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1. Introduction 

 

Functionally graded material (FGM) structures are 

commonly used in engineering applications (Wu and Li 

2012, Wu and Liu 2013, Arefi 2015, Chen 2018). The FG 

material is a new advanced class of non-homogeneous 

composite materials which is usually made from a mixture 

of metal and ceramic. 

Many investigations on the geometrically nonlinear 

analysis of buckling, post-buckling, and free vibrations of 

thin-walled FGM structures are available in the literature, 

see e.g., the book by Eslami (2018). In this book, nonlinear 

governing differential equations of various thin-walled 

structures made of different materials are solved using 

either analytical or numerical methods for several types of 

boundary conditions. Using the two-step perturbation 

technique, Shen (2011) obtained the analytical closed-form 

solutions as the sum of static solution and dynamic one of a 

homogeneous isotropic beam. In this study, nonlinear 

analysis of bending, post-buckling, and free vibrations of 

flat beams resting on elastic foundation are performed. Thai 

and Vo (2012) introduced the analytical closed-form 

solutions for bending and free vibration analysis of an FGM 

beam based on various higher order shear deformation 

theories. In this work, Navier solution procedure is used to 
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solve the static and dynamic governing equations for simply 

supported boundary conditions. Zhang (2014) carefully 

examined the static and dynamic responses of the 

functionally graded material beams utilizing the Ritz 

method considering the thermal effects. In this study, 

thermal post-buckling and nonlinear free vibration problems 

of the FGM beams with immovable pinned and fixed ends 

are analyzed based on the physical neutral plane and higher 

order shear deformation theories. 

Many studies on the static and dynamic behaviors of 

cylindrical flat beams/tubes made of functionally graded 

materials are also available in the following works. 

Among them, Huang and Li (2010a) presented a study 

on the linear mechanical buckling of circular cylindrical5 

beams made of functionally graded materials subjected to 

axial compressive load at the movable end of the beam. In 

this study, an analytical closed-form solution is obtained for 

critical buckling loads of cylindrical beams with movable 

simply supported boundary conditions. Nonlinear thermally 

induced responses of circular tubes made of FG materials 

subjected to uniform temperature rise loading are analyzed 

by Fu et al. (2015) based on a refined beam model. In this 

work, they used two analytical methods for linear thermal 

buckling and nonlinear thermal post-buckling problems of 

the FGM tubes with immovable simply supported end 

conditions. Also, thermal post-buckling and nonlinear 

bending problems are analysed using a two-step 

perturbation method for an FGM flat tube with clamped 

boundary conditions by She et al. (2017). Chen et al. (2017) 
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performed the forced vibration analysis of an FGM flat tube 

resting on nonlinear elastic foundation in thermal 

environment. Nonlinear dynamic responses of the FGM flat 

tubes subjected to a moving load with constant velocity are 

analysed. In this study, the Galerkin and Newmark 

approximate methods are utilized to obtain the dynamic 

deflection responses of the FGM tube. Based on the 

nonlocal strain gradient and higher order shear deformation 

theories, She et al. (2018a) analyzed the functionally graded 

porous tubes. In this work, nonlinear bending and free 

vibration responses of the FG porous nanotubes are 

obtained using the two-step perturbation method for simply 

supported boundary conditions. Sharifi and She (2018) used 

a numerical method, i.e., the generalized differential 

quadrature method (GDQM), to obtain the free vibration 

response of the pre/post-buckled FGM nanotubes subjected 

to uniform temperature distribution. In this study, material 

properties are considered to be temperature-dependent. 

Babaei et al. (2019a, b) studied the thermal and mechanical 

post-buckling behaviors of geometrically imperfect FGM 

tubes surrounded by nonlinear elastic medium with clamped 

and pinned boundary conditions. Finally, She et al. (2019) 

presented a study on the hygro-thermal wave propagation of 

functionally graded double-layered nanotubes based on the 

strain gradient theory using an analytical method. 

Also, many investigations on the static and dynamic 

responses of thin-walled curved beam structures and 

shallow arches made of functionally graded materials are 

available in the following studies. 

For instance, Babaei et al. (2018a, b, c) analyzed the 

thermomechanical nonlinear static responses of the FGM 

shallow curved structures with rectangular and circular 

cross sections based on the higher order shear deformation 

theory. Snap-through type of instability and thermal 

bending of the structures with pinned/clamped boundary 

conditions are investigated. A two-step perturbation 

technique is utilized to solve the equilibrium equations of 

the FG shallow curved structures. 

Based on the first-order shear deformation arch theory, 

Malekzadeh et al. (2009, 2010) investigated the in-plane 

and out-of-plane free vibration behaviors of functionally 

graded circular arches. In these studies, dynamic responses 

of FGM arches with temperature-dependent properties 

subjected to thermal environment are obtained using the 

generalized differential quadrature method (GDQM). Also, 

Piovan et al. (2012) presented a study on the in-plane and 

out-of-plane static and dynamic responses of the 

functionally graded curved beams. An analytical study to 

analyse the free vibration responses of laminated shallow 

curved beams based on the trigonometric shear deformation 

curved beam theory is performed by Jun et al. (2014). In 

this study, the equations of motion for linear free vibrations 

of shallow arches are solved using the dynamic stiffness 

method. Based on the nonlocal strain gradient theory, a 

linear free vibration analysis for deep and shallow FGM 

curved nano beams is performed by Hosseini and Rahmani 

(2016). According to the first-order Timoshenko curved 

beam model, differential equations of motion are obtained 

using the Hamilton principle. In this work, the equations of 

motion of the FG curved nanobeams are solved analytically 

by employing the Navier solution procedure. Based on the 

classical shallow arch theory, Keibolahi et al. (2018) 

studied the nonlinear dynamic snap-through response of a 

homogeneous isotropic shallow arch subjected to thermal 

shock. In this study, Ritz method is used to solve the 

nonlinear differential equations of motion. Also, free 

vibration analysis of FGM deep curved nanobeams has been 

investigated by Rahmani et al. (2018). In this work, 

governing equations of FGM deep curved nanobeams are 

obtained based on the modified couple stress and first-order 

shear deformation beam theories. Tornabene et al. (2019) 

performed an investigation on the free vibration responses 

of shear deformable laminated composite arches and flat 

beams with variable thickness using the refined shear 

deformation theories. Babaei et al. (2019c, d) have studied 

the large amplitude free vibration analysis for FGM shallow 

panels/arches resting on nonlinear hardening or softening 

elastic foundation by employing an analytical approach as a 

two-step perturbation technique. Finally, Fariborz and Batra 

(2019) investigated the free vibration behavior of bi-

directional functionally graded circular arches based on the 

shear deformation theory by employing a logarithmic 

function. In this study, the equations of motion are solved 

for different types of boundary conditions employing the 

generalized differential quadrature method (GDQM). 

The current research develops the literature on the 

analysis of the FGM curved tubes. The large amplitude free 

vibration characteristics of functionally material curved 

tubes are analysed where the properties are graded across 

the thickness. Properties of the tube are considered to be 

temperature and position dependent. The governing 

equations of the tube are established using the higher order 

tube theory and von Kármán types of kinematic 

assumptions. For shallow tubes with both ends simply 

supported and immovable in axial direction, the equations 

governing the large amplitude free vibrations of the tube in 

thermal environment are extracted. These equations are 

solved by means of the two step perturbation technique. The 

closed form expressions are derived for the small and large 

amplitude vibrations of curved FGM pipes. Numerical 

results are given to explore the temperature dependence, 

thermal environment, power law index, and geometrical 

characteristics of the FGM curved tube. 

 

 

2. Basic equations 
 

Consider a shallow curved tube with circular cross-

section made of temperature dependent functionally graded 

material from a mixture of ceramic and metal. For elastic 

curved tubes, the radius of curvature is 𝑅, axial curved 

length is 𝐿 , and boundary conditions at both ends are 

immovable simply supported. Annular cross-section of the 

tube with inner radius 𝑎, and outer radius 𝑏 is referred to 

both polar coordinates system and Cartesian coordinates 

system. Schematic and geometric characteristics of the 

FGM shallow curved tubes are illustrated in Fig. 1. 

Also, the following relationship between the Cartesian 

and polar coordinates systems for annular cross-section of 

the FG shallow curved tube are expressed as 
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𝑦 = 𝑟cos𝜃,       𝑧 = 𝑟sin𝜃,       𝑟2 = 𝑦2 + 𝑧2, 
𝑎 ≤ 𝑟 ≤ 𝑏,       0 ≤ 𝜃 ≤ 2𝜋. 

(1) 

 

Here, 𝑦 and 𝑧 are the variables associated with the 

Cartesian coordinates system, and 𝜃 and 𝑟, respectively, 

represent the circumferential and radial directions for the 

annular cross-section of curved tube. 

Mechanical and thermal properties of the functionally 

graded material curved tube should be defined according to 

a proper homogenization method. Based on the Voigt rule 

for FGMs, thermomechanical material properties of the 

FGM curved tubes are assumed to be the linear function of 

the volume fractions of ceramic 𝑉𝑐  and metal 𝑉𝑚 

constituents. Thus, as a function of radial coordinate, a non-

homogeneous property of the FGM shallow curved tube, 

𝑃𝑓(𝑟, 𝑇), may be expressed in the following form (Shen 

2009, Duc 2013, 2016, 2018, Duc and Cong 2018, Duc et 

al. 2016, 2017, 2018, 2019) 
 

𝑃𝑓(𝑟, 𝑇) = 𝑃𝑚(𝑇) + 𝑃𝑐𝑚(𝑇) 𝑉𝑐(𝑟), 

𝑃𝑐𝑚(𝑇) = 𝑃𝑐(𝑇) − 𝑃𝑚(𝑇) 
(2) 

 

Here, the subscripts m and c represent the properties of 

metal and ceramic constituents, respectively. The material 

properties such as Young’s modulus 𝐸(𝑟, 𝑇), mass density 

𝜌(𝑟, 𝑇) , thermal expansion coefficient 𝛼(𝑟, 𝑇)  are 

temperature-dependent. Temperature dependence of the 

functionally graded properties are assumed to follow the 

Touloukian model as (Shen 2009, Duc 2016) 

 

𝑃(𝑇) = 𝑃0(𝑃−1𝑇
−1 + 1 + 𝑃1𝑇 + 𝑃2𝑇

2 + 𝑃3𝑇
3) (3) 

 

where T is the temperature within the shallow curved tube 

and 𝑃𝑖(𝑖 = 0,±1,2,3)  are functionally graded material 

property constants. Obviously, metal rich surface is at the 

inner surface of the tube 𝑟 = 𝑎 and ceramic rich surface is 

at the outer surface of the tube 𝑟 = 𝑏. 

A power law distribution of the constituents across the 

curved tube thickness (radial direction) may be used to 

represent the ceramic volume fraction 𝑉𝑐 and metal volume 

fraction 𝑉𝑚 such as 
 

𝑉𝑐 = (
𝑟 − 𝑎

𝑏 − 𝑎
)

𝑁

,       𝑉𝑚 = 1 − 𝑉𝑐 (4) 

 

where 𝑁 is a positive constant 0 ≤ 𝑁 ≤ ∞ which is called 

the volume fraction index of functionally graded materials 

and dictates the material property dispersion profile. 

 

 

3. Kinematic equations 
 

In the present study, it is assumed that the FGM curved 

tube only vibrates in the 𝑥 − 𝑧 plane. Displacement field 

of a shallow curved tube is expressed based on the higher 

order shear deformation tube theory. The displacement 

components of the curved tube may be written as (Zhang 

and Fu 2013) 

  

𝑢1(𝑥, 𝑦, 𝑧, 𝑡) = (1 −
𝑧

𝑅
)  𝑢(𝑥, 𝑡) 

                           +𝑧{𝜑(𝑥, 𝑡) + 𝑟−2𝜓1(𝑥, 𝑡) + 𝑟2𝜓2(𝑥, 𝑡)}, 
𝑢2(𝑥, 𝑦, 𝑧, 𝑡) = 0, 
𝑢3(𝑥, 𝑦, 𝑧, 𝑡) = 𝑤(𝑥, 𝑡). 

(5) 

 

In the above equations 𝑢𝑖(𝑖 = 1,2,3) are the arbitrary 

point displacements of a shallow curved tube with 𝑧/𝑅 ≪
1, which are parallel to a set of axes (𝑥, 𝑦, 𝑧), respectively. 

Also, 𝑢(𝑥, 𝑡)  and 𝑤(𝑥, 𝑡) , respectively, indicate the 

displacements at the central axes of the shallow FG curved 

tube in the 𝑥 − and 𝑧 − directions, and 𝜑(𝑥, 𝑡) is the 

circular cross-section rotation of tube in the plane of its 

curvature. 

To eliminate two unknown functions 𝜓1(𝑥, 𝑡) and 

𝜓2(𝑥, 𝑡)  in the above displacement field, shear strain 

component in the 𝑟 − 𝑥 plane of shallow curved FGM tube 

is expressed as (Zhang and Fu 2013) 

 

𝛾𝑟𝑥 =
𝑧

𝑟
[𝜑(𝑥, 𝑡) +

∂𝑤(𝑥, 𝑡)

∂𝑥
+

𝜓1(𝑥, 𝑡)

𝑟2
+ 3𝑟2𝜓2(𝑥, 𝑡)] (6) 

 

Due to the absence of shear stresses and tangential 

tractions on the inner and outer surfaces of FGM curved 

tube, the shear strain should be vanished on the surfaces. 

From this boundary condition for the inner and outer 

surfaces (at: 𝑟 = 𝑎, 𝑏), shear strain is vanished 𝛾𝑟𝑥 = 0. 

Hence, two unknown functions 𝜓1(𝑥, 𝑡) and 𝜓2(𝑥, 𝑡) are 

determined to be 

 

𝜓1(𝑥, 𝑡) =
𝑎2𝑏2

𝑎2 + 𝑏2
[
∂𝑤(𝑥, 𝑡)

∂𝑥
+ 𝜑(𝑥, 𝑡)] , 

𝜓2(𝑥, 𝑡) =
−1

3(𝑎2 + 𝑏2)
[
∂𝑤(𝑥, 𝑡)

∂𝑥
+ 𝜑(𝑥, 𝑡)]. 

(7) 

 

Finally, by substituting Eq. (7) into Eq. (5), the 

displacement field for FG curved tube can be written as 

 

  

Fig. 1 Schematic and geometric characteristic of the FGM shallow curved tube 
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𝑢1(𝑥, 𝑟, 𝜃, 𝑡) = 𝑢(𝑥, 𝑡) + 𝐹(𝑟, 𝜃)
∂𝑤(𝑥, 𝑡)

∂𝑥
 

                            +[𝐹(𝑟, 𝜃) + 𝑟sin𝜃] 𝜑(𝑥, 𝑡), 
𝑢3(𝑥, 𝑟, 𝜃, 𝑡) = 𝑤(𝑥, 𝑡). 

(8) 

 

in which 
 

𝐹(𝑟, 𝜃) =
𝑟sin𝜃

𝑎2 + 𝑏2
(
𝑎2𝑏2

𝑟2
−

𝑟2

3
). (9) 

 

Based on the von Kármán type of geometrical 

nonlinearity and higher order shear deformation tube theory, 

the strain-displacement components of shallow curved 

FGM tubes can be expressed as follow (Babaei et al. 2019e) 

 

휀𝑥 =
∂𝑢

∂𝑥
−

𝑤

𝑅
+

1

2
(
∂𝑤

∂𝑥
)

2

+ 𝐹
∂2𝑤

∂𝑥2
+ (𝐹 + 𝑧)

∂𝜑

∂𝑥
, 

𝛾𝑥𝑦 =
∂𝐹

∂𝑦
(
∂𝑤

∂𝑥
+ 𝜑) , 

𝛾𝑥𝑧 = (1 +
∂𝐹

∂𝑧
) (

∂𝑤

∂𝑥
+ 𝜑). 

(10) 

 

Here, 휀𝑥 represents the normal strain of an arbitrary 

point of the curved tube in the axial direction. Also, 𝛾𝑥𝑦 

and 𝛾𝑥𝑦 denote the shear strain components. 

 

 

4. Constitutive equations 
 
Based on the uncoupled thermoelasticity, the 

constitutive equations for the FGM shallow curved tubes in 

thermal environment are expressed as (Hetnarski and 

Eslami 2019) 
 

𝜎𝑥 = 𝐸(𝑟, 𝑇)[휀𝑥 − 𝛼(𝑟, 𝑇)Δ𝑇], 

𝜏𝑥𝑦 =
𝐸(𝑟, 𝑇)

2(1 + 𝜈)
𝛾𝑥𝑦, 

𝜏𝑥𝑧 =
𝐸(𝑟, 𝑇)

2(1 + 𝜈)
𝛾𝑥𝑧, 

(11) 

 

in which 𝛥𝑇  indicates the temperature difference from 

reference value of temperature (room temperature) which is 

set equal 𝑇0 = 300𝐾. 

Based on the higher order shear deformation tube 

theory, the axial force and moment resultants are obtained 

from the stress components by integrating stresses and their 

moments through the following equations 

 

(𝑁𝑥, 𝑀𝑥, 𝑃𝑥) = ∫
𝑏

𝑎

∫
2𝜋

0

[𝜎𝑥, 𝐹𝜎𝑥, (𝐹 + 𝑧)𝜎𝑥]𝑟𝑑𝜃𝑑𝑟 (12) 

 

Also, shear force resultant can be expressed as 

 

𝑄𝑥 = ∫
𝑏

𝑎

∫
2𝜋

0

[
∂𝐹

∂𝑦
𝜏𝑥𝑦 + (1 +

∂𝐹

∂𝑧
) 𝜏𝑥𝑧] 𝑟𝑑𝜃𝑑𝑟 (13) 

 

Substituting Eq. (10) into Eq. (11) with the aid of Eqs. 

(12) and (13), one obtains the stress resultants in terms of 

the central axes displacements of shallow curved FGM tube 

as 

 

{

𝑁𝑥

𝑀𝑥

𝑃𝑥

𝑄𝑥

} = [

𝐸1 0 0 0
0 𝐸2 𝐸3 0
0 𝐸3 𝐸4 0
0 0 0 𝐸5

] {

휀0

휀1

휀2

𝛾0

} − {

𝑁𝑇

𝑀𝑇

𝑃𝑇

0

} (14) 

 

in which 
 

휀0 =
∂𝑢

∂𝑥
−

𝑤

𝑅
+

1

2
(
∂𝑤

∂𝑥
)

2

,     휀1 =
∂2𝑤

∂𝑥2
, 

휀2 =
∂𝜑

∂𝑥
,                                  𝛾0 =

∂𝑤

∂𝑥
+ 𝜑 . 

(15) 

 

In the above equations, the constant coefficients 𝐸𝑖(𝑖 =
1,2,3,4,5) are calculated as follow 

 

(𝐸1, 𝐸2, 𝐸3, 𝐸4) 

      = ∫
𝑏

𝑎

∫
2𝜋

0

𝐸(𝑟, 𝑇)[1, 𝐹2, 𝐹(𝐹 + 𝑧), (𝐹 + 𝑧)2]𝑟𝑑𝜃𝑑𝑟, 

𝐸5 = ∫
𝑏

𝑎

∫
2𝜋

0

𝐸(𝑟, 𝑇)

2(1 + 𝜈)
[(

∂𝐹

∂𝑦
)

2

+ (1 +
∂𝐹

∂𝑧
)

2

] 𝑟𝑑𝜃𝑑𝑟. 

(16) 

 

Besides, 𝑁𝑇, 𝑀𝑇, and 𝑃𝑇  are the thermal force and 

thermal moments resultants which are given by 

 
(𝑁𝑇 , 𝑀𝑇 , 𝑃𝑇) 

= ∫
𝑏

𝑎

∫
2𝜋

0

𝐸(𝑟, 𝑇)𝛼(𝑟, 𝑇)(𝑇 − 𝑇0)(1, 𝐹, 𝐹 + 𝑧)𝑟𝑑𝜃𝑑𝑟 
(17) 

 

 

5. Equations of motion 
 

The equations of motion for FGM shallow curved tubes 

based on the higher order shear deformation tube theory 

may be derived by applying the Hamilton principle 
 

∫
𝑡2

𝑡1

(𝛿𝐾 − 𝛿𝑉 − 𝛿𝑈) 𝑑𝑡 = 0 (18) 

 

Using the stress resultants introduced in Eq. (14), total 

virtual strain energy of the FGM shallow curved tube 𝛿𝑈 

can be written as 
 

𝛿𝑈 = ∫
𝐿

0

∫
𝑏

𝑎

∫
2𝜋

0

[𝜎𝑥 𝛿휀𝑥 + 𝜏𝑥𝑦 𝛿𝛾𝑥𝑦

+ 𝜏𝑥𝑧 𝛿𝛾𝑥𝑧]𝑟𝑑𝜃𝑑𝑟𝑑𝑥 

       = ∫
𝐿

0

(𝑁𝑥 𝛿휀0 + 𝑀𝑥 𝛿휀1 + 𝑃𝑥 𝛿휀2 + 𝑄𝑥 𝛿𝛾0) 𝑑𝑥 

(19) 

 

Virtual potential energy of the external applied loads for 

shallow curved tube under uniform transverse pressure load 

𝑞0 can be written as (Babaei et al. 2019f) 
 

𝛿𝑉 = −∫
𝐿

0

𝑞0 𝛿𝑤 𝑑𝑥 (20) 

 

Using the displacement field introduced in Eq. (8), the 

virtual kinetic energy 𝛿𝐾 for FGM shallow curved tube in 

thermal environment is given by 
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𝛿𝐾 = ∫
𝐿

0

∫
𝑏

𝑎

∫
2𝜋

0

𝜌(𝑟, 𝑇) [
∂𝑢1

∂𝑡
𝛿 (

∂𝑢1

∂𝑡
) 

                                +
∂𝑢3

∂𝑡
𝛿 (

∂𝑢3

∂𝑡
)] 𝑟𝑑𝜃𝑑𝑟𝑑𝑥 

      = ∫
𝐿

0

[𝐼0
∂𝑤

∂𝑡
𝛿 (

∂𝑤

∂𝑡
) + (𝐼1

∂2𝑤

∂𝑥 ∂𝑡
+ 𝐼2

∂𝜑

∂𝑡
) 

                 𝛿 (
∂2𝑤

∂𝑥 ∂𝑡
) + (𝐼2

∂2𝑤

∂𝑥 ∂𝑡
+ 𝐼3

∂𝜑

∂𝑡
)𝛿 (

∂𝜑

∂𝑡
)] 𝑑𝑥 

(21) 

 

In the above equation, the axial inertia is ignored and 

higher order inertia terms 𝐼𝑖(𝑖 = 0,1,2,3) are defined by 

 
〈𝐼0, 𝐼1, 𝐼2, 𝐼3〉 

= ∫
𝑏

𝑎

∫
2𝜋

0

𝜌(𝑟, 𝑇)〈1, 𝐹2, 𝐹(𝐹 + 𝑧), (𝐹 + 𝑧)2〉𝑟𝑑𝜃𝑑𝑟 
(22) 

 

Substituting Eqs. (19)-(21) into Eq. (18) and by means 

of the suitable mathematical simplifications, the expressions 

for the equations of motion of the FGM shallow curved 

tubes are 

 

𝛿𝑢 ∶  
∂𝑁𝑥

∂𝑥
= 0, 

𝛿𝑤 ∶  
∂2𝑀𝑥

∂𝑥2
−

∂

∂𝑥
(𝑁𝑥

∂𝑤

∂𝑥
) −

∂𝑄𝑥

∂𝑥
−

𝑁𝑥

𝑅
+ 𝐼0

∂2𝑤

∂𝑡2
 

           −𝐼1
∂4𝑤

∂𝑥2 ∂𝑡2
− 𝐼2

∂3𝜑

∂𝑥 ∂𝑡2
= 𝑞0, 

𝛿𝜑 ∶  
∂𝑃𝑥

∂𝑥
− 𝐼2

∂3𝑤

∂𝑥 ∂𝑡2
− 𝐼3

∂2𝜑

∂𝑡2
− 𝑄𝑥 = 0. 

(23) 

 

To eliminate the central axes displacement, the first of 

Eqs. (23) is integrated to give 
 

𝑁𝑥 = 𝐸1 (
∂𝑢

∂𝑥
+

1

2
(
∂𝑤

∂𝑥
)

2

−
𝑤

𝑅
) − 𝑁𝑇 = 𝑐1 (24) 

 

Also, integrating Eq. (24) yields 

 

𝑢(𝑥, 𝑡) =
𝑐1

𝐸1
 𝑥 + ∫

𝑥

0

(
𝑁𝑇

𝐸1
−

1

2
(
∂𝑤

∂𝑥
)

2

+
𝑤

𝑅
)𝑑𝑥 + 𝑐2 (25) 

 

where 𝑐1  and 𝑐2  are two constants of integration. For 

shallow curved tube with immovable simply supported 

ends, boundary conditions for axial displacement can be 

written as 𝑢(0, 𝑡) = 𝑢(𝐿, 𝑡) = 0. Thus, from immovable 

end conditions the constant 𝑐1  may be obtained in the 

following form 
 

𝑐2 = 0,      𝑐1 =
1

𝐿
∫

𝐿

0

(
𝐸1

2
(
∂𝑤

∂𝑥
)

2

− 𝐸1

𝑤

𝑅
− 𝑁𝑇)𝑑𝑥 (26) 

 

The equations of motion in terms of the displacement 

components of an FGM shallow curved tube with 

immovable simply supported ends may be obtained by 

substituting Eq. (14) into Eq. (23). The resulting equations 

of motion are 

𝑁𝑥 =
𝐸1

𝐿
∫

𝐿

0

(
1

2
(
∂𝑤

∂𝑥
)

2

−
𝑤

𝑅
)𝑑𝑥 − 𝑁𝑇 , 

∂2

∂𝑡2
(𝐼0𝑤 − 𝐼1

∂2𝑤

∂𝑥2
− 𝐼2

∂𝜑

∂𝑥
) − 𝑁𝑥 (

∂2𝑤

∂𝑥2
+

1

𝑅
) 

     +𝐸2

∂4𝑤

∂𝑥4
+ 𝐸3

∂3𝜑

∂𝑥3
− 𝐸5 (

∂2𝑤

∂𝑥2
+

∂𝜑

∂𝑥
) = 𝑞0, 

𝜕2

𝜕𝑡2
[𝐼2

𝜕𝑤

𝜕𝑥
+ 𝐼3𝜑] = 𝐸3

𝜕3𝑤

𝜕𝑥3
+ 𝐸4

𝜕2𝜑

𝜕𝑥2
− 𝐸5 (

𝜕𝑤

𝜕𝑥
+ 𝜑) 

(27) 

 

Here, temperature field of the FGM shallow curved tube 

is of the uniform temperature rise type and is not a function 

of 𝑥. Thus, derivations of the thermal moments 𝑀𝑇 and 

𝑃𝑇 in the above equations are not displayed. 

Also, for the sake of generality, the following non-

dimensional quantities are introduced as 
 

(𝐴1, 𝐴2, 𝐴4) =
1

𝐷
(𝐸2, 𝐸3, 𝐸4), 

(𝐴3, 𝐴5) =
𝐿2

𝐷𝜋2
(𝐸1, 𝐸5), 

𝑊 =
𝑤

𝐿
,             𝛽 =

𝐿

𝑅𝜋2
,              𝜉 =

𝜋𝑥

𝐿
,        

Φ =
𝜑

𝜋
 ,             𝜆𝑇 =

𝑁𝑇𝐿2

𝐷𝜋2
,          𝐵0 =

𝐸0𝐼0𝐿
2

𝜌0𝐷𝜋2
, 

(𝐵1, 𝐵2, 𝐵3) =
𝐸0

𝜌0𝐷
(𝐼1, 𝐼2, 𝐼3),      𝜆

𝑞 =
𝑞0𝐿

3

𝐷𝜋4
, 

 𝜏 =
𝜋𝑡

𝐿
√𝐸0/𝜌0,              𝜔𝐿 = �̅�𝐿  

𝐿

𝜋
√𝜌0/𝐸0 

(28) 

 

in which 
 

𝐷 = ∫
𝑏

𝑎

∫
2𝜋

0

𝐸(𝑟, 𝑇)𝑧2𝑟𝑑𝜃𝑑𝑟 (29) 

 

Here, 𝐸0 and 𝜌0, respectively, are the reference values 

of 𝐸𝑚(𝑇) and 𝜌𝑚(𝑇) at room temperature (300K). 

Finally, the equations of motion for FGM shallow 

curved tubes are reduced to two new dimensionless 

equations as 
 

𝛿𝑊 ∶   𝐴1

∂4𝑊

∂𝜉4
+ 𝐴2

∂3Φ

∂𝜉3
 

           + {𝜆𝑇 − 𝜋𝐴3 ∫
𝜋

0

[
1

2
(
∂𝑊

∂𝜉
)2 − 𝛽 𝑊]𝑑𝜉} 

               (
∂2𝑊

∂𝜉2
+ 𝛽) − 𝐴5 [

∂2𝑊

∂𝜉2
+

∂Φ

∂𝜉
] 

           +
∂2

∂𝜏2
[𝐵0W − 𝐵1

∂2𝑊

∂𝜉2
− 𝐵2

∂Φ

∂𝜉
] = 𝜆𝑞 , 

 𝛿Φ ∶   𝐴2

∂3𝑊

∂𝜉3
+ 𝐴4

∂2Φ

∂𝜉2
− 𝐴5 (

∂𝑊

∂𝜉
+ Φ) 

             𝐵2

∂3𝑊

∂𝜉 ∂𝜏2
− 𝐵3

∂2Φ

∂𝜏2
= 0. 

(30) 

 

The dimensionless boundary conditions for shallow 

curved tubes with immovable simply supported ends are 
 

𝑎𝑡 ∶  𝜉 = 0, 𝜋 ∶  𝑊 = 𝑀𝑥 = 𝑃𝑥 = 0 (31) 
 

Also, the dimensionless initial conditions for nonlinear 
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free vibration analysis of shallow curved tubes are 
 

𝑎𝑡 ∶  𝜏 = 0 ∶  𝑊 =
∂𝑊

∂𝜏
= Φ =

∂Φ

∂𝜏
= 0 (32) 

 

 

6. Solution procedure 
 

An analytical approach is adopted in this section to 

obtain the closed-form solution for large amplitude free 

vibration analysis of the FGM shallow curved tubes in 

thermal environment. According to the two-step 

perturbation technique (Shen 2013), the closed-form 

solutions may be obtained by substituting the following 

series solution into Eq. (30). 

 

𝑊(𝜉, 𝜏, 휀) = ∑𝑤𝑖(𝜉, 𝜏)휀
𝑖  ,     𝜆𝑞(휀) = ∑𝜆𝑖휀

𝑖 , 

Φ(𝜉, 𝜏, 휀) = ∑𝜑𝑖(𝜉, 𝜏)휀
𝑖 . 

(33) 

 

By collecting the terms of small perturbation parameter 

휀, the following set of differential equations are calculated 

as 

The first-order perturbation equations are 

 

𝑂(휀1) ∶  𝐴1

∂4𝑤1

∂𝜉4
+ 𝐴2

∂3𝜑1

∂𝜉3
+ 𝜆𝑇

∂2𝑤1

∂𝜉2
 

               −𝐴5 (
∂2𝑤1

∂𝜉2
+

∂𝜑1

∂𝜉
) + 𝜋𝛽2𝐴3 ∫

𝜋

0

𝑤1 𝑑𝜉 = 𝜆1, 

𝐴2

∂3𝑤1

∂𝜉3
+ 𝐴4

∂2𝜙1

∂𝜉2
− 𝐴5 (

∂𝑤1

∂𝜉
+ 𝜑1) = 0. 

(34) 

 

The second-order perturbation equations are 

 

𝑂(휀2) ∶  𝐴1

∂4𝑤2

∂𝜉4
+ 𝐴2

∂3𝜑2

∂𝜉3
− 𝐴5 (

∂2𝑤2

∂𝜉2
+

∂𝜑2

∂𝜉
) 

               −𝜋𝛽
𝐴3

2
∫

𝜋

0

(
∂𝑤1

∂𝜉
)

2

𝑑𝜉 + 𝜋𝛽2𝐴3 ∫
𝜋

0

𝑤2𝑑𝜉 

               +𝜆𝑇
∂2𝑤2

∂𝜉2
+ (𝜋𝛽𝐴3 ∫

𝜋

0

𝑤1𝑑𝜉)
∂2𝑤1

∂𝜉2
= 𝜆2, 

𝐴2

∂3𝑤2

∂𝜉3
+ 𝐴4

∂2𝜑2

∂𝜉2
− 𝐴5 (

∂𝑤2

∂𝜉
+ 𝜑2) = 0. 

(35) 

 

The third-order perturbation equations are 

 

𝑂(휀3) ∶  𝐴1

∂4𝑤3

∂𝜉4
+ 𝐴2

∂3𝜑3

∂𝜉3
− 𝐴5 (

∂2𝑤3

∂𝜉2
+

∂𝜑3

∂𝜉
) 

               +𝜋𝛽2𝐴3 ∫
𝜋

0

𝑤3𝑑𝜉 − 𝜋𝛽𝐴3 ∫
𝜋

0

∂𝑤1

∂𝜉

∂𝑤2

∂𝜉
𝑑𝜉 

               + {𝜋𝐴3 ∫
𝜋

0

[𝛽𝑤2 −
1

2
(
∂𝑤1

∂𝜉
)

2

] 𝑑𝜉}
∂2𝑤1

∂𝜉2
 

               +𝜆𝑇
∂2𝑤3

∂𝜉2
+ (𝜋𝛽𝐴3 ∫

𝜋

0

𝑤1𝑑𝜉)
∂2𝑤2

∂𝜉2
 

               +휀2 (𝐵0

∂2𝑤1

∂𝜏2
− 𝐵1

∂4𝑤1

∂𝜉2 ∂𝜏2
− 𝐵2

∂3𝜑1

∂𝜉 ∂𝜏2
) 

               = 𝜆3, 

(36) 

𝐴2

∂3𝑤3

∂𝜉3
+ 𝐴4

∂2𝜑3

∂𝜉2
− 𝐴5 (

∂𝑤3

∂𝜉
+ 𝜑3) 

     −휀2 (𝐵2

∂3𝑤1

∂𝜉 ∂𝜏2
+ 𝐵3

∂2𝜑1

∂𝜏2
) = 0.                            

(36) 

 

In the next steps, perturbation Eqs. (34) to (36) are 

solved analytically for large amplitude free vibration 

responses of the FGM shallow curved pinned tubes. 

Simply supported boundary conditions and initial 

conditions given by Eqs. (31) and (32) may be satisfied 

when the general solutions of the first-order perturbation 

Eq. (34) are represented in the following form 

 

𝑤1(𝜉, 𝜏) = 𝐴10(𝜏) sin(𝑚𝜉) 
𝜑1(𝜉, 𝜏) = 𝐵10(𝜏)cos(𝑚𝜉),    𝑚 = 1,2, … 

(37) 

 

Substituting Eq. (37) into Eq. (34) yields 

 
[(𝐴1𝑚

4 + 𝐴5𝑚
2 − 𝑚2𝜆𝑇)𝐴10 + 𝑚(𝐴2𝑚

2 + 𝐴5)𝐵10] 

     × sin(𝑚𝜉) +
2𝜋

𝑚
𝐴3𝛽

2𝐴10 = 𝜆1, 

[𝑚(𝐴2𝑚
2 + 𝐴5)𝐴10 + (𝐴4𝑚

2 + 𝐴5)𝐵10]cos(𝑚𝜉) = 0 

(38) 

 

Second of Eq. (38) yields 
 

𝐵10(𝜏) = −
𝑚(𝑚2𝐴2 + 𝐴5)

𝑚2𝐴4 + 𝐴5
𝐴10(𝜏) (39) 

 

As a result, by substituting Eq. (39) into the first of Eq. 

(38), the following solution is obtained 
 

𝜆1 

= [𝑚4 (𝐴1 − 𝐴2

𝑚2𝐴2 + 𝐴5

𝑚2𝐴4 + 𝐴5
+

(𝐴4 − 𝐴2)𝐴5

𝑚2𝐴4 + 𝐴5
) − 𝑚2𝜆𝑇] 

     × 𝐴10(𝜏) sin(𝑚𝜉) +
2𝜋

𝑚
𝐴3𝛽

2𝐴10(𝜏) 

(40) 

 

The general solutions of the second-order perturbation 

Eq. (35) can be written as 

 

𝑤2(𝜉, 𝜏) = 𝐴20(𝜏) sin(2𝑚𝜉) , 
𝜑2(𝜉, 𝜏) = 𝐵20(𝜏)cos(2𝑚𝜉),    𝑚 = 1,2, … 

(41) 

 

Substituting Eqs. (41) and (37) into Eq. (35) yields 

 

   {4(4𝐴1𝑚
4 + 𝑚2𝐴5 − 𝑚2𝜆𝑇)𝐴20 

   +2𝑚(4𝐴2𝑚
2 + 𝐴5)𝐵20}sin(2𝑚𝜉) 

= 𝜆2 +
𝜋2𝑚2

4
𝐴3𝛽(𝐴10)

2 

   +2𝜋𝑚𝐴3𝛽(𝐴10)
2sin (𝑚𝜉), [2𝑚(4𝐴2𝑚

2 + 𝐴5)𝐴20 
   +(4𝐴4𝑚

2 + 𝐴5)𝐵20]cos(2𝑚𝜉) = 0 

(42) 

 

From Eqs. (42), the following solution can be obtained 

as 
 

𝐴20(𝜏) = 𝐵20(𝜏) = 0, 

 𝜆2 = −2𝜋𝑚𝐴3𝛽(𝐴10)
2sin(𝑚𝜉) −

𝜋2𝑚2

4
𝐴3𝛽(𝐴10)

2 
(43) 

 

Also, the general solutions of the third-order 

perturbation Eq. (36) can be written as 
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𝑤3(𝜉, 𝜏) = 𝐴30(𝜏) sin(3𝑚𝜉) , 
𝜑3(𝜉, 𝜏) = 𝐵30(𝜏)cos(𝑚𝜉),           𝑚 = 1,2, … 

(44) 

 

Substituting Eqs. (44), (41), and (37) into Eq. (36) 

yields 

 
(81𝑚4𝐴1 + 9𝑚2𝐴5 − 9𝑚2𝜆𝑇)𝐴30 sin(3𝑚𝜉) 

+
2𝜋

3𝑚
𝐴3𝛽

2𝐴30 +
1

4
𝜋2𝑚4𝐴3(𝐴10)

3 sin(𝑚𝜉)) 

+(𝐵0 + 𝑚2𝐵1 − 𝑚2𝐵2

𝑚2𝐴2 + 𝐴5

𝑚2𝐴4 + 𝐴5
)

∂2𝐴10

∂𝜏2
sin(𝑚𝜉) 

+(𝑚3𝐴2 + 𝑚𝐴5)𝐵30 sin(𝑚𝜉) = 𝜆3, 

[𝑚 (𝐵2 − 𝐵3

𝑚2𝐴2 + 𝐴5

𝑚2𝐴4 + 𝐴5
)

∂2𝐴10

∂𝜏2
+ (𝑚2𝐴4 + 𝐴5)𝐵30] 

× cos(𝑚𝜉) + (27𝑚3𝐴2 + 3𝑚𝐴5)𝐴30cos(3𝑚𝜉) = 0. 

(45) 

 

Second of Eq. (45) yields 

 

𝐴30(𝜏) = 0, 

𝐵30(𝜏) =
−𝑚

𝑚2𝐴4 + 𝐴5
(𝐵2 − 𝐵3

𝑚2𝐴2 + 𝐴5

𝑚2𝐴4 + 𝐴5
)

∂2𝐴10

∂𝜏2
 

(46) 

 

Substituting Eq. (46) into the first of Eq. (45) one has 

 

𝜆3 =

[
 
 
 
 𝐵0 + 𝑚2𝐵1 − 𝑚2𝐵2

𝑚2𝐴2 + 𝐴5

𝑚2𝐴4 + 𝐴5

+
𝑚2(𝑚2𝐴2 + 𝐴5)

𝑚2𝐴4 + 𝐴5
(𝐵3

𝑚2𝐴2 + 𝐴5

𝑚2𝐴4 + 𝐴5
− 𝐵2)

]
 
 
 
 

 

          ×
∂2𝐴10

∂𝜏2
sin(𝑚𝜉) +

1

4
𝜋2𝑚4𝐴3(𝐴10)

3sin(𝑚𝜉) 

(47) 

 

From the above closed-form solutions, approximate 

functions for large amplitude free vibration responses of the 

FGM shallow curved tubes with immovable pinned ends in 

thermal environment may be determined as 

 

𝑊(𝜉, 𝜏, 휀) = 휀𝐴10(𝜏) sin(𝑚𝜉) + 𝑂(휀4), 
Φ(𝜉, 𝜏, 휀) = [휀𝐵10(𝜏) + 휀3𝐵30(𝜏)] cos(𝑚𝜉) + 𝑂(휀4), 
𝜆𝑞(𝜉, 𝜏, 휀) = 𝜆1휀 + 𝜆2휀

2 + 𝜆3휀
3 + 𝑂(휀4) + ⋯ 

(48) 

 

By substituting Eqs. (40), (43), and (47) into the third of 

Eq. (48), the following asymptotic solution may be 

expressed 
 

𝜆𝑞(𝜉, 𝜏, 휀) = [𝑔0

∂2(휀𝐴10)

∂𝜏2
+ 𝑔1(휀𝐴10) + 𝑔2(휀𝐴10)

2 

                        +𝑔3(휀𝐴10)
3] × sin(𝑚𝜉) + 𝑔4(휀𝐴10) 

                        +𝑔5(휀𝐴10)
2 + 𝑂(휀4) 

(49) 

 

in which 
 

𝑔0 = 𝐵0 + 𝑚2𝐵1 + 𝑚2𝐵3 [
𝑚2𝐴2 + 𝐴5

𝑚2𝐴4 + 𝐴5

]

2

 

         −2𝑚2𝐵2

𝑚2𝐴2 + 𝐴5

𝑚2𝐴4 + 𝐴5
 , 

𝑔1 = 𝑚4 [𝐴1 − 𝐴2

𝑚2𝐴2 + 𝐴5

𝑚2𝐴4 + 𝐴5
+

(𝐴4 − 𝐴2)𝐴5

𝑚2𝐴4 + 𝐴5
] 

         −𝑚2𝜆𝑇, 

(50) 

𝑔2 = −2𝜋𝑚𝐴3𝛽,         𝑔3 =
1

4
𝜋2𝑚4𝐴3, 

𝑔4 =
2𝜋

𝑚
𝐴3𝛽

2,             𝑔5 = −
1

4
𝜋2𝑚2𝐴3𝛽. 

(50) 

 

For nonlinear free vibration problem, applied external 

uniform pressure is vanished 𝜆𝑞 = 0. Thus, applying the 

Galerkin method to Eq. (49) yields 

 

∫
𝜋

0

𝜆𝑞(𝜉, 𝜏, 휀) sin(𝑚𝜉) 𝑑𝜉 = 0 (51) 

 

As a result, from Eq. (51), the following Duffing-type 

equation can be obtained 

 

𝐺0

∂2[휀𝐴10]

∂𝜏2
+ 𝐺1[휀𝐴10] 

+𝐺2[휀𝐴10]
2 + 𝐺3[휀𝐴10]

3 = 0 

(52) 

 

in which 
 

𝐺0 =
𝑚𝜋

4
𝑔0 ,                 𝐺1 =

𝑚𝜋

4
𝑔1 + 𝑔4 , 

𝐺2 =
𝑚𝜋

4
𝑔2 + 𝑔5 ,       𝐺3 =

𝑚𝜋

4
𝑔3 . 

(53) 

 

The analytical closed-form solution of the Duffing-type 

Eq. (52) is expressed as (Shen 2014a, b) 

 

𝜔𝑁𝐿 = 𝜔𝐿 √1 +
9  𝐺1𝐺3 − 10  𝐺2

2

12  𝐺1
2  𝑊𝑚

2 (54) 

 

in which 𝜔𝐿 = √𝐺1/𝐺0 is the dimensionless linear 

frequency and 𝜔𝑁𝐿  is the dimensionless nonlinear 

frequency. Also, 𝑊𝑚 = 𝑤𝑚/𝐿  is the dimensionless 

amplitude of the FGM shallow curved tube which is 

obtained from the first of Eqs. (48) as 𝑊𝑚 = 휀𝐴10. Here, 

𝑤𝑚 is the mid-span deflection of the curved tube. 

 

 

7. Results and discussion 
 

Procedure and formulation developed in the previous 

sections can be used in the rest to analyse the linear and 

nonlinear free vibration responses of a shallow curved tube 

made of functionally graded material. Boundary conditions 

at both ends of FGM shallow curved tube are simply 

supported and immovable. In the subsequent results, the 

dimensionless amplitude of FGM shallow curved tube is 

denoted by 𝑤𝑚/𝑏 for the first vibration mode 𝑚 = 1. 

Also, a dimensionless parameter is used to obtain the 

natural frequencies of FGM shallow curved tubes which is 

Ω = �̅�𝐿 𝑏 √𝜌0/𝐸0 . Here, �̅�𝐿  is the corresponding 

frequency where from Eq. (28) is obtained as �̅�𝐿 =

𝜔𝐿(𝜋/𝐿)√𝐸0/𝜌0 . In this section, first the comparison 

studies are provided. Afterwards, novel numerical results 

are given to explore the effects of different parameters on 

the small and large amplitude in-plane free vibration 

responses of the FGM shallow curved tubes in thermal 

environment. Except for the comparison study of Table 2, in 
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the numerical results SUS304 and 𝑆i3𝑁4 are used as the 

constituents. The coefficients for these functionally graded 

constituents are given in Table 1. 
 

7.1 Comparison studies 
 

The comparison studies are developed in this section to 

assure the validity and accuracy of the developed analytical 

solutions and numerical results. In these examples, the cases 

of flat beam/tube made of functionally graded material are 

considered. The flat beam/tube are a simple case of the 

shallow curved beams/tubes with 𝑅 = ∞. 

In the first example, a solid circular cylindrical beam 

with 𝑎 = 0  made of functionally graded constituents 

Al/ZrO2 is considered. For the sake of comparison, FGM 

cylindrical beam is not under thermal environment and 

temperature in the beam is equal to 𝑇 = 300𝐾 . Other 

parameter of the cylindrical beam is 𝐿/𝑏 = 10 . Also, 

material properties for Al are 𝐸 = 70 GPa and 𝜌 = 2702 

kg/𝑚3 , and for ZrO2  are 𝐸 = 200GPa and 𝜌 = 5700 

kg/𝑚3. For this example, comparison is performed in Table 

2. It is evident that small amplitude frequencies of the FGM 

flat solid tube are in excellent agreement with those 

obtained by other investigators. 

In the second example, a flat circular tube made of 

 

 

 

 

functionally graded 𝑆𝑖3𝑁4/SUS304 is considered. For the 

sake of comparison, other parameters of the tube are 𝑎/𝑏 =
0.5, 𝑁 = 0, and 𝑇 = 300𝐾. For this example, comparison 

is performed for two different 𝐿/𝑏 ratios in Fig. 2. It is 

seen that for both geometrical parameters, frequency ratios 

of the present formulation are in excellent agreement with 

those of Zhong et al. (2016), which accepts the accuracy 

and correctness of the developed formulation. 

 

7.2 Parametric studies 
 

After validating the developed analytical solution and 

numerical results, novel numerical results are given for the 

case of FGM shallow curved tubes with immovable pinned 

ends in thermal environment. 

 

7.2.1 Influence of temperature change 
In this example, the effect of temperature change on the 

linear and nonlinear free vibration response of the FGM 

shallow curved tubes is investigated. Results of this study 

are illustrated in Table 3, and Figs. 3-4. The natural 

frequencies of the tube are evaluated when the geometrical 

characteristics of the tube are set equal to 𝐿/𝑅 = 0.2, 

𝐿/𝑏 = 25, 𝑎/𝑏 = 0.5. The case of a tube which is linearly 

graded is considered. Small amplitude frequencies of the 
 

 

 

 

 

Table 1 Temperature dependent coefficients for SUS304 and 𝑆𝑖3𝑁4 

Material Property 𝑃−1 𝑃0 𝑃1 𝑃2 𝑃3  

SUS304 

𝛼[1/𝐾] 0 12.33𝑒 − 6 8.086𝑒 − 4 0 0  

𝐸[𝑃𝑎] 0 201.04e + 9 3.079𝑒 − 4 −6.534𝑒 − 7 0  

𝜌[𝑘𝑔/𝑚3] 0 8166 0 0 0  

𝜈 0 0.3 0 0 0  

𝑆𝑖3𝑁4 

𝛼[1/𝐾] 0 5.8723𝑒 − 6 9.095𝑒 − 4 0 0  

𝐸[𝑃𝑎] 0 348.43𝑒 + 9 −3.07𝑒 − 4 2.16𝑒 − 7 −8.946𝑒 − 11  

𝜌[𝑘𝑔/𝑚3] 0 2370 0 0 0  

𝜈 0 0.3 0 0 0  
 

Table 2 Comparisons of dimensionless natural frequencies for Al/ZrO2 cylindrical beams 

with 𝐿/𝑏 = 10 

Source Ω1 Ω2 Ω3 Ω4 Ω5 Ω6 

𝑁 = 0 

Huang and Li (2010b) 0.0890 0.3169 0.6193 0.9557 1.3063 1.6622 

Zhong et al. (2016) 0.0889 0.3165 0.6198 0.9590 1.3147 1.6779 

She et al. (2018b) 0.0889 0.3163 0.6195 0.9553 1.3079 1.6679 

Present 0.0890 0.3169 0.6205 0.9601 1.3162 1.6797 

𝑁 = 1 

Huang and Li (2010b) 0.0902 0.3193 0.6170 0.9459 1.2867 1.6311 

Zhong et al. (2016) 0.0900 0.3175 0.6159 0.9462 1.2900 1.6394 

She et al. (2018b) 0.0900 0.3172 0.6145 0.9425 1.2836 1.6305 

Present 0.0901 0.3178 0.6166 0.9472 1.2913 1.6410 

𝑁 = 5 

Huang and Li (2010b) 0.0885 0.3095 0.5954 0.9075 1.2291 1.5531 

Zhong et al. (2016) 0.0883 0.3089 0.5953 0.9097 1.2353 1.5654 

She et al. (2018b) 0.0883 0.3087 0.5938 0.9060 1.2293 1.5573 

Present 0.0884 0.3093 0.5959 0.9104 1.2363 1.5665 
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Fig. 2 Comparison between frequency-amplitude curves of 

this study and Zhong et al. (2016) for the flat tubes 

 

 

tube are evaluated and provided in Table 3. It is seen that as 

the temperature increases, frequencies of the tube decreases. 

This is expected since with an increase in the temperature, 

compressive axial force is induced in the tube which results 

in the stiffness reduction. Also, since properties of the 

constituents are considered to be temperature dependent, 

temperature elevation results in the reduction of elasticity 

modulus which again yields to stiffness reduction. 

The effect of thermal environment on the frequency 

ratios of FGM shallow curved tube is also investigated in 

this research. The curved tube with characteristics 𝐿/𝑅 =
0.1, 𝐿/𝑏 = 15, 𝑎/𝑏 = 0.5, 𝑁 = 1 are used to generate 

the results in Fig. 3. It is seen that temperature elevation 

reduces the frequencies of the shallow curved tube. 

However, the frequency ratio increases as the temperature 

elevates. 

To better understand the effect of temperature on the 

small and large amplitude frequencies of a curved tube, the 

effect of temperature dependence of the constituents is 

illustrated in Fig. 4. Properties of the tube are 𝐿/𝑅 = 0.1, 

𝐿/𝑏 = 20, 𝑎/𝑏 = 0.5, 𝑁 = 1. Two different analysis are 

shown, which are temperature dependent (TD) and 

temperature independent (TID). It is seen that under the TD 

material properties, which is the real state of the properties, 

natural frequencies decrease which is due to the material 

degeneration. The ratio of nonlinear to linear frequency 

ratio also decreases when the assumption of temperature 

 

 

Table 3 Effect of temperature change on dimensionless 

natural frequencies of the FGM shallow curved 

tubes with 𝐿/𝑅 = 0.2, 𝐿/𝑏 = 25, 𝑎/𝑏 = 0.5, 

𝑁 = 1 

T Ω1 Ω2 Ω3 Ω4 Ω5 Ω6 

300K 0.0168 0.0506 0.1071 0.1781 0.2589 0.3464 

400K 0.0154 0.0458 0.1045 0.1747 0.2547 0.3413 

500K 0.0138 0.0463 0.1016 0.1710 0.2500 0.3355 

600K 0.0119 0.0437 0.0984 0.1668 0.2448 0.3290 

700K 0.0095 0.0409 0.0949 0.1623 0.2390 0.3218 

800K 0.0061 0.0378 0.0910 0.1573 0.2325 0.3138 
 

 

 

Fig. 3 The effect of temperature change on the frequency-

amplitude curves of FGM shallow curved tubes 

 

 

 

Fig. 4 The effect of temperature dependency on the 

frequency-amplitude curves for shallow curved tubes 

 

 
dependent material properties is established. 

Since temperature dependence is an important factor in 

linear and nonlinear free vibrations of FGM shallow curved 

tubes, in the subsequent results the temperature dependence 

of the constituents is considered. 

 
7.2.2 Influence of 𝐿/𝑅 ratio 
The next study analyzes the influence of geometrical 

property 𝐿/𝑅 on the linear and nonlinear free vibrations of 

FGM shallow curved tubes. Results of this study are 

illustrated in Table 4 and Fig. 5. 

Table 4 provides the first six frequencies of shallow 

FGM curved tubes with different 𝐿/𝑅  ratios. In this 

example, curved tubes with 𝐿/𝑏 = 30, 𝑎/𝑏 = 0.5, 𝑁 = 1, 

𝑇 = 300𝐾 are considered. It is seen that as the 𝐿/𝑅 ratio 

increases, the fundamental frequency of the tube increases. 

Therefore, the frequency of a flat tube is always smaller 

than a curved tube. However, this effect almost disappears 

in higher order frequencies of the tube. 

The effect of 𝐿/𝑅 ratio on the frequency ratio is 

depicted in Fig. 5. The characteristic of the curved tube are 

as 𝐿/𝑏 = 10, 𝑎/𝑏 = 0.5, 𝑁 = 1, 𝑇 = 300𝐾. Again, it is 

verified that as the 𝐿/𝑅 ratio increases, the fundamental 
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Table 4 Effect of 𝐿/𝑅 ratio on dimensionless natural 

frequencies of the FGM shallow curved tubes with 

𝐿/𝑏 = 30, 𝑎/𝑏 = 0.5, 𝑁 = 1, 𝑇 = 300𝐾 

𝐿/𝑅 Ω1 Ω2 Ω3 Ω4 Ω5 Ω6 

0.0 0.0091 0.0354 0.0766 0.1294 0.1910 0.2589 

0.1 0.0101 0.0355 0.0766 0.1294 0.1910 0.2589 

0.2 0.0127 0.0357 0.0766 0.1294 0.1910 0.2589 

0.3 0.0160 0.0360 0.0767 0.1294 0.1910 0.2590 

0.4 0.0198 0.0365 0.0768 0.1294 0.1910 0.2590 

0.5 0.0238 0.0371 0.0769 0.1295 0.1910 0.2590 
 

 

 

 

Fig. 5 The effect of 𝐿/𝑅 ratio on the frequency-amplitude 

curves of FGM shallow curved tubes in 300K 

 

 

frequency of the curved tube increases. The frequency ratio 

of the curved tube decreases when the 𝐿/𝑅 ratio increases. 

 

7.2.3 Influence of 𝐿/𝑏 ratio 

The effect of geometrical property 𝐿/𝑏 on linear and 

nonlinear free vibrations of an FGM shallow curved tube is 

demonstrated in Table 5 and Fig. 6. 

In Table 5, the first six frequencies of the curved tube 

are tabulated. For the numerical results of this table, tube 

with parameters 𝐿/𝑅 = 0.2,  𝑎/𝑏 = 0.5,  𝑁 = 1 ,  𝑇 = 

300𝐾 are considered. It is seen that as the L/b ratio 

increases, the frequencies of the curved tube decreases. This 

is expected since when the tube becomes longer the effect 

of boundary conditions almost disappear in the tube thus 

 

 

Table 5 Effect of 𝐿/𝑏 ratio on dimensionless natural 

frequencies of the FGM shallow curved tubes with 

𝐿/𝑅 = 0.2, 𝑎/𝑏 = 0.5, 𝑁 = 1, 𝑇 = 300𝐾 

𝐿/𝑅 Ω1 Ω2 Ω3 Ω4 Ω5 Ω6 

15 0.0395 0.1297 0.2590 0.4073 0.5652 0.7283 

20 0.0242 0.0768 0.1593 0.2590 0.3691 0.4854 

25 0.0168 0.0506 0.1071 0.1781 0.2589 0.3464 

30 0.0127 0.0357 0.0766 0.1294 0.1910 0.2589 

35 0.0101 0.0265 0.0574 0.0980 0.1462 0.2003 

40 0.0084 0.0205 0.0445 0.0766 0.1152 0.1592 
 

 

 

Fig. 6 The effect of 𝐿/𝑏 ratio on the frequency-amplitude 

curves of FGM shallow curved tubes in 300K 

 

 

resulting in loosing the tube stiffness. 

The effect of 𝐿/𝑏 ratio is also depicted on the nonlinear 

frequency ratio. This study is shown in Fig. 6. For this 

study, curved tube with parameters 𝐿/𝑅 = 0.1, 𝑎/𝑏 = 0.5, 

𝑁 = 1, 𝑇 = 300𝐾 are considered. Again, it is verified that 

with an increase in the 𝐿/𝑏  ratio the small amplitude 

frequency of the tube decreases. However, the nonlinear to 

linear frequency ratio decreases as this ratio enhances. 
 

7.2.4 Influence of 𝑎/𝑏 ratio 
The next study examines the effect of geometrical 

property 𝑎/𝑏 on the linear and nonlinear free vibrations of 

a shallow FGM curved tube. Results of this study are 

illustrated in Table 6 and Fig. 7. 

The first six linear frequencies of the curved tube are 

evaluated and provided in Table 6. In this example, curved 

tubes with parameters 𝐿/𝑅 = 0.2, 𝐿/𝑏 = 20, 𝑁 = 1, 𝑇 =
300𝐾 are examined. It is seen that the influence of 𝑎/𝑏 

ratio on the frequencies is not monotonic. For instance, in 

the current investigation, the linear fundamental frequency 

decreases up to 𝑎/𝑏 = 0.3  and then decreases. This 

conclusion is compatible with the findings of Zhong et al. 

(2016). 

Same study is performed to analyse the large amplitude 

free vibrations of FGM shallow curved tubes. The effect of 

a/b ratio is analyses in the next investigation where the 

numerical results are provided in Fig. 7. In this study, 

curved tubes with 𝐿/𝑅 = 0.1, 𝐿/𝑏 = 15, 𝑁 = 1, 𝑇 = 

 

 

Table 6 Effect of 𝑎/𝑏 ratio on dimensionless natural 

frequencies of the FGM shallow curved tubes with 

𝐿/𝑅 = 0.2, 𝐿/𝑏 = 20, 𝑁 = 1, 𝑇 = 300𝐾 

𝑎/𝑏 Ω1 Ω2 Ω3 Ω4 Ω5 Ω6 

0.0 0.0248 0.0781 0.1663 0.2775 0.4049 0.5433 

0.1 0.0243 0.0765 0.1626 0.2709 0.3946 0.5289 

0.3 0.0239 0.0755 0.1589 0.2623 0.3787 0.5038 

0.5 0.0242 0.0768 0.1593 0.2590 0.3691 0.4857 

0.7 0.0249 0.0798 0.1627 0.2603 0.3657 0.4752 

0.9 0.0261 0.0840 0.1685 0.2656 0.3684 0.4736 
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Fig. 7 The effect of 𝑎/𝑏 ratio on the frequency-amplitude 

curves of FGM shallow curved tubes in 300 K 
 

 

300𝐾 are analysed. It is observed that as the 𝑎/𝑏 ratio 

increases, the nonlinear to linear frequency ratio of the arch 

decreases. 

 

7.2.5 Influence of the power law index 𝑁 

Finally, the effect of power law index 𝑁 on linear and 

nonlinear free vibrations of a shallow FGM curved tube is 

demonstrated in Table 7 and Fig. 8. 

Table 7 provides the first six frequency parameters of 

FGM shallow curved tubes where the parameters of the 

tube are set equal to 𝐿/𝑅 = 0.2, 𝐿/𝑏 = 20, 𝑎/𝑏 = 0.5, 

𝑇 = 300𝐾 . It is seen that as the power law index 𝑁 

increases the frequency of the curved tube decreases. This is 

expected since with increasing the power law index the 

volume fraction of ceramic phase decreases which results in 

the lower stiffness of the tube since for the constituents of 

this study elasticity modulus of ceramic material is much 

higher than the metal material. 

Finally, the influence of the power law index of the 

frequency ratio of FGM shallow curved tubes is depicted in 

Fig. 8. For this example, curved tubes with 𝐿/𝑅 = 0.1, 

𝐿/𝑏 = 20, 𝑎/𝑏 = 0.7, 𝑇 = 600𝐾 are taken into conside-

ration. It is seen that with an increase in the power law 

index of the curved tube, the frequency ratio decreases 

permanently. Thus, it may be concluded that the power law 

index may be used as a controlling parameter in the 

vibrational characteristics of the FGM curved tubes. 
 

 

Table 7 Effect of power law index 𝑁 on dimensionless 

natural frequencies of the FGM shallow curved 

tubes with 𝐿/𝑅 = 0.2, 𝐿/𝑏 = 20, 𝑎/𝑏 = 0.5, 

𝑇 = 300𝐾 

𝑁 Ω1 Ω2 Ω3 Ω4 Ω5 Ω6 

0 0.0375 0.1187 0.2464 0.4010 0.5721 0.7533 

1 0.0242 0.0768 0.1593 0.2590 0.3691 0.4857 

2 0.0213 0.0679 0.1408 0.2289 0.3262 0.4290 

3 0.0200 0.0638 0.1323 0.2150 0.3064 0.4031 

4 0.0193 0.0614 0.1272 0.2068 0.2948 0.3879 

5 0.0188 0.0597 0.1239 0.2014 0.2872 0.3779 
 

 

 

Fig. 8 The effect of power law index 𝑁 on the frequency-

amplitude curves of FGM curved tubes in 600K 
 

 

8. Conclusions 
 

A large amplitude free vibration response is investigated 

for the FGM shallow curved tubes in thermal environment. 

The case of curved tubes with material properties graded 

across the radial direction are considered. Thermo-

mechanical properties of the curved tube are assumed to be 

temperature dependent. With the aid of a higher order shear 

deformation tube theory and the von Kármán type of 

geometrical nonlinearity, the governing dynamic equations 

for the curved tube are established. These equations of 

motion are solved for the case of curved tubes which are 

simply supported in flexure and immovable in axial 

direction. Closed form solutions are given for the small and 

large amplitude free vibrations of FGM shallow curved 

tubes using the two-step perturbation technique. Numerical 

results are given to discuss the effects of temperature 

dependence, temperature elevation, power law index and 

geometrical properties of the curved tube. It is shown that 

as the temperature elevates, frequencies of the curved tube 

decrease. Also, the frequency ratio of the curved tube 

decreases with an increase in the temperature level. 

Temperature dependence of the constituents results in the 

lower frequency parameters. For the constituents of this 

study, as the power law index increases, linear frequencies 

and also the ratio of frequency of the curved tube decrease. 
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