not robustly stable if 

±10% of the parametric uncertainty is adopted. On the other 

hand, none of the 10,000 test cases for each natural 

frequency is unstable when the stiffness ratio is pku. 

Besides, less than 3% possibility that RTHS is unstable 

even when the stiffness ratio is the first quartile between pku 

and pkn. The simulation results are slightly conservative 

especially when the natural frequency is between 9 Hz to 14 

Hz. It can be improved by applying another weight function 

W(s) that covers the curves of normalized perturbation with 

infinitesimal distance in the frequency domain; however, it 

could take much time by trial and error. Alternatively, the 

proposed weight function is easy to form and the 

corresponding robust stability margin is slightly 

conservative but adequate for RTHS stability analyses. 
 

 

 

4. Robust stability with delay compensation 
(stiffness term) 
 
4.1 Delay compensation 
 

Three delay compensation methods were considered in 

the robust stability analyses in this study including the 

linear acceleration extrapolation (Horiuchi and Konno 

2001), first-order inverse compensator (Chen et al. 2009), 

and second-order phase-lead compensator (Chen and Tsai 

2013). Noted that these three compensation methods are 

formed in discrete time; therefore, delay steps of the servo-

hydraulic system and sampling rate of the RTHS are 

required. Assuming that the RTHS is conducted with a 

sampling rate of 2,000 Hz, the nominal transfer function 

adopted in this study as shown in Eq. (12) has an 

approximate constant delay time of 11.83 msec, which is 

nearly equal to 24 delay time steps. 

 

4.1.1 Linear acceleration extrapolation 
Linear acceleration extrapolation (LAE) method is 

based on a linear acceleration assumption. In this 

compensation scheme, a predicted acceleration response 

can be obtained by extrapolating from the previous two 

steps of acceleration response which considers the sampling 

period and the actuator delay. Then, the corresponding 

predicted displacement can be obtained from the predicted 

acceleration response by applying the Newmark integration 

algorithm. The final delay compensator can be formed as a 

discrete transfer function with the coefficients shown in 

Table 2 in which Δt, and τ are the time step and delay time; 

Table 1 Unstable probability distribution of RTHS considering system uncertainty (%) 

Natural frequency 

(Hz) 
pku 𝑝𝑘𝑢 +

1

4
(𝑝𝑘𝑛 − 𝑝𝑘𝑢) 𝑝𝑘𝑢 +

1

2
(𝑝𝑘𝑛 − 𝑝𝑘𝑢) 𝑝𝑘𝑢 +

3

4
(𝑝𝑘𝑛 − 𝑝𝑘𝑢) pkn 

1 0 2.58 12.37 29.07 50.09 

2 0 2.34 11.63 28.87 49.69 

3 0 1.41 10.79 27.98 49.22 

4 0 0.42 8.74 26.29 50.12 

5 0 0.07 6.95 23.78 48.68 

6 0 0 4.11 22.51 50.29 

7 0 0 1.39 18.96 49.66 

8 0 0 0.13 14.11 49.14 

9 0 0 0 9.04 48.74 

10 0 0 0 5.79 47.93 

11 0 0 0 3.35 46.03 

12 0 0 0 3.62 42.62 

13 0 0 0 5.80 44.39 

14 0 0 0 9.08 44.62 

15 0 0 0.05 11.95 45.27 

16 0 0 0.94 15.15 47.44 

17 0 0 2.61 18.60 46.78 

18 0 0.07 4.38 21.00 46.74 

19 0 0.12 5.71 22.62 47.12 

20 0 0.40 7.72 24.45 48.21 
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and β and γ are parameters of the Newmark integration 

algorithm. Derivation in detail can be referred to Chen and 

Ricles (2009). In this study, γ = 0.5 and β = 0 were adopted, 

resulting in the compensator in discrete transfer function 

with minimal realization as 

 

𝐶𝐿𝐴𝐸(𝑧) =
317.3𝑧2 − 608.8𝑧 + 292.6

𝑧2
 (17) 

 

where z is the complex variable in the z-domain. 

 

4.1.2 First-order inverse compensator 
Chen (2007) derived a simplified first-order discrete 

transfer function for servo-hydraulic systems by assuming a 

constant delay between the command and achieved 

displacements. The achieved displacement response of a 

servo-hydraulic actuator at the current time step can be 

predicted by the achieved displacement at the previous step 

as well as an interpolated relation between the command 

displacement at the current time step and the achieved 

displacement at the previous time step. The discrete transfer 

function from the command to the achieved displacements 

of the servo-hydraulic system can be obtained by applying 

the z-transform. Finally, the inverse compensator (IC) is 

realized by directly exchanging the polynomials in the 

denominator and numerator of the transfer function. As 

mentioned above, the nominal transfer function of the 

servo-hydraulic system adopted in this study has 24 delay 

time steps with 2,000 Hz sampling rate. Accordingly, the 

first-order inverse compensator can be obtained as 

 

𝐶𝐼𝐶(𝑧) =
25𝑧-24

𝑧
 (18) 

 

 

 

 

4.1.3 Second-order phase-lead compensator 
Similar to the first-order inverse compensator, Chen and 

Tsai (2013) proposed the second-order phase-lead 

compensator (PLC) by using weighted linear extrapolation 

and the inverse model principle in which the two 

weightings W1 and W2 in the derived stable region need to 

be selected. The PLC can be expressed as 

 
𝐶𝑃𝐿𝐶(𝑧)

=
[𝑊1 + (𝑊1 +𝑊2 + 1)𝛼]𝑧

2 + [𝑊2 − (𝑊1 +𝑊2 + 1)𝛼]𝑧 + 1

𝑊1𝑧
2 +𝑊2𝑧 + 1

 (19) 

 

A delay constant α was assigned 24 for the PLC since there 

is 24 delay time steps in the nominal transfer function of the 

servo-hydraulic system. The weightings W1 and W2 were set 

3 and 2, respectively which are located in the stable region. 

Accordingly, the PLC can be obtained as 
 

𝐶𝑃𝐿𝐶(𝑧) =
147𝑧2 − 142𝑧 + 1

3𝑧2 + 2𝑧 + 1
 (20) 

 

4.2 Bilinear transform 
 

The robust stability analysis method introduced 

previously is applicable to continuous-time systems; 

however, the three delay compensation methods are based 

on discrete time. As a result, conversion from discrete time 

to continuous time for the compensators is essential to 

conducting the robust stability analysis. Conversion 

methods such as zero-order hold and first-order hold have 

been commonly adopted in practice. However, these two 

methods may not have acceptable agreement in the 

frequency domain between the continuous-time and 

discrete-time models, resulting in significant discrepancy of 
 
 

Table 2 Coefficients of the discrete compensator from linear acceleration extrapolation 

Coefficient Numerator Denominator 

z4 0 2βΔt3 

z3 (4β + 2γ + 1)Δt3
 + (6β + 2γ + 2)τΔt2

 + (6β + 1)τ2Δt + 2βτ3 (-4β + 2γ + 1)Δt3 

z2 (- 10β - 2γ + 1)Δt3
 - (18β + 4γ + 2)τΔt2

 - (18β + 2)τ2Δt - 6βτ3 (2β - 2γ + 1)Δt3 

z1 8βΔt3
 + (18β + 2γ)τΔt2

 + (18β + 1)τ2Δt + 6βτ3 0 

z0 - 2βΔt3
 - 6βτΔt2

 - 6βτ2Δt - 2βτ3 0 
 

   
(a) Linear acceleration extrapolation (b) Inverse compensator (b) Phase-lead compensator 

Fig. 9 Bode diagram of the delay compensators in discrete and continuous time 
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robust stability analysis results. In this study, bilinear 

transform, also called Tustin’s method, was adopted to 

convert the discrete-time compensators to continuous-time 

compensators as it yields excellent match between the 

continuous-time and discrete-time systems in the frequency 

domain (Oppenheim et al. 1999). The bilinear transform 

relates the s-domain and z-domain transfer function by 

 

𝑧 = 𝑒𝑠𝑇𝑠 =
𝑒
𝑠𝑇𝑠
2

𝑒−
𝑠𝑇𝑠
2

≈
1 +

𝑠𝑇𝑠

2

1 −
𝑠𝑇𝑠

2

 (21) 

 

where Ts is the sample time of the discrete-time model. 

Figs. 9(a)-(c) shows the Bode diagram of the three delay 

compensators in discrete and continuous time. It is observed 

that the converted continuous-time transfer function fits the 

discrete-time delay compensator well when the frequency is 

smaller than 250 Hz. As a result, the robust stability 

analysis is applicable and representative with a frequency 

range between 0 Hz to 250 Hz. 

 

4.3 Robust stability 
 

The robust stability margin with respect to the 

relationship between the natural frequency of the entire 

structure and the stiffness ratio pk can be obtained by 

following the same procedure introduced previously. Fig. 

10 shows the associated analytical results. For the nominal 

servo-hydraulic system, it is found that the entire stiffness 

of the structure can be physically tested by applying the 

LAE compensator with the natural frequency of the 

structure that ranges from 0 Hz to 20 Hz. On the other hand, 

the second-order PLC performs slightly better than the first-

order IC. It is worth noting that the second-order PLC can 

be approximated to the first-order IC if a large weighting 

W1 and a small weighing W2 are adopted. The compensation 

performance of the PLC is changed by selecting different 

weightings. The effects of different weightings for the PLC 

have been discussed in detail by Chen et al. (2014). 

Nevertheless, the allowable stiffness ratio pk decreases 

significantly when the natural frequency of the structure is 

larger than 8 Hz for both IC and PLC. For the system with 

uncertainty, 100% of the structural stiffness still can be 

physically tested in RTHS compensated by the three delay 

compensation methods when the natural frequency of the 

 

 

 

Fig. 10 Stability margin of RTHS in terms of stiffness 

ratio considering system uncertainty and delay 

compensation 

structure is smaller than 1.8 Hz. However, the allowable 

stiffness ratio pk decreases significantly when the natural 

frequency of the structure ranges from 1.8 Hz to 10 Hz. It 

also shows that stable RTHS can be achieved for a stiff 

structure (natural frequency equals 20 Hz) with a stiffness 

ratio pk larger than 10% by applying the LAE compensation 

method. Conclusively, delay compensation methods are 

helpful to increasing the allowable stiffness ratio that retains 

stable RTHS. However, the stable margin is significant 

affected by the system uncertainty especially when the 

natural frequency of the structure is within 2 Hz to 8 Hz. It 

is suggested that system uncertainty must be considered for 

stability analysis of RTHS if the experimental substructure 

merely contributes the stiffness term to the entire structure. 

 

 

5. Experimental verification 
 

The robust stability margin of RTHS of a SDOF 

structure with part of the stiffness tested experimentally was 

further verified in the laboratory. 

 

5.1 Experimental setup and system identification 
 

The experimental setup for verifying the robust stability 

margin was identical to that adopted in the study by Chen 

and Tsai (2013) as shown in Fig. 11. In the setup, the 

dynamic servo-hydraulic actuator used to drive the shake 

table has maximum stroke and force capacity of ±127 mm 

and ±15 kN, respectively. An MTS FlexTest Controller FT-

100 digital controller was used to control the actuator by 

well-tuned proportional, integral, and derivative gains. A 

steel plate with a dimension of 630 mm × 250 mm ×10 mm 

was installed on the shake table to represent the 

experimental substructure with the stiffness term in RTHS. 

A dSPACE DS1103, which is a real-time computation 

system, was used to perform the RTHS as it is well-

supported by Real-Time Interface for MATLAB/Simulink. 

In this experimental verification, the numerical substructure 

and the delay compensation were implemented by Simulink 

models with real-time input/output blocks. The sampling 

frequency and solver adopted in the RTHS were 2,000 Hz 

and the ode5 solver, respectively. 

System identification test was first conducted to identify 

the dynamics of servo-hydraulic system. The input 

command displacement was a band-limited white noise 

with a frequency range from 0 to 30 Hz and a root-mean- 

 

 

 

Fig. 11 Experimental setup for the verification 
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square power of 0.15 mm. During the system identification 

test, the data were collected with a sampling rate of 1,024 

Hz in 600 seconds. While processing data, 16,384 FFT 

points, a Hanning window with 50% overlap, and 74 

averages were used in system identification. Consequently, 

a four-pole transfer function was identified as 

 

𝐺𝑠(𝑠) =
1.942 ⋅ 1010

𝑠4 + 954.5𝑠3 + 5.712 ⋅ 105𝑠2

+1.716 ⋅ 108𝑠 + 1.942 ⋅ 1010

 (22) 

 

Fig. 12 depicts the identification result which demonstrates 

reasonable agreement with the testing result. It can be 

evaluated that the nominal transfer function had an 

approximate constant delay of 18 time steps with 2,000 Hz 

sampling rate in RTHS. Accordingly, the transfer function 

in Eq. (22) was adopted as the nominal servo-hydraulic 

system for conducting robust stability analysis and 

designing the three aforementioned delay compensators. 

Similar to the numerical simulation in the previous section, 

the perturbed nominal transfer function of the servo-

hydraulic system was obtained by assuming ±10% 

identification error as the parametric uncertainty for each 

parameter in Eq. (22). The damping ratio of the SDOF 

structure in RTHS was assumed 2%. Finally, the stability 

margin of the experimental example can be realized by 

following the proposed robust stability analysis procedure. 

The resulted robust stability margin of RTHS in terms of 

stiffness ratio considering system uncertainty and delay 

compensation is shown in Fig. 13. 

 

 

 

Fig. 12 Frequency response of the identified model 

 

 

 

Fig. 13 Stability margin of RTHS in the experimental 

verification 

5.2 Experimental results 
 

In order to demonstrate that the stability margin 

obtained without considering system uncertainty is not 

conservative enough for conducting RTHS, various RTHS 

tests were conducted. First, the natural frequency of the 

SDOF structure (ωn) was set 5 Hz. From Fig. 13, it can be 

found that the corresponding allowable stiffness ratios with 

and without considering system uncertainty (pku and pkn) are 

0.11 and 0.15, respectively. Accordingly, three stiffness 

ratios (pk) in the verifying RTHS were selected including 

0.08, 0.14, and 0.20. Noted that the stiffness ratio of 0.08 is 

smaller than the robust allowable stiffness ratio; 0.14 is 

between the robust and nominal allowable stiffness ratios; 

and 0.20 is larger than the nominal allowable stiffness ratio. 

In the verifying RTHS, the El Centro earthquake record 

with a normalized peak ground acceleration of 1m/s2 was 

used to excite the SDOF structure. Fig. 14 shows the 

experimental results. It is found that when the stiffness ratio 

(0.08) is smaller than the robust allowable stiffness ratio 

(0.11), the RTHS result is stable. Meanwhile, when the 

stiffness ratio (0.14) is between the robust and nominal 

allowable stiffness ratios (0.11 and 0.15), it is not stable in 

this verifying example. The result demonstrates that the 

allowable stiffness ratio obtained from the nominal transfer 

function of servo-hydraulic system does not definitely 

guarantee the stability of RTHS. Lastly, when the stiffness 

ratio (0.20) is larger than the nominal allowable stiffness 

ratio (0.15), the RTHS is unstable. However, the RTHS 

became stable when the three delay compensation methods 

were applied as shown in Fig. 15. The stable results can be 

also confirmed by checking the stability margin in Fig. 13 

in which the stiffness ratio of 0.20 is smaller than the three 

robust allowable stiffness ratios after applying the three 

compensation methods. Then, the natural frequency of the 

SDOF structure (ωn) was changed to 15 Hz and the stiffness 

ratio was retained 0.20. In this case, the stiffness ratio is 

between the robust and nominal allowable stiffness ratios 

after applying the three compensation methods as indicated 

in Fig. 13. The corresponding RTHS results are shown in 

Fig. 16 which demonstrates the entire RTHS loop is 

unstable for each delay compensation case. It demonstrates 

again that the allowable stiffness ratio without considering 

system uncertainty does not absolutely assure the stability 

 

 

 

Fig. 14 Uncompensated RTHS results with different 

stiffness ratios (ωn = 5 Hz) 
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Fig. 15 Compensated RTHS results 

(pk = 0.20 and ωn = 5 Hz) 
 

 

 

Fig. 16 Compensated RTHS results 

(pk = 0.20 and ωn = 15 Hz) 
 

 

of RTHS. Conclusively, the proposed robust stability 

analysis method provides a strong and conservative stability 

margin for RTHS which has been verified experimentally. 

 

 

6. Robust stability analysis (mass and damping 
terms) 
 

6.1 Specimen in mass term 
 

Consider a SDOF structure in which part of the mass is 

experimentally tested. Hence, the equation of motion of the 

SDOF structure can be expressed as 
 

(1 − 𝑝𝑚)𝑚�̈�(𝑡) + 𝑐�̇�(𝑡) + 𝑘𝑥(𝑡) 
= −𝑚�̈�𝑔(𝑡) − 𝑝𝑚𝑚�̈�(𝑡) 

(23) 

 

where pm is the ratio of the mass of the experimental 

substructure to the entire mass of the SDOF structure. Also, 

pm is called the mass ratio in the study for simplicity 

purposes. Accordingly, the transfer function of the 

numerical substructure in Fig. 4 becomes 
 

𝐺𝑛𝑠(𝑠) =
−1

(1 − 𝑝𝑚)𝑠
2 + 2𝜉𝜔𝑛𝑠 + 𝜔𝑛

2
 (24) 

 

By applying the procedure of robust stability analysis with 

identical parametric uncertainty and weight function W(s), 

the robust stability margin in terms of the mass ratio can be 

obtained as shown in Fig. 17. For the nominal servo-

hydraulic system, it is found that merely less than 75% of 

mass can be physically tested and the allowable mass ratio 

decreases when the natural frequency of the structure 

increases. However, the variation of allowable mass ratio 

with respect to the natural frequency is not as sensitive as 

the stiffness ratio is. More than 63% of mass can still be 

experimentally tested in RTHS when the natural frequency 

of the structure is 20 Hz. For the servo-hydraulic system 

with uncertainty, merely the inferior allowable mass ratio is 

discussed and adopted for the following analyses with delay 

compensation in RTHS. It can be found that the allowable 

mass ratio considering system uncertainty is smaller than 

that of the nominal system. However, more than 46% of the 

entire structural mass can be tested as an experimental 

substructure in RTHS. Similarly, the robust stability margin 

in terms of the mass ratio with delay compensation can be 

obtained by following the same procedure. Fig. 18 shows 

the stability margin of RTHS in terms of mass ratio 

considering system uncertainty and delay compensation. 

For the nominal system without uncertainty, it shows that 

the allowable mass ratio with delay compensation becomes 

smaller than that without delay compensation. The 

allowable mass ratio of the RTHS compensated by LAE is 

almost identical to that without compensation from 0 Hz to 

8 Hz; however, it starts to drop significantly when the 

natural frequency is larger than 8 Hz. Meanwhile, the 

allowable mass ratio of the IC and PLC cases are frequently 

inferior to the case without compensation except that the 

has slightly larger allowable mass ratio when the 

 

 

 

Fig. 17 Stability margin of RTHS in terms of mass ratio 

considering system uncertainty 

 

 

 

Fig. 18 Stability margin of RTHS in terms of mass ratio 

considering system uncertainty and delay 

compensation 
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natural frequency is larger than 18 Hz. For the system 

considering uncertainty, all the three delay compensators 

have smaller allowable mass ratio than the uncompensated 

RTHS. Surprisingly, both the allowable mass ratio of IC and 

PLC decrease from 3.2 Hz to almost 10 Hz and then start to 

increase at 10 Hz. This phenomenon is not observed in the 

LAE case. Summarily, it indicates that the mass ratio which 

can be experimentally tested in a stable RTHS becomes 

even small when the delay compensator is applied. As a 

result, delay compensation may not be necessary for RTHS 

with part of the mass tested experimentally. 
 

6.2 Specimen in damping term 
 

Similarly, consider a SDOF structure in which part of 

the damping is experimentally tested. Therefore, the 

equation of motion of the SDOF structure can be 

represented as 
 

𝑚�̈�(𝑡) + (1 − 𝑝𝑐)𝑐�̇�(𝑡) + 𝑘𝑥(𝑡) 
= −𝑚�̈�𝑔(𝑡) − 𝑝𝑐𝑐�̇�(𝑡) 

(25) 

 

where pc is the ratio of the damping coefficient of the 

experimental substructure to the entire damping coefficient 

of the SDOF structure. Likewise, pc is named the damping 

coefficient ratio in the study. Consequently, the transfer 

function of the numerical substructure in Fig. 4 becomes 
 

𝐺𝑛𝑠(𝑠) =
−1

𝑠2 + 2𝜉𝜔𝑛(1 − 𝑝𝑐)𝑠 + 𝜔𝑛
2
 (26) 

 

Again, the robust stability margin in terms of the damping 

coefficient ratio can be obtained by applying the same 

procedure of robust stability as shown in Fig. 19. For the 

nominal servo-hydraulic system, it is found that 100% of 

damping can be physically tested without unstable issue for 

RTHS even though the inherent damping ratio of the SDOF 

structure was assumed merely 2%. However, when the 

system uncertainty is considered, the allowable damping 

coefficient ratio starts to decrease when the natural 

frequency of the structure is larger than 16 Hz. More than 

76% of damping can still be experimentally tested in RTHS 

when the natural frequency of the structure is 20 Hz. It can 

be concluded that a stable RTHS is not difficult to achieve 

when the physical specimen merely contributes damping 

force to the entire structure such as magnetorheological 

dampers. However, a stable RTHS is not necessarily 
 

 

 

Fig. 19 Stability margin of RTHS in terms of damping 

coefficient ratio considering system uncertainty 

equivalent to a successful RTHS as the dynamics of the 

servo-hydraulic system could distort the RTHS results 

seriously due to tracking error. When the three delay 

compensation methods were further considered, the analysis 

results indicated that all the RTHS cases were robustly 

stable with 100% damping tested experimentally and a 

natural frequency of structure ranged from 0 Hz to 20 Hz. 
 

 

7. Conclusions 
 

Real-time hybrid simulation (RTHS) has been attracting 

the attention of researchers in earthquake engineering and 

become an alternative experimental method to investigate 

seismic responses of structures subjected to dynamic 

loadings. RTHS forms a closed loop in which the servo-

hydraulic system, numerical substructure, and experimental 

substructure are involved. The time delay or lag of the 

servo-hydraulic system introduce negative damping into the 

closed loop and result in potential instabilities of a RTHS. 

Although various methods have been proposed for 

evaluating the stability of a RTHS, they are mostly based on 

known and persistent dynamics of the servo-hydraulic 

system which is generally obtained by conducting system 

identification. However, uncertainty of a servo-hydraulic 

system exists inevitably in real practice which could 

misrepresent the evaluation of stability in a RTHS. In this 

paper, a robust stability analysis procedure is proposed to 

evaluate the stability margin of a RTHS considering the 

uncertainty of the servo-hydraulic system. Parametric 

uncertainty is adopted to parametrize the coefficients of the 

servo-hydraulic system transfer function within a 

predefined range which varies from test to test and can be 

determined by users. The variation of servo-hydraulic 

system dynamics is then bounded by a multiplicative 

uncertainty model which contains a predefined stable 

weight function and a random stable transfer function 

considering magnitude and phase perturbation. A simple 

and effective method for selecting the weight function 

without trial and error is proposed in this study. Afterwards, 

the Nyquist plot with multiplicative uncertainty is utilized 

to realize the stability of RTHS with system uncertainty. 

Finally, three common delay compensation methods are 

adopted in the RTHS stability analysis. The robust stability 

margin is interpreted as an allowable ratio of stiffness, 

mass, and damping coefficient of the experimental 

substructure to the entire structure. 

The analytical results demonstrate that the allowable 

stiffness ratio decreases significantly when the natural 

frequency of the structure increases from 0.5 Hz to 5 Hz 

which represents the first natural frequency of civil 

structures in real practice. It indicates that delay 

compensation is indispensable for completing a stable 

RTHS if the physical specimen merely contributes the 

stiffness term. The allowable stiffness ratio becomes even 

restricted if the system uncertainty is considered. 

Meanwhile, the allowable stiffness ratio can be increased 

effectively by applying the three compensation methods. 

The physical specimen can contribute 100% stiffness of the 

structure without meeting stability problems as far as the 

natural frequency of the structure is smaller than 7 Hz. In 

Nominal system
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addition, RTHS with LAE compensator is permanently 

stable within the natural frequency of the structure from 0 

Hz to 20 Hz. However, the allowable stiffness ratio of 

RTHS begins to decrease significantly when the natural 

frequency of the structure is larger than 1.8 Hz if the system 

uncertainty is considered. It demonstrates that the physical 

specimen in a RTHS considering system uncertainty is not 

able to represent 100% stiffness of the entire structure with 

a natural frequency larger than 1.8 Hz even delay 

compensation is applied. Nonetheless, the analyses also 

designate that delay compensation is helpful to improving 

the stability margin of RTHS under system uncertainty. The 

proposed robust stability margin was also verified by 

conducting RTHS in the laboratory. Experimental results 

indicated that the allowable stiffness ratio without 

considering system uncertainty does not absolutely assure 

the stability of RTHS while the allowable stiffness ratio 

considering system uncertainty provides an assertive 

stability margin for RTHS. On the other hand, the allowable 

mass ratio does not vary significantly with different natural 

frequencies of structures. More than 63% of mass can be 

experimentally tested in RTHS within the natural frequency 

of the structure from 0 Hz to 20 Hz. In addition, more than 

46% of the entire structural mass can still be tested within 

the natural frequency of the structure from 0 Hz to 20 Hz 

even the system uncertainty is considered in the stability 

analysis. Furthermore, the allowable mass ratio becomes 

even smaller when the three delay compensators are applied 

which shows that delay compensation is not effective for 

RTHS with part of the mass tested experimentally. Lastly, 

analytical results demonstrate that 100 % of damping can be 

experimentally tested in RTHS within the natural frequency 

of the structure from 0 Hz to 20 Hz with or without delay 

compensation. When the system uncertainty is considered, 

more than 76% of damping can still be experimentally 

tested in RTHS without delay compensation when the 

natural frequency of the structure is 20 Hz. It indicates that 

a stable RTHS can be achieved effortlessly if the 

experimental specimen merely contributes the damping 

force to the entire structure. Summarily, a modeling and 

robust stability analysis method for RTHS has been 

proposed and used to evaluate the stability margin in terms 

of the allowable stiffness, mass, and damping coefficient 

ratios. The study provides the practitioners who would like 

to apply RTHS for experimental studies with a simple and 

straightforward approach to identify the robust stability 

margin before the RTHS is conducted. 
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