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1. Introduction 

 

Functionally graded materials (FGMs) represent a new 

class of composites that consists of a graded pattern of 

material composition and/or microstructures. This relatively 

new advanced composite consists of different materials in 

order to achieve the desired properties according to the 

application where the FGM is used (Vatanabe et al. 2014, 

Beldjelili et al. 2016). FGMs have acquired a great attention 

of researchers in the past decade due to their graded 

properties at every single point in various dimensions 

(Fourn et al. 2018, Karami et al. 2018, Zaoui et al. 2019). 

FGMs have exceptional properties compared to traditional 

homogeneous materials due to the continuous transition of 

material properties. 

FGMs have been developed as ultrahigh temperature 

resistant materials for aircraft, space vehicles. They have 

other engineering applications including mechanical, 

electronics, optics, chemical, biomedical, nuclear, and civil 

engineering. The increasing use of FG beams as structural 

components in various fields has necessitated the study of 

their dynamic behavior. Design of structures based on FGM 

to resist dynamic forces, such as wind and earthquakes, 

requires knowledge of their vibration properties particularly 

their natural frequencies and their mode shapes (Shabana et 

al. 2000, Bouafia et al. 2017). 

Few analytical solutions are developed for arbitrary 

gradient change due to the difficulty of mathematical 

treatment of the problem (Aydogdu 2004). 

Elishakoff and Guede (2004) used the semi-inverse 

method to treat a large class of problems involving graded 
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beams of special forms and obtained explicit fundamental 

frequency. Li et al. (2013) and Tang et al. (2014) derived 

exact frequency equations of free vibration of uniform and 

non-uniform exponentially functionally graded beams 

using, respectively, the Euler-Bernoulli and Timoshenko 

theory. Alireza et al. (2017) investigated the dynamic 

response of functionally graded nanocomposite beams 

under the action of a moving load. The analysis is carried 

out by a mesh-free method using the two-dimensional 

theory of elasticity. Abdelaziz et al. (2017) developed and 

applied a simple hyperbolic shear deformation theory for 

the bending, vibration and buckling of FG sandwich plate 

with various boundary conditions. Equations of motion are 

obtained from Hamilton’s principle. Numerical results for 

the natural frequencies, deflections and critical buckling 

loads of several types of FG graded sandwich plates under 

various boundary conditions were presented. Mouffoki et 

al. (2017) considered a novel simple trigonometric shear 

deformation theory to study the effects of moisture and 

temperature on free vibration characteristics of FG 

nanobeams resting on elastic foundation. Abualnour et al. 

(2018) investigated the free vibration analysis of FG plates 

resting on two-parameter elastic foundations using a hybrid 

quasi-3D higher-order shear deformation theory. The 

Governing equations of motion for FG plates were derived 

from Hamilton’s principle and the closed form solutions 

were obtained by using Navier technique. Younsi et al. 

(2018) proposed higher shear deformation theories (HSDTs) 

for bending and free vibration of FG plates using hyperbolic 

shape function where the material properties vary 

continuously along the thickness direction. The governing 

equations which consider the effects of both transverse 

shear and thickness stretching were determined through the 

Hamilton’s principle. The closed form solutions were 

deduced by employing Navier method. Meksi et al. (2019) 
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improved a higher shear deformation theory to consider the 

influence of thickness stretching in FG plates. The 

kinematic of the improved HSDT was assumed by 

considering undetermined integral terms in in-plane 

displacements and a parabolic distribution of the vertical 

displacement within the thickness. Boutaleb et al. (2019) 

applied the theory of nonlocal elasticity based on the quasi 

3D high shear deformation theory to determine the natural 

frequencies of the nanosize FG plate. The theory of 

nonlocal elasticity was utilized to examine the impact of the 

small scale on the natural frequency of the FG rectangular 

nanoplate. 

With the aid of special functions, Huang and Li (2010) 

solved some free vibration and buckling problems of axially 

graded beams. Nevertheless, the assumption of non-

homogeneity or non-uniformity still has special 

requirements and is not arbitrary. 

Consequently, the application of numerical techniques 

seems to be inevitable. Various numerical methods are 

developed in order to calculate the frequencies and mode 

shapes of beams. Different variational techniques such as 

Rayleigh Ritz and Galerkin methods had been applied in the 

past. Due to advancement in computational techniques and 

availability of software, FE method is quite a less 

cumbersome than the conventional methods (Kahya and 

Turan 2017). 

The dynamic analysis of through-thickness FG 

structural elements has been the subject of many researches. 

However, a number of further issues related to FG beams 

still need to be investigated. An important question to be 

addressed in this context consists of studying the vibrational 

behavior of axially FG beams. Axially FG beam is a special 

kind of nonhomogeneous FG material structure, whose 

material properties vary continuously along the axial 

direction of the beam. It is difficult to obtain precise 

solutions for the vibration of axially FG beams because of 

the variable coefficients of the governing equations. In 

order to solve the previously mentioned question, a semi-

analytical method known as differential transformation 

method is adopted. This method can be applied to a wide 

range of vibration problems formulated as complex 

differential equations with different boundary conditions. 

In this study, the free vibration of axially functionally 

graded Euler-Bernoulli beams is considered. Homogenous 

and linear FG beams are investigated. The differential 

transform method is used to determine the dimensionless 

frequencies and the mode shapes. The effect of the 

reinforcement distribution, the ratio of the reinforcement 

Young’s modulus to the matrix Young’s modulus and the 

ratio of the reinforcement density to the matrix density on 

the dynamic behavior of such beams is investigated. 

This paper is organized as follows. Section 1 gives an 

introduction about FGM and its application. In the same 

section a literature review about the methods used 

previously for the vibration analysis of FG beams is 

presented. Section 2 provides basic idea of DTM. The 

formulation of governing differential equation of motion of 

linearly axially FG Euler-Bernoulli beam is discussed in 

Section 3. Section 4 presents the numerical results of free 

vibration of axially FG composite beams. The validation of 

obtained results and parametric study are discussed in the 

same section 4. Conclusions are exposed in section 5. 
 

 

2. Differential transformation method 
 

The DTM is a semi-analytical approach based on Taylor 

expansion series for solving linear and nonlinear differential 

equations. This method provides solutions in terms of 

convergent series with easily computable components 

(Mohammad et al. 2017). It was first used in structural 

dynamics by Malik and Dang (1998). Then, it was used in 

various domains like fluid flow, heat transfer problems and 

nonlinear oscillators’ problems (Hassan 2002, Catal 2008, 

Shahba et al. 2013, Sepasgozar et al. 2017, Catal et al. 

2017, Cherif et al. 2018). 

DTM was used to solve forced vibration differential 

equations of motion of Euler-Bernoulli beams with different 

boundary conditions and various dynamic loads (Catal 

2012). It was also used to solve the forth order differential 

equations for critical buckling load of partially embedded 

and semi-rigid connected pile with shear deformation (Catal 

2014). It was reported that good agreement is found 

between DTM and analytical method. The effectiveness of 

DTM on free vibrations of axial-loaded Timoshenko beams 

resting on viscoelastic foundation was investigated by 

Bozyigit et al. (2018). The results of DTM were validated 

against dynamic stiffness method through several numerical 

examples an excellent agreement was observed. 

Compared to power series solution method, which was 

adopted by Lin and Hsiao (2001), DTM predicts natural 

frequencies more accurately. DTM is directly used to solve 

governing equations and gives the solutions for whole 

domain. In this method, incorporation of boundary 

conditions is easily performed. On the contrary, finite 

element method (FEM) divides the domain into several 

elements and the accuracy of results depends on the number 

of elements. Also applying boundary conditions with FEM 

is not as easy as DTM. Moreover, DTM does not pose any 

restrictions on both the type of material gradation and the 

variation of the cross-section profile. Hence it could cover 

most of the engineering problems dealing with the 

mechanical behavior of nonuniform and nonhomogenous 

structures. These advantages have gained attention of 

several authors (see; Bert and Zeng 2004, Arikoglu and 

Ozkol 2005, Ozdemir and Kaya 2006). 

The conceptual feature of the DTM is to transform the 

governing differential equations and related boundary 

conditions as well as continuity conditions into a recurrence 

equation that finally leads to the solution of a system of 

algebraic equations as coefficients of a power series 

solution. 

The differential transform of a sufficiently differentiable 

function u(x) is defined as Davit et al. (2018) 
 

𝑈(𝑘) =
1

𝑘!
(

𝑑𝑘𝑢(𝑥)

𝑑𝑥𝑘
)

𝑥0

  (1) 

 

where k is a positive integer. In this paper, x0 is set to zero. 

The inverse differential transform is known as a 
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presentation of u(x) by power series 
 

𝑢(𝑥) = ∑ 𝑥𝑘𝑈(𝑘)

∞

𝑘=0

 (2) 

 

From Eqs. (1)-(2), one can obtain 
 

𝑈(𝑘) = ∑
𝑥𝑘

𝑘!
(

𝑑𝑘𝑢(𝑥)

𝑑𝑥𝑘
)

𝑥=0

+∞

𝑘=0

 (3) 

 

 

3. Formulation of the problem 
 

Let’s consider a rectangular beam of uniform cross-

section A, width b, depth h, length L, and made of axially 

FGM. The rectangular Cartesian coordinate axes are used 

with the x-axis along the geometric centroidal axis. The 

volume fraction of the reinforcement is assumed to vary 

continuously along the length direction according to linear-

law form 

𝑣𝑋 = 𝑣𝐿 + 𝑣𝑅

𝑋

𝐿
 (4) 

 

where vL is the volume fraction of the reinforcement at the 

left side of the beam. vR is taken such that (vL+vR)/2 = 0.2. 

According to the Euler-Bernoulli beam theory, the 

governing differential equation for free transverse vibration 

of axially FG beams reads as 

 

𝜌(𝑋)𝐴
𝜕2𝑤(𝑋, 𝑡)

𝜕𝑡2
+

𝜕2

𝜕𝑋2
[𝐸(𝑋)𝐼

𝜕𝑤(𝑋, 𝑡)

𝜕𝑋2
] = 0 (5) 

 

where w(X, t) represents the transverse displacement of the 

beam, E(X) is the modulus of elasticity, I is moment of 

inertia and ρ(X) is the density of the beam material. X is the 

distance from the left end of the beam. 

Assuming the transverse displacement of the beam as 

follows, where 𝜔 is the circular natural frequency 

 

𝑤(𝑋, 𝑡) = 𝑌(𝑋) 𝑒𝑥𝑝( 𝑖𝜔𝑡) (6) 

 

Substituting the expression of the transverse 

displacement into the governing differential equation, Eq. 

(5) takes the form 
 

−𝜌(𝑋)𝐴𝑌(𝑋)𝜔2 +
𝑑2

𝑑𝑋2
[𝐸(𝑋)𝐼

𝑑2𝑌(𝑋)

𝑑𝑋2
] = 0 (7) 

 

which can be written 

 

𝑑4𝑌(𝑋)

𝑑𝑋4
+ 2𝐼

𝑑𝐸(𝑋)

𝑑𝑋

𝑑3𝑌(𝑋)

𝑑𝑋3
+

𝑑2𝐸(𝑋)

𝑑𝑋2

𝑑2𝑌(𝑋)

𝑑𝑋2
 

= 𝜌(𝑋)𝐴𝜔2𝑌(𝑋) 

(8) 

 

For simply supported beam, the corresponding boundary 

conditions are 

 

𝑤(0, 𝑡) = 0;          
𝜕2𝑤(0, 𝑡)

𝜕𝑋2
= 0; (9) 

𝑤(𝐿, 𝑡) = 0;         
𝜕𝑤2(𝐿, 𝑡)

𝜕𝑋2
= 0 (9) 

 

After substituting the expression of the transverse 

displacement into the boundary condition equations, Eq. (9) 

takes the form 

 

𝑌(0) = 0;    
𝜕2𝑌(0)

𝜕𝑋2
= 0;      𝑌(𝐿) = 0;    

𝜕2𝑌(𝐿)

𝜕𝑋2
= 0 (10) 

 

For the convenience of deduction and calculation, the 

dimensionless parameters are defined 
 

𝑥 =
𝑋

𝐿
,    𝑢(𝑥) =

𝑌(𝑋)

𝐿
,   𝑆(𝑋) =

𝐸(𝑋)

𝐸𝐿
,    𝑝(𝑥) =

𝜌(𝑋)

𝜌𝐿
 

 

The Equation of motion (Eq. (8)) can be rewritten in 

terms of dimensionless variables as 
 

𝑝(𝑥)𝛺2𝑢(𝑥) = 𝑆(𝑥)
𝑑4𝑢(𝑥)

𝑑𝑥4
+ 2𝐼

𝑑𝑆(𝑥)

𝑑𝑥

𝑑3𝑢(𝑥)

𝑑𝑥3
 

                            +
𝑑2𝑆(𝑥)

𝑑𝑥2

𝑑2𝑢(𝑥)

𝑑𝑥2
 

(11) 

 

where Ω2 = 𝜔2 𝜌0𝐴𝐿4

𝐸0𝐼
. 

with E0 is the matrix Young’s modulus and p0 is the 

matrix density. 

The material properties of the beam at a distance X is 

 

𝑃𝑋 = 𝑣𝑋𝑃𝑟 + (1 − 𝑣𝑋)𝑃𝑚 (12) 

 

where P stands for the Young’s modulus or the density. 

Then 
 

𝑃(𝑥) = (𝑣𝐿 + 𝑣𝑅𝑥)𝑃𝑟 + (1 − (𝑣𝐿 + 𝑣𝑅𝑥))𝑃𝑚 (13) 

 

which follows 
 

𝑆(𝑥) = 𝑓𝑥 + 𝑔 (14) 
 

where 
 

𝑓 =
(𝐸𝑟 − 𝐸𝑚)𝑣𝑅

𝑣𝐿𝐸𝑟 + (1 − 𝑣𝐿𝐸𝑚)
 

𝑔 =
(𝐸𝑟 − 𝐸𝑚)𝑣𝐿

𝑣𝐿𝐸𝑟 + (1 − 𝑣𝐿𝐸𝑚)
+

𝐸𝑚

𝑣𝐿𝐸𝑟 + (1 − 𝑣𝐿𝐸𝑚)
 

 

and 
 

𝑝(𝑥) = 𝑚𝑥 + 𝑒 (15) 
 

where 
 

𝑚 =
(𝜌𝑟 − 𝜌𝑚)𝑣𝑅

𝑣𝐿𝜌𝑟 + (1 − 𝑣𝐿𝜌𝑚)
 

𝑒 =
(𝜌𝑟 − 𝜌𝑚)𝑣𝐿

𝑣𝐿𝜌𝑟 + (1 − 𝑣𝐿𝜌𝑚)
+

𝜌𝑚

𝑣𝐿𝜌𝑟 + (1 − 𝑣𝐿𝜌𝑚)
 

 

The dimensionless boundary conditions can be 

expressed as follows 

 

𝑢(0) = 0,      
𝑑2𝑢

dx2
(0) = 0, (16) 

671



 

Abdellatif Selmi 

𝑢(1) = 0,      
𝑑2𝑢

dx2
(1) = 0 (16) 

 

Applying the principle of differential transformation 

method to the nondimensional governing equation (Eq. 

(11)), the following recurrence relations are obtained: 

For uniform reinforcement distribution 
 

𝑈𝑘+4 = Ω2 𝑈𝑘

(𝑘 + 1)(𝑘 + 2)(𝑘 + 3)(𝑘 + 4)
 (17) 

 

For linear reinforcement distribution 
 

𝑈𝑘+4 = Ω2 𝑒𝑈𝑘 + 𝑚𝑈𝑘−1

𝑔(𝑘 + 1)(𝑘 + 2)(𝑘 + 3)(𝑘 + 4)
 

               −
𝑓

𝑔

𝑘 + 2

𝑘 + 4
𝑈𝑘+3 

(18) 

 

Applying the Differential Transform Method to the non-

dimensional boundary conditions equations, Eq. (16) yields 

 

𝑢(0) = ∑ 𝑈(𝑘)𝑥𝑘

+∞

𝑘=0

 

          = 𝑈(0)𝑥0 + 𝑈(1)𝑥1 + 𝑈(2)𝑥2 + ⋯ = 0 

𝑢′′(0) = ∑(𝑘 + 1)(𝑘 + 2)𝑈(𝑘 + 2)𝑥𝑘

+∞

𝑘=0

 

            = (1)(2)𝑈(2)𝑥0 + (2)(3)𝑈(3)𝑥1 
                 +(3)(4)𝑈(4)𝑥2 + (4)(5)𝑈(5)𝑥3 + ⋯ = 0 

𝑢(1) = ∑ 𝑈(𝑘)𝑥𝑘

+∞

𝑘=0

 

          = 𝑈(0)𝑥0 + 𝑈(1)𝑥1 + 𝑈(2)𝑥2 + ⋯ = 0 

𝑢′′(1) = ∑(𝑘 + 1)(𝑘 + 2)𝑈(𝑘 + 2)𝑥𝑘

+∞

𝑘=0

 

          = (1)(2)𝑈(2)𝑥0 + (2)(3)𝑈(3)𝑥1 
               +(3)(4)𝑈(4)𝑥2 + (4)(5)𝑈(5)𝑥3+. . . = 0 

(19) 

 

which gives 
 

𝑈(0) = 0 
𝑈(2) = 0 

∑ 𝑈(𝑘) = 0

+∞

𝑘=0

 

∑ 𝑘(𝑘 + 1)𝑈(𝑘) = 0

+∞

𝑘=0

 

(20) 

 

U(1) and U(3) are set to unknown constants: U(1) = c 

and U(3) = d. 

Both Eqs. (20c)-(20d) give nonlinear equation in terms 

of Ω and linear in terms of c and d. 

Putting the boundary condition equations in matrix 

form, we get 
 

[
𝐴 𝐵
𝐶 𝐷

] [
𝑐
𝑑

] = [
0
0

] (21) 

 

Where A and C are the coefficients of c, B and D are the 

coefficients of d. 

Since c and d are different to zero, the determinant of 

matrix must be equal to zero. Hence 

 

𝐴. 𝐷 − 𝐵. 𝐶 = 0 (22) 

 

Depending upon the number of terms N taken, a higher 

degree polynomial in Ω can be gotten. The solution of the 

polynomial equation gives the dimensionless frequency Ω. 

 

 

4. Numerical results 
 
In this section, firstly the convergence and the validation 

of the DTM are examined. Afterwards, the first three 

frequency parameters for the free vibration of FG beam are 

investigated. The reinforcement volume fraction is kept 

constant equal to 20%. The effect of the reinforcement 

distribution, the ratio of the reinforcement Young’s modulus 

to the matrix Young’s modulus and the ratio of the 

reinforcement density to the matrix density are investigated. 

 

4.1 Convergence and validation of the analysis 
 

4.1.1 Convergence analysis 
In order to check the convergence of the DTM, the case 

of 20% volume fraction homogenous beams is considered. 

For this case, the natural frequencies can be exactly 

calculated. Evaluated results of first three non-dimensional 

natural frequencies are tabulated in Table 1. 

Table 1 shows that the numerical results have rapid 

convergence. It can be seen that the first non-dimensional 

frequency converges first (N = 25) then the second one (N = 

35) and finally the third non-dimensional frequency which 

requires relatively high number of terms (N = 45). It is 

observed that increasing the number of terms, N, improves 

the accuracy of results and leads to convergent solutions at 

N = 45. Hence, N = 45 is used in the following numerical 

calculations. 

 

4.1.2 Validation of the analysis 
The validation of the analysis is done through direct 

comparison with exact solution for homogeneous beams 

and with finite element results obtained by using 

commercial finite element software package (ANSYS2013). 

 

 

Table 1 The first three non-dimensional frequencies of 

simply supported FG beam for different number of 

terms N 

N Ω1 Ω2 Ω3 

19 9.8696044699 39.4169139196 - 

20 9.8696044699 39.4169139196 - 

25 9.8696044011 39.4784501712 87.8912222720 

30 9.8696044011 39.4784176959 88.8107229014 

35 9.8696044011 39.4784176044 88.8264496362 

40 9.8696044011 39.4784176044 88.8264396509 

45 9.8696044011 39.4784176044 88.8264396098 
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4.1.2.1 Comparison with available results 
To check the above written formulation, the first three 

frequency parameters of homogeneous beams are compared 

with exact solution. 

From Table 1, one can conclude that the estimated first 

three normalized frequency using DTM (Ω1 = 

9.8696044011, Ω2 = 39.4784176044, Ω3 = 88.8264396098) 

are identical to the exact results, which prove the efficiency 

of the present approach. 

 

4.1.2.2 Modeling of axially FG beams using ANSYS 
As already mentioned, the material properties of the FG 

beam vary linearly throughout its longitudinal axis. The 

ratio of the reinforcement Young’s modulus to the matrix 

Young’s modulus and the ratio of the reinforcement density 

to the matrix density are taken 50 and 0.5, respectively. The 

beam left side is reinforced with 15% whereas its right side 

is reinforced with 25%. In order to model the FG beam, the 

numerical model has been divided into several layers so that 

the changes in properties can be made. Each layer has the 

finite portion of the beam length and treated like isotropic 

material. Material properties of each layer have been 

calculated at its mid-plane by using linear distribution. To 

study the convergence of the analysis, various number of 

layers has been taken; 2, 4, 6, 8 and 10. The FE modeling 

has been performed using ANSYS (2013). Higher order 3-

D, 10-node elements (SOLID187) has been used for 

modeling of FG beams. SOLID187 has a quadratic 

displacement behavior. This element has three degrees of 

freedom at each node: translations in the nodal x, y, and z 

directions. To simulate the pin support, the x, y and z 

bottom edge displacements are constrained while the roller 

support is free to move in the axial direction. 126064 

elements with 196724 nodes are needed. 

Table 2 reports the fundamental frequency parameters 

delivered by the FE analysis. rE and rρ denote the ratio of 

the reinforcement Young’s modulus to the matrix Young’s 

 

 
Table 2 FE predictions of fundamental frequency 

parameters for vL = 0.15, rE = 50 and rρ = 0.5 

N 2 4 6 8 10 

Ω1 33,92285 33,99842 34,00338 34,004 34,01081 
 

 

 

modulus and the ratio of the reinforcement density to the 

matrix density; respectively. 
 

Interpretation: It can be interpreted that the number of 

layers has a great influence on the fundamental frequencies 

of the modeled FG beam. From Table 2, one can consider 

that the convergence is reached for 10 layers. The FE results 

gotten for ten layers beams are confronted against those 

obtained using DTM. It is found that the fundamental 

frequency computed by DTM (34.05) is comparable with 

FE predictions. The satisfactory results concerning the 

frequency parameters give confidence in the predictions 

reported in next sections. 
 

4.2 Effect of the reinforcement distribution 
 

In this subsection, keeping the ratio of the reinforcement 

Young’s modulus to the matrix Young’s modulus and the 

ratio of the reinforcement density to the matrix density 

constant, three distribution cases are considered. 
 

Case 1: The reinforcement volume fraction varies from 

15% on the beam left side to 25% on its right side. 

Case 2: The reinforcement volume fraction varies from 

17.5% on the beam left side to 22.5% on its right side. 

Case 3: Uniform distribution with 20% of the 

reinforcement. 

For each case, the three first non-dimensional natural 

frequencies are calculated and listed in Tables 3-5. 

It is observed from Tables 3-5 that by increasing the 

reinforcement volume fraction on the beam left side, the 

normalized fundamental frequency of simply supported 

beams increase whatever the values of the ratio rE. On the 

contrary, the evolution of the second and the third 

normalized frequencies depends on the value of rE. Ω2 and 

Ω3 decrease when increasing the reinforcement volume 

fraction for reinforcement having the same Young’s 

modulus as the matrix (rE = 1) and increase with the 

reinforcement volume fraction for any given value of (rE > 

1). 
 

4.3 Effect of the ratio of the reinforcement density 
to the matrix density 

 

In order to determine the effect of the ratio of the 

reinforcement density to the matrix density on the 
 

 

 

Table 3 First three frequency parameters of simply supported FG beams with rρ = 0.5 

rE vL (%) Ω1 Ω2 Ω3 

1 

15 9,009607248560 36,041863758150 81,095212073456 

17.5 9,009658016957 36,039490739947 81,089108386785 

20 9,009674940214 36,038699760859 81,087074461928 

5 

15 12,079173477530 48,311976845915 108,704337886703 

17.5 12,085608672506 48,341264108489 108,758715681274 

20 12,087747372898 48,350989491592 108,789726356076 

50 

15 29,510957596060 117,938172657652 267,426592103038 

17.5 29,584569936774 118,312963025071 266,227830687296 

20 29,608813203268 118,435252813072 266,479318829399 
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normalized natural frequencies, different values of rρ are 

taken in consideration (Tables 6-8). 

For different reinforcement distributions and Young’s 

modulus ratios, one can see from Tables 6-8 that an 

increment in density ratio rρ leads to decrement in value of 

first thee normalized frequencies. 

 

4.4 Effect of the ratio of the reinforcement Young’s 
modulus to the matrix Young’s modulus 

 

 The effect of the ratio of the reinforcement Young’s 

modulus to the matrix Young’s modulus on the normalized 

 

 

 

 

 

 

natural frequency is investigated in this section. rρ is taken 

equal to 0.5 and the reinforcement volume fraction 

incorporated in the beam is assumed to vary from 15% on 

the beam left side to 25% on its right side. 

Table 9 gives results of the first three non-dimensional 

frequencies for different values of rE. 

It can be demonstrated from Table 9 that the first three 

normalized frequencies of the FG beam increase with 

increasing rE. For FG beam comprising 15%, on its left side, 

of reinforcement 50 times stiffer than the matrix, Ω1, Ω2, 

and Ω3 are increased by 3.27, 3.27 and 3.33; respectively. 

 

Table 4 First three frequency parameters of simply supported FG beams with rρ = 1 

rE vL (%) Ω1 Ω2 Ω3 

1 

15 9,869604401089 39,478417604357 88,826439609799 

17.5 9,869604401089 39,478417604357 88,826439609799 

20 9,8696044010893 39,478417604357 88,826439609799 

5 

15 13,230042637945 52,906316206196 119,057598224092 

17.5 13,238614404079 52,951005182011 119,140129672886 

20 13,241463811120 52,965855244480 119,173174300074 

50 

15 32,317181860740 129,121254338507 294,384671746423 

17.5 32,405672540061 129,587319094395 291,598595055664 

20 32,434829784773 129,739319139093 291,913468062951 
 

Table 5 First three frequency parameters of simply supported FG beams with rρ = 2 

rE vL (%) Ω1 Ω2 Ω3 

1 

15 9,009607248560 36,041863758150 81,095212073456 

17.5 9,009658016957 36,039490739947 81,089108386785 

20 9,009674940214 36,038699760859 81,087074461928 

5 

15 12,079173477530 48,311976845915 108,704337886703 

17.5 12,085608672506 48,341264108489 108,758715681274 

20 12,087747372898 48,350989491592 108,789726356076 

50 

15 29,510957596060 117,938172657652 267,426592103038 

17.5 29,584569936774 118,312963025071 266,227830687296 

20 29,608813203268 118,435252813072 266,479318829399 
 

Table 6 First three frequency parameters of simply supported FG beams for vL = 15% 

rE rρ Ω1 Ω2 Ω3 

1 

0.5 10,403441764192 41,615529749753 93,635464033999 

1 9,869604401089 39,478417604357 88,826439609799 

2 9,009607248560 36,041863758150 81,095212073456 

5 

0.5 13,440293434133 53,760558409946 120,976474353301 

1 13,230042637945 52,906316206196 119,057598224092 

2 12,079173477530 48,311976845915 108,704337886703 

50 

0.5 34,057676260109 136,067352933289 311,778015135180 

1 32,317181860740 129,121254338507 294,384671746423 

2 29,510957596060 117,938172657652 267,426592103038 
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Table 9 First three frequency parameters of simply 

supported FG beams with vL = 15% and rρ = 0.5 

rE Ω1 Ω2 Ω3 

1 10,403441764192 41,615529749753 93,635464033999 

2 11,394563142540 45,577731083593 102,549672668279 

5 13,440293434133 53,760558409946 120,976474353301 

10 17,374077046874 69,456414178960 155,906064176076 

20 22,725681062282 90,825568376213 200,675656388715 

30 27,036424352765 108,049031072586 233,356149899951 
 

 

 

4.5 Mode shapes 
 

The effect of the reinforcement distribution, the density 

ratio and the Young’s modulus ratio on the amplitude of 

vibration are calculated and shown in Figs. 1-5. 

Fig. 1 shows that the effect of the volume fraction on the 

first, second and third mode shapes is nearly the same. The 

amplitudes of vibration of simply supported beams 

associated to the three mode shapes increase when 

increasing the reinforcement volume fraction. 

Mode shapes for different density ratios are plotted in 

Fig. 2. It is seen that the effect of rρ on the amplitude of 

vibration for the three mode shapes is negligible. It can be 

also noted that the amplitudes of vibration of homogeneous 

beam corresponding to the three mode shapes are higher 

 

 

 

 

than that of axially FG beam with 15% of reinforcement 

having rE = 50. 

Figs. 3-5 show the three mode shapes of simply 

supported axially FG beams with different Young’s modulus 

ratios for vL = 15% and rρ = 0.5. 

From Figs. 3-5, it can be seen that the value of rE (1, 2, 

5, 10, 20, 30, 40, and 50) has a significant effect on the 

mode shapes and the deflection values. The deflection of 

simply supported FG beams decreases as rE increases. 

 

 

5. Conclusions 
 

The DTM approach has been demonstrated to be an 

effective technique to solve the free vibration of Euler-

Bernoulli axially FG beams. The effectiveness of the 

method has been confirmed by comparing DTM predictions 

with existing results and performed FE data. Based on the 

numerical results, it is found that the dimensionless 

frequencies and mode shapes are highly sensitive to the 

reinforcement volume fraction and to the Young’s modulus 

ratio. The effect of the density ratio on the free vibration of 

simply supported FG beam is found to be negligible. The 

normalized frequencies of FG beams increase with 

increasing the Young’s modulus ratio. It is also observed 

that the deflection of the axially FG beam depends closely 

on the studied parameters. 

 

Table 7 First three frequency parameters of simply supported FG beams for vL = 17.5% 

rE rρ Ω1 Ω2 Ω3 

1 

0.5 10,403467819035 41,614311945085 93,632332302055 

1 9,869604401089 39,478417604357 88,826439609799 

2 9,009658016957 36,039490739947 81,089108386785 

5 

0.5 13,954339779884 55,813672886482 125,592757579427 

1 13,238614404079 52,951005182011 119,140129672886 

2 12,085608672506 48,341264108489 108,758715681274 

50 

0.5 34,156679995006 136,587687248232 307,351477810235 

1 32,405672540061 129,587319094395 291,598595055664 

2 29,584569936774 118,312963025071 266,227830687296 
 

Table 8 First three frequency parameters of simply supported FG beams for vL = 20% 

rE rρ Ω1 Ω2 Ω3 

1 

0.5 10,403476504088 41,613906016352 93,631288536787 

1 9,869604401089 39,478417604357 88,826439609799 

2 9,009674940214 36,038699760859 81,087074461928 

5 

0.5 13,957728399277 55,830913597111 125,619555593492 

1 13,241463811120 52,965855244480 119,173174300074 

2 12,087747372898 48,350989491592 108,789726356076 

50 

0.5 34,189312546584 136,757250186337 307,703812919244 

1 32,434829784773 129,739319139093 291,913468062951 

2 29,608813203268 118,435252813072 266,479318829399 
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Fig. 1 The first three mode shapes for rE = 50 and rρ = 0.5 

 

 

 

 

 

 

Fig. 2 The first three mode shapes for vL = 15% and rE = 50 

 

 

 

 

 

  

(a) rE = (1, 2, 5) (b) rE = (10, 20, 30, 40, 50) 

Fig. 3 The first mode shape for vL = 15 and rρ = 0.5 

  

(a) rE = (1, 2, 5) (b) rE = (10, 20, 30, 40, 50) 

Fig. 4 The second mode shape for vL = 15 and rρ = 0.5 
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