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1. Introduction 

 

The increasing depth of water and the harsh marine 

environment in offshore oil exploitation make it hard to 

perform the visual inspection of structural damage. The 

problem has resulted in the fast development of more 

straightforward monitoring techniques for damage 

identification by inspecting changes in modal characteris-

tics. The primary thought is being developed since the early 

1970s (Viero and Roitman 1999). Of late, a large body of 

research has been undertaken in the structural health 

monitoring using the modal information, and many methods 

have been proposed (Cheng et al. 2009, Doebling et al. 

1998, Fan and Qiao 2011, Liang et al. 2019, Perez et al. 

2017, Oliveira et al. 2018). An accurate model, e.g., the 

finite element (FE) model, is a need as the baseline model 

to detect the modal characteristics changes of the actual 

structure for most methods. Any uncertainty associated with 

the model would cause unfavorable locations and extents of 

damage. Thus the baseline model invariably has to be 

verified and, if necessary, updated for further applications 

like damage detection, structural control, evaluation, and 

assessment. In essence, the model updating itself is a 

damage detection procedure with updating parameters as 

 

Corresponding author, Professor, 

E-mail: shuqing@ouc.edu.cn 
a Ph.D. Student, E-mail: jiangyf0120@163.com 
b Ph.D., E-mail: yingchao.ouc@163.com 
c Ph.D. Student, E-mail: xumingqiang@stu.ouc.edu.cn 

 

 

the presence, location and extent of the damage (Li et al. 

2008), before which, the baseline model updated to 

eliminate the modeling errors is likewise indispensable. 

Structural model updating is to correct the baseline 

model using test/measured data to produce a target model 

that could better predict the dynamic behavior of the actual 

structure. A sea of papers has been written (Bayraktar et al. 

2010, Chung et al. 2012, Ni and Ye 2019, Song et al. 2017, 

Wang and Wu 2014), and a complete book (Friswell and 

Mottershead 1995) has been spent on this subject. 

Traditionally, the existing methods can be broadly classified 

into two groups (Hu and Li 2007): (i) direct matrix 

methods, and (ii) indirect physical property change 

methods. The first one is generally of non-iterative, which 

is inspired by computing changes on mass and stiffness 

matrices. Such changes may have succeeded in generating a 

target model, but these models cannot be interpreted 

sensibly. On the contrary, the method in the second group 

tries to find correction factors for each element or design 

parameter, which is closer to physically realizable quantity. 

However, it is iterative and requires more significant 

computation effort. Taking an entirely different view, Hu et 

al. (2007) developed the cross model cross mode (CMCM) 

method for simultaneous updating stiffness, mass, and 

damping matrices. It is non-iterative and very cost-effective 

and holds the merits of preserving the baseline model 

configuration and physical connectivity of the target one. 

Applying model reduction/modal expansion strategy, the 

CMCM method can be utilized with incomplete measured 

data. It has been proved to be valid with many numerical 

and experimental studies (Li et al. 2008, Liu et al. 2018, 

Wang 2014, Wang et al. 2015). The problem of model 
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updating can be transformed into one of solving the system 

of equations, e.g., 𝐀𝒙 = 𝐅. 

Many problems needed further investigation are the 

selection of updating parameters and solution of updating 

equations in the presence of polluted noise and/or spatially 

incompleteness of measurements. As a critical step, the 

parameters selection could affect the condition of the 

system of equations. Moreover, the sensitivity analysis is 

dependent on it. Further, these parameters should be chosen 

with the aim of correcting recognized uncertainty in the 

model, and the measured data should be sensitive to them 

(Friswell and Mottershead 1995, Yuan et al. 2019). 

Generally, these parameters with higher sensitivity have a 

more accurate estimation. Otherwise, the errors are greater. 

Huge differences in the sensitivity could result in an ill-

conditioned problem of a system of equations (Banan and 

Huelmstad 1994). A small perturbation on 𝐅  and/or 𝐀 

would lead to a large deviation on actual solution 𝒙 if the 

system of equations is ill-conditioned. For the CMCM-

based method, modal parameters with measured noise and 

uncertainty usually lead to considerable perturbation. The 

estimation of the system of equations is divergent due to ill-

conditioned problem. Accordingly, a novel approach is 

indispensable to overcome the ill-conditioned problem and 

acquire accurate/stable estimation for structural model 

updating. 

In this study, a novel multistage model updating 

approach is presented based on sensitivity ranking. Modal 

energy-based sensitivities are formulated, and maximum-

normalized sensitivity indices are developed for sensitivity 

ranking. These updating parameters with the same 

sensitivity level are updated simultaneously in one single 

stage, and the whole updating procedure continues 

sequentially in several stages. Further, the cross model cross 

mode method is utilized in each stage for structural model 

updating. 

The study is organized as follows. In Section 2, the 

CMCM method and updating parameter sensitivity are 

briefly summarized as the theoretical background. After 

that, the modal energy-based sensitivity index and 

sensitivity ranking of updating parameters are formulated, 

and a detail introduction of the multistage approach is found 

in Section 3. Then numerical study and experimental 

validation of a jacket platform structure are studied to 

illustrate the effectiveness of the multistage approach in 

Section 4 and 5. Finally, Section 6 gives a conclusion with 

some concluding remarks. 

 

 

2. Theoretical background 
 

2.1 CMCM method 
 

For the i-th mode of the baseline model and j-th mode of 

the measured structure, a CMCM updating equation was 

formed 
 

𝐶𝑖𝑗
† +∑ 𝛼𝑛𝐶𝑛,𝑖𝑗

†
𝑁𝐾

𝑛=1
= 𝑗

∗(𝐷𝑖𝑗
† +∑ 𝛽𝑛𝐷𝑛,𝑖𝑗

†
𝑁𝑀

𝑛=1
) (1) 

 

Where 

𝐶𝑖𝑗
† = 𝝓𝑖

𝑇𝐊𝝓𝑗
∗;           𝐶𝑛,𝑖𝑗

† = 𝝓𝑖
𝑇𝐊𝑛𝝓𝑗

∗; 

𝐷𝑖𝑗
† = 𝝓𝑖

𝑇𝐌𝝓𝑗
∗;           𝐷𝑛,𝑖𝑗

† = 𝝓𝑖
𝑇𝐌𝑛𝝓𝑗

∗ 
(2) 

 

Note that 𝝓𝑖 , 𝐊  and 𝐌 , 𝐊𝑛  and 𝐌𝑛  are the i-th 

mode shape, system stiffness and mass matrices, n-th 

element stiffness mass matrices of the baseline model; 𝑗
∗
 

and 𝝓𝑗
∗ are the j-th natural frequency and mode shape of 

the measured structure; 𝛼𝑛 and 𝛽𝑛 are the n-th stiffness 

and mass correction coefficients; 𝑁𝐾  and 𝑁𝑀  are the 

numbers of the corresponding coefficients to be corrected, 

respectively. 

Using a new index ‘m’ to replace ‘ij’ and rearranging 

Eq. (1), one obtains 
 

∑ 𝛼𝑛𝐶𝑛,𝑚
†

𝑁𝐾

𝑛=1
+∑ 𝛽𝑛𝐸𝑛,𝑚

†
𝑁𝑀

𝑛=1
= 𝐹𝑚

†
 (3) 

 

Where 
 

𝐸𝑛,𝑚
† = −𝑗

∗𝐷𝑛,𝑚
† ; 𝐹𝑚

† = −𝐶𝑚
† + 𝑗

∗𝐷𝑚
†

 (4) 

 

When 𝑁𝑖 modes of the baseline model and 𝑁𝑗 modes of 

the measured structure are considered, totally 𝑁𝑚 =
𝑁𝑖 × 𝑁𝑗 CMCM equations were formed and arranged in a 

matrix form as follows 
 

𝐀𝒙 = 𝐅, where 𝐀 = [𝐂, 𝐄] and 𝒙 = [𝜶;𝜷] (5) 
 

Note that 𝐂  and 𝐄  are the 𝑁𝑚×𝑁𝐾  and 𝑁𝑚×𝑁𝑀 

matrices; 𝜶, 𝜷, and 𝐅 are the column vectors of size 𝑁𝐾, 

𝑁𝑀, and 𝑁𝑚, respectively. 

These coefficients to be corrected 𝒙 were calculated by 

solving Eq. (5) with the singular value decomposition 

(SVD) algorithm. 
 

𝒙̃ = 𝐀#𝐅 (6) 
 

Where 𝐀# is the generalized inverse of 𝐀. 

Substituting the estimation 𝒙̃ = [𝜶̃; 𝜷̃]  into Eq. (7) 

yields the corrected stiffness and mass matrices of the target 

model of the measured structure. 
 

𝐊∗ = 𝐊+ Δ𝐊 = 𝐊 +∑ 𝛼̃𝑛𝐊𝑛;
𝑁𝐾

𝑛=1
 

𝐌∗ = 𝐌+ Δ𝐌 = 𝐌+∑ 𝛽𝑛𝐌𝑛

𝑁𝑀

𝑛=1
 

(7) 

 

2.2 Updating parameter sensitivity 
 

To establish a sensitivity ranking strategy, the 

sensitivities of eigenvalue and eigenvector on updating 

parameters should be firstly formulated. These parameters 

are the correction coefficients 𝛼𝑛 and 𝛽𝑛 associated with 

each the elementary mass and stiffness matrices. The 

eigenvalue sensitivity was determined analytically by 

differentiation of the un-damped eigenvalue equation, and 

the eigenvector sensitivity was also determined due to its 

simplicity of implementation based on expanding the 

gradients into a weighted sum of the eigenvectors (Fox and 

Kapoor 1968). 
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∂𝑖
∂𝛼𝑛
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∂𝝓𝑖
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𝛼

𝑁
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with the factors 𝑏𝑖𝑛𝑟
𝛼  and 𝑏𝑖𝑛𝑟

𝛽
 as follows: 
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𝛽
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𝑖 − 
𝑟

, (𝑟 ≠ 𝑖)

−
1

2
𝝓𝑟
𝑇𝐌𝑛𝝓𝑖 , (𝑟 = 𝑖)

 

(10) 

 

Note that 𝝓𝑖
𝑇𝐊𝑛𝝓𝑖  and 𝑖𝝓𝑖

𝑇𝐌𝑛𝝓𝑖  denote the i-th 

MSE and modal kinetic energy (MKE) for the eigenvalue 

sensitivity, respectively. Further the eigenvector sensitivity 

can also be represented by MSE and MKE. 
 

 

3. Novel multistage methodology 
 

3.1 Modal energy-based sensitivity index 
 

As mentioned above, the eigenvalue and eigenvector 

sensitivities on correction coefficients can both be 

represented by MSE and MKE, and the modal energy-based 

sensitivity indices are defined as follows 
 

{
𝑆𝐼𝑛𝑖
𝐾 = 𝝓𝑖

𝑇𝐊𝑛𝝓𝑖 , 𝑛 = 1,… ,𝑁𝐾        

𝑆𝐼𝑛𝑖
𝑀 = 𝑖𝝓𝑖

𝑇𝐌𝑛𝝓𝑖 , 𝑛 = 1,… ,𝑁𝑀
 (11) 

 

where 𝑆𝐼𝑛𝑖
𝐾  and 𝑆𝐼𝑛𝑖

𝑀 represents the i-th mode sensitivity 

indices to the correction coefficients 𝛼𝑛  and 𝛽𝑛 , 

respectively. 

To take 𝑁𝑗 modes into consideration, one can take the 

average of sensitivity indices as the new ones 
 

{
 
 

 
 𝑆𝐼𝑛

𝐾 =
1

𝑁𝑗
∑ 𝝓𝑖

𝑇𝐊𝑛𝝓𝑖
𝑁𝑗

𝑖=1
, 𝑖 = 1,2, … , 𝑁𝑗         

𝑆𝐼𝑛
𝑀 =

1

𝑁𝑗
∑ 𝑖𝝓𝑖

𝑇𝐌𝑛𝝓𝑖
𝑁𝑗

𝑖=1
, 𝑖 = 1,2, … , 𝑁𝑗

 (12) 

 

For the sake of brevity and convenience, the sensitivity 

index is re-defined as follows 
 

{
𝑆𝐼𝑛 = 𝑆𝐼𝑛

𝐾 ,   𝑛 = 1,… ,𝑁𝐾        

𝑆𝐼𝑛+𝑁𝐾 = 𝑆𝐼𝑛
𝑀,   𝑛 = 1,… ,𝑁𝑀

 (13) 

 

The merits of the presented sensitivity definition include 

that the computation is very simple and sensitivity has 

 

 

an obvious physical meaning. 
 

3.2 Sensitivity ranking 
 

Numerical studies indicate that the sensitivity indices to 

different correction coefficients have magnitude differences. 

Thus a natural logarithmic operation is firstly applied to 

these sensitivity indices, which are normalized to the 

maximum value. After all the manipulation, one obtains a 

maximum-normalized sensitivity index 𝑀𝑆𝐼𝑛 as follows 

 

𝑀𝑆𝐼𝑛 =
𝑙𝑛(𝑆𝐼𝑛)

𝑚𝑎𝑥{𝑙𝑛(𝑆𝐼1), 𝑙𝑛(𝑆𝐼2), … , 𝑙𝑛(𝑆𝐼𝑁𝐾+𝑁𝑀)}
 (14) 

 

Where 𝑆𝐼𝑛 can be interpreted as the sensitivity index to the 

correction coefficient 𝛼𝑛 or 𝛽𝑛, and 𝑀𝑆𝐼𝑛 is between 0 

and 1. 

In practice, these correction coefficients with higher 

sensitivities have more accurate estimations. Otherwise, the 

estimations are wrong. The huge difference in the 

sensitivity indices usually results in ill-conditioned 

problems (Banan and Huelmstad 1994). Thus a novel 

approach to classify these coefficients into multilevel is 

necessary to overcome this shortcoming. There is no 

specific pattern for sensitivity ranking, and either equal or 

non-equal spacing division can be adopted. For example, if 

𝑛𝑠 levels are determined by either engineering experiences, 

the sensitivity ranking with the same interval ∆𝑆 = 1/𝑛𝑠 
can be conducted automatically as listed in Table 1. If the 

bar map has an evident gradient distribution, these 

coefficients located in the same stair are classified into one 

same level. Thus another option is to classify non-equally or 

artificially with the help of a bar map. 
 

3.3 Multistage approach 
 

Based on the ranking strategy, a multistage approach is 

proposed, where these correction coefficients with the same 

sensitivity level are updated simultaneously in one single 

stage. The complete procedure continues sequentially in 

several stages, and CMCM method is used in each stage. A 

procedure of the multistage approach is showed as follows. 
 

● Step 1: Computation and ranking of the sensitivity 

indices 

The modal energy-based sensitivity indices (Eq. (13)) of 

the 𝑁 = 𝑁𝐾 +𝑁𝑀  correction coefficients are firstly 

calculated. These coefficients are classified into K levels 

ranked from I to K in descending order based on the 

maximum-normalized sensitivity indices (Eq. (14)) and 

ranking strategy. 
 

𝒙 = [𝒙𝐼; 𝒙𝐼𝐼; … ; 𝒙𝐾] (15) 
 

● Step 2: Model updating of stage I 

 

 

Table 1 The 𝑛𝑠 levels sensitivity ranking with equal interval 

Levels 1 2 k 𝑛𝑠 

Range [𝑛𝑠 − 1~𝑛𝑠]∆S [𝑛𝑠 − 2~𝑛𝑠 − 1]∆S [𝑛𝑠 − 𝑘~𝑛𝑠 − 𝑘 + 1]∆S [0~1]∆S 
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In the first stage, the 𝑁𝑚  CMCM equations are 

formulated by considering all the correction coefficients 

[𝒙𝐼; 𝒙𝐼𝐼; … ; 𝒙𝐾]. These unknown values are estimated with 

the SVD algorithm and the result is given as follows: 

 

𝒙̃(1) = [𝒙̃𝐼
(1); 𝒙̃𝐼𝐼

(1); … ; 𝒙̃𝐾
(1)
] (16) 

 

Where the superscript ‘(k)’ denotes the k-th stage. 

Obviously 𝒙̃𝐼
(1)

 has the minimum estimated errors with the 

highest sensitivity level. Thus only 𝒙̃𝐼
(1)

 is retained and the 

other estimations are set to be zero. The final estimation in 

the first stage is arranged as 

 

𝒙̃(1) = [𝒙̃𝐼
(1); 𝟎; … ; 𝟎] (17) 

 

Updating the baseline model with 𝒙̃(1) using Eq. (7), 

the updated model at the first stage (UM-I for short) can be 

obtained easily. 

● Step 3: Model updating of stage II 

Taking UM-I as the baseline model, 𝑁𝑚  CMCM 

equations are also reconstructed to identify the remaining 

coefficients [𝒙𝐼𝐼; 𝒙𝐼𝐼𝐼; … ; 𝒙𝐾]. The estimation in the second 

stage is given by 
 

𝒙̃(2) = [𝒙̃𝐼𝐼
(2); 𝒙̃𝐼𝐼𝐼

(2); … ; 𝒙̃𝐾
(2)
] (18) 

 

Likewise, only the estimations with the highest 

sensitivity level II are kept and the new estimation in stage 

 

 

 

 

II is arranged as 
 

𝒙̃(2) = [𝒙̃𝐼𝐼
(2); 𝟎; … ; 𝟎] (19) 

 

Similarly, a new updated model (UM-II) is obtained by 

updating UM-I with 𝒙̃(2). 
● Step 4: Repeat the above process unless the 

completion of K stages 

The process continues until the last sensitivity level 

(Level K). After K stages model updating, the final 

estimation of correction coefficients is arranged 
 

𝒙̃ = [𝒙̃𝐼
(1); 𝒙̃𝐼𝐼

(2); … ; 𝒙̃𝐾
(𝑘)
] (20) 

 

UM-K can be regarded as the target model of the 

measured structure. 
 

 

4. Numerical study 
 

4.1 Baseline model 
 

A baseline model of a four-leg offshore platform 

structure is established. It comprises of 48 nodal points and 

77 elements, including 20 leg brace (LB), 24 horizontal 

brace (HB), and 12 horizontal diagonal brace (HDB), 16 

diagonal brace (DB) in vertical planes and 5 deck plate 

(DP) elements as shown in Fig. 1. Listed below in Table 2 is 

the corresponding properties. The plane dimensions are 

0.52×0.365 and 0.77×0.54 m at top and bottom elevations, 

 

 

 

 

 

Table 2 The properties of elements 

Types Section shapes Outer diameters (mm) Thicknesses (mm)  

LB tubular 20 2  

HB/HDB/DB tubular 10 2  

DP rectangular 700 (length) 545 (width) 10 (height) 
 

 

Fig. 1 The sketch of the offshore platform structure: (a) Nodal points; (b) Element numbers 
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which are +0.51 and -1.02 m with reference to the still 

water level, respectively. The platform is fixed on the 

ground, and the elevations of three stories are +0.23, -0.14, 

and -0.62 m. The essential material properties are: Young’s 

modulus E = 2.06×1011 Pa, mass density 𝜌 = 7850 kg/m3, 

and Poisson ratio v = 0.3. 

Modal analysis was performed by developing a program 

in Matlab environment to acquire the modal parameters of 

the baseline model. The first three natural frequencies 

(FREs) and corresponding mode shapes are exhibited in 

Fig. 2. The first and second modes are vibrated dominantly 

in the x (long-span) and y (short-span)-directions, respecti- 

vely, and the third mode is a torsion mode around z axis. 

 

 

Table 3 FREs, REFs and MACs of the baseline model and 

measured structure 

Models Factors 1st 2nd 3rd 

Measured FREs (Hz) 11.5864 11.7159 15.1260 

Baseline FREs (Hz) 10.8963 11.0188 14.3923 

Difference 
REFs (%) 5.96 5.95 4.85 

MACs (%) 97.88 98.62 99.85 
 

 

 

 

 

4.2 Measured structure 
 

The measured structure was simulated by the baseline 

model with some modeling errors because the offshore 

platform is not readily measured in service. The stiffness 

and mass correction coefficients of partial (not all) elements 

are selected and preset as special values to illustrate the 

effectiveness of the multistage approach. For example, the 

stiffness coefficients of two LB 18/51, two HB 58/60, two 

DB 25/30 elements, and mass coefficients of three DP 

elements 73/74/75 are considered. Note that these 

correction coefficients are expected to have the same or 

similar values to avoid ill-conditioned problems. Therefore, 

α18, α25, α30, α51, α58, α60, β73, β74, and β75 are preset as the 

same values -0.20. 

Performing the modal analysis again, one obtains the 

modal parameters of the measured structure. Shown in 

Table 3 is the FREs, relative errors of frequencies (REFs), 

and modal assurance criteria (MACs) (Ewins 2000) between 

mode shapes derived from the baseline model and measured 

structures. It is noteworthy that the FREs are 10.8963, 

11.0188, and 14.3923 Hz with the relative error 5.96, 5.95, 

and 4.85% to that of the measured structure, respectively. 

The minimum value of MACs is 97.88% in the first mode. 
 

 

 

Fig. 2 The first three modal parameters of the baseline model 

 

Fig. 3 Sensitivity indices for the first three modes 
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It is unavoidable that the identified modal parameters 

always contain errors, which are not only due to the 

measurement noise but also to the uncertainties in the 

modal parameter identification. Therefore, the error 

distribution in modal parameters has a lot of uncertainties. 

However, the errors in modal parameters are usually 

simulated by adding a series of uncorrelated random 

numbers on the theoretically calculated modal parameters in 

numerical studies (Li et al. 2007, 2016, Modak et al. 2002) 

to study the error propagation from these modal parameters 

to the estimation of other parameters. The primary goal is to 

understand how sensitive the noise to the estimation of the 

correction coefficients in the study. Thus the measurement 

of the i-th polluted mode displacement at the v-th degrees of 

freedom (DoFs), denoted by 𝜙̂𝑖𝑣
∗ , is simulated by adding a 

Gaussian random error to the corresponding actual value. 
 

𝜙̂𝑖𝑣
∗ = 𝜙𝑖𝑣

∗ (1 + 𝑛𝜙𝛾𝜙) (21) 

 

Where 𝛾𝜙 is the Gaussian random number with zero 

mean and unit standard deviation; 𝑛𝜙 denotes the noise 

level; 𝜙𝑖𝑣
∗  extracted from 𝝓𝑖

∗ is the i-th measured mode 

displacement at the v-th DoFs. Compared to the noise in 

mode shapes, the noise in natural frequencies is usually 

negligible (Hu et al. 2006, Messina et al. 1998). Thus the 

proportional noise for the mode shapes is introduced to 

investigate the noise robustness of the multistage approach. 

 

4.3 Sensitivity analysis and ranking 
 

Sensitivity analysis of these correction coefficients is 

conducted, and the sensitivity indices are illustrated in Fig. 

3, where the top panel is the modal energy-based sensitivity 

index defined by Eq. (20), and the bottom panel 

corresponds to the maximum-normalized sensitivity index. 

It is noteworthy that the sensitivity indices of different 

correction coefficients vary significantly from each other, as 

shown in Fig. 3. 

Based on the bar map (see Fig. 4) and ranking strategy, 

nine coefficients are classified into five levels 𝒙 =
[𝒙𝐼; 𝒙𝐼𝐼; 𝒙𝐼𝐼𝐼; 𝒙𝐼𝑉; 𝒙𝑉], where 𝒙𝐼  = β73, 𝒙𝐼𝐼  = {β74; β75}, 

𝒙𝐼𝐼𝐼 = {α51; α18}, 𝒙𝐼𝑉 = {α58; α60}, and 𝒙𝑉 = {α25; α30}. 

Note that these DP elements 73/74/75 sensitivities to mass 

coefficients are higher than LB, HB, and DB elements 

18/51, 58/60, and 25/30 sensitivities to stiffness 

coefficients. 

 

 

 

4.4 Model updating results 
 

To demonstrate the multistage approach and verify its 

effectiveness, the first three measured modes are used, and 

the corresponding mode shapes are polluted by the small 

noise 𝑛𝜙 = 0.5% and large noise 𝑛𝜙 = 5.0% for these two 

scenarios. Structural model updating is conducted and 

compared by the CMCM and multistage approach. 

 

4.4.1 Small measured noise scenario 
First, the CMCM method is conducted by using the 

small noise polluted data for model updating. Given the first 

three measured modes together with baseline modes, totally 

nine CMCM equations are constructed for estimating the 

nine correction coefficients. The estimation sorted by 

sensitivity ranking 𝒙̃ = [β73; β74; β75; α51; α18; α58; α60; α25; 

α30] is [-0.1977; -0.1943; -0.2070; -0.1845; -0.2086; -

0.1822; -0.1892; -0.1687; -0.0610] with relative errors 

[1.15%; 2.85%; 3.50%; 7.75%; 4.30%; 8.90%; 5.40%; 

15.65%; 69.50%] as shown in Fig. 5. It is concluded that 

these coefficients except α30 preferably match the preset 

value. 

Substituting the estimation 𝒙̃ into Eq. (7), one obtains 

the corrected stiffness and mass matrices of the target 

model. The FREs are 11.5855, 11.7187, and 15.1329 Hz, 

respectively, which are close to the measured ones. 

Compared to the baseline model, the REFs are negligible 

(e.g., the maximum value 0.05%) and MACs are greatly 

improved in all three modes, as shown in Table 4. Thus, the 

target model can be accurately obtained, which exactly 

matches the measured structure by using the CMCM 

method. 

For clarity, the procedure of the multistage approach is 

showed as follows. 
 

● Step 1: Computation and ranking of the sensitivity 

indices 

When the first three modes are chosen as the target 

modes, maximum-normalized sensitivity indices are 

computed, as shown in Fig. 4. The nine coefficients are 

classified into five levels based on ranking strategy, and the 

following updating procedure is conducted in five stages. 
 

● Step 2: Model updating of stage I 

With the first three measured modes and baseline 

modes, nine CMCM equations are formed again. Using the 

SVD algorithm, one obtains the estimation 𝒙̃(1) = 
 

 

 

 

Fig. 4 Maximum-normalized sensitivity index and ranking for the first three modes 
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[𝒙̃𝐼
(1); 𝒙̃𝐼𝐼

(1); 𝒙̃𝐼𝐼𝐼
(1); 𝒙̃𝐼𝑉

(1); 𝒙̃𝑉
(1)
]  (same the estimation 𝒙̃  by 

using CMCM method) with errors [1.15%; {2.85%; 

3.50%}; {7.75%; 4.30%}; {8.90%; 5.40%}; {15.65%; 

69.50%}]. Note that the correction coefficients with higher 

sensitivities have the smaller relative errors. Thus only 

𝒙̃𝐼
(1)

={β73=-0.1977} is preserved and other estimations are 

set to be zero vectors. Finally the estimation at the first 

stage is 𝒙̃(1) = [𝒙̃𝐼
(1); 𝟎; 𝟎; 𝟎; 𝟎]. 

Updating the baseline model with 𝒙̃(1) , UM-I is 

obtained and the corresponding results are listed in Table 4. 

The FREs are closer to the measured ones than that of the 

baseline model. The REFs of UM-I are all reduced whereas 

MACs have no significantly improved. The condition 

number of the coefficient matrix is equal to 1.1437×106. 

 

● Step 3: Model updating of stage II 

In the second stage, UM-I is regarded as the baseline 

model. Similarly the nine CMCM equations to identify the 

remaining correction coefficients can be formed by using 

the first three measured modes and baseline modes of UM-

I. The coefficient matrix is of full column rank and its 

 

 

 

 

condition number is 1.0728×105, which is smaller than that 

of stage I. The SVD algorithm is also used to solve the 

over-determined CMCM equations. 

The eight coefficients are estimated 𝒙̃(2) =

[𝒙̃𝐼𝐼
(2); 𝒙̃𝐼𝐼𝐼

(2); 𝒙̃𝐼𝑉
(2); 𝒙̃𝑉

(2)
] = [{-0.1957; -0.2045}; {-0.1896; -

0.1929}; {-0.1825; -0.2086}; {-0.1601; -0.0748}] with the 

errors [{2.15%; 2.25%}; {5.20%; 3.55%}; {8.75%; 

4.30%}; {19.95%; 62.60%}]. Only 𝒙̃𝐼𝐼
(2)

= {β74=-0.1957; β75 

= -0.2045} is kept and the final estimation is 𝒙̃(2) =

[𝒙̃𝐼𝐼
(2); 𝟎; 𝟎; 𝟎]. After updating UM-I with 𝒙̃(2), UM-II are 

also obtained, and the MACs of UM-II are improved 

compared to that of UM-I but REFs have no significant 

improvement. 
 

● Step 4: Model updating of stage III and IV 

Similarly, the estimations are 𝒙̃(3) = [α51 = -0.1875; α18 

= -0.2081};0;0]$ and 𝒙̃(4)  = [{α58 = -0.1920; α60 = -

0.1933};0] in the stage III and IV, respectively. Note that 

the REFs are gradually reduced and MACs are improved. 
 

● Step 5: Model updating of stage V 

 

Fig. 5 The estimated values and relative errors in the small noise scenario 

Table 4 FREs, REFs and MACs before and after model updating in the small noise scenario 

Factors Modes Baseline CMCM 
Multistage 

UM-I UM-II UM-III UM-IV UM-V 

FREs 

(Hz) 

1st 10.8963 11.5855 11.4334 11.7361 11.7361 11.5894 11.5864 

2nd 11.0188 11.7187 11.5613 11.8629 11.7542 11.7193 11.7159 

3rd 14.3923 15.1329 14.7380 15.3238 15.1789 15.1333 15.1260 

REFs 

(%) 

1st 5.96 0.01 1.32 1.29 0.29 0.02 0.00 

2nd 5.95 0.02 1.32 1.26 0.33 0.03 0.00 

3rd 4.85 0.05 2.56 1.31 0.35 0.05 0.00 

MACs 

(%) 

1st 97.88 100.00 97.89 99.80 99.94 100.00 100.00 

2nd 98.62 100.00 98.63 99.87 99.93 100.00 100.00 

3rd 99.85 100.00 99.85 99.97 99.99 100.00 100.00 
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Finally with UM-IV as the baseline model, nine CMCM 

equations for the last two coefficients are formed using the 

first three measured modes and baseline modes of UM-IV. 

The coefficient matrix is full rank and its condition number 

is only 3. The estimations 𝒙̃(5) = 𝒙̃𝑉
(5)

 = {α25 = -0.1946; α30 

= -0.1783} can be gained easily. Compared to the 

coefficients ({α25 = -0.1687; α30 = -0.0610}) from the 

CMCM method, these coefficients associated with the 

lowest sensitivity levels are greatly improved. 

The FREs are 11.5864, 11.7159, and 15.1260 Hz 

without errors to the measured ones, respectively, and 

MACs are all equal to true values. Thus the baseline model 

can be updated very well. The finally estimations is 𝒙̃(1) =

[𝒙̃𝐼
(1); 𝒙̃𝐼𝐼

(2); 𝒙̃𝐼𝐼𝐼
(3); 𝒙̃𝐼𝑉

(4); 𝒙̃𝑉
(5)
] with the errors [1.15%; {2.15%; 

2.25%}; {6.25%; 4.05%}; {4.00%; 3.35%}; {2.70%; 

10.85%}] as shown in Fig. 5. The largest relative error has 

been greatly reduced to 10.85% compared to the value 

69.50% of the CMCM method. It is also concluded that the 

correction coefficients are estimated accurately by using the 

multistage approach. Obviously, it has a great downward 

trend from 1.1437×106 to 3 for the condition numbers, 

which indicates that the ill-condition is greatly improved 

stage by stage. 

Four factors, including the mean of REFs (mREF), mean 

of MACs (mMAC), mean and standard deviation of relative 

errors of correction coefficients mREC and stdREC, are 

utilized and listed in Table 5 for comparison. The mREF 

and mMAC are all about the target values. Thus the CMCM 

and multistage approach have excellent performances on 

structural model updating in the small noise scenario. 

Moreover, the mREC and stdREC are 4.08% and 2.93, 

which are much less than 13.22% and 21.54 by using 

CMCM method, respectively. In short, the multistage 

approach obtains more accurate and stable estimations. Due 

to the ill-conditioned problem, the small level noise 0.5% 

could result in a significant change on the estimation, 

 

 

Table 5 Four factors using the CMCM and multistage 

approach in the small noise scenario 

Factors mREF (%) mMAC (%) mREC (%) stdREC 

CMCM 0.03 100.00 13.22 21.54 

Multistage 0.00 100.00 4.08 2.93 
 

 

 

especially for the lower sensitivity coefficients (e.g., α30 

with 69.50% error) by using CMCM method. 

 

4.4.2 Large measured noise scenario 
Similarly, using the first three corrupted measured 

modes with large noise and baseline modes, the estimated 

result, relative errors, and other factors are shown in Fig. 6 

and Table 6. One can see that the REFs are all about 0.30%, 

and MACs are greater than 99.93%. The CMCM method 

could give a good agreement between the target model and 

the measured structure, even in the large noise scenario. 

However, these correction coefficients are deviated far 

away from their counterparts, especially for those with 

lower sensitivity. These coefficients with higher sensitivity 

have more accurate estimations (e.g., β73 and β74), and 

contrarily the errors are larger (e.g., α25 and α30 with errors 

90.30 and 200.80%). Further, α30 is equal to 0.2016, which 

is very different from the preset value. The main reason for 

this is the large condition number 4.1076×108 caused by 

huge sensitivity differences between these coefficients. 

As shown in Fig. 6 and Table 6, the multistage approach 

could give better agreement and obtain more accurate and 

stable estimation than that of CMCM method in the large 

noise scenario. Although the estimation α25 is improved, 

they still have the biggest relative error than others. 

Conditioning of the updating equations is not the main 

reason, because the condition number is less than 10 in 

stage V. Much of this is due to errors caused by the first 

four stages accumulate. Thus the estimation in the last level 

usually has poor reliability. 
 

4.5 Discussions 
 

4.5.1 Effects of sensitivity rankings 
Classified by artificially, the other type of sensitivity 

ranking is considered here. Totally nine parameters can be 

classified into three levels 𝒙 = [𝒙𝐼; 𝒙𝐼𝐼; 𝒙𝐼𝐼𝐼], where 𝒙𝐼 = 

{β73; β74; β75 }, 𝒙𝐼𝐼 = {α51; α18; α58; α60}, and 𝒙𝐼𝐼𝐼 = {α25; 

α30} using the same interval ∆𝑆 = 0.2. As shown in Fig. 7 

and Table 7, the three stage approach can also give a better 

agreement and estimation (except α25). Note that the mREC 

and stdREC of five stages approach are smaller than that of 

three stages, and it has best performance. The error of 

coefficient in Level II α60 of three stages is considerably 

larger than that of five stages. One of reasons is that 
 

 

Table 6 FREs, REFs and MACs before and after model updating in the large noise scenario 

Factors Modes Baseline CMCM Multistage 

FREs 

(Hz) 

1st 10.8963 11.5462 11.5826 

2nd 11.0188 11.6761 11.7152 

3rd 14.3923 15.0873 15.1483 

REFs 

(%) 

1st 5.96 0.35 0.03 

2nd 5.95 0.34 0.01 

3rd 4.85 0.26 0.15 

MACs 

(%) 

1st 97.84 99.93 99.97 

2nd 98.63 99.94 99.97 

3rd 99.84 99.97 99.99 
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Table 7 Four factors using different sensitivity rankings 

Factors mREF (%) mMAC (%) mREC (%) stdREC 

CMCM 0.32 99.95 69.19 60.50 

Three stage 0.09 99.97 40.35 39.65 

Five stage 0.06 99.98 17.06 17.63 
 

 

 

condition numbers are still very large (than 105), which 

results in a bigger error for α60 and simultaneously gives a 

larger accumulated error to stage III (α25). Through the 

comparative research, we think that automatic ranking with 

 

 

 

 

equal intervals may be not suitable in some instances and 

human judgment according to the distribution of the bar 

map is indispensable. 

 
4.5.2 Effects of mode combinations 
The number of the measured mode 𝑁𝑗 is set to be 3 due 

to the high-order modal parameters are not available in 

practice. Three combinations 𝑁𝑖 = 3, 5, and 9 & 𝑁𝑗 = 3 

are investigated under large measured noise. The 

performances of the four factors turn better with the 

increase of the baseline modes, as shown in Table 8. 

Maximum values of mREC and stdREC are 17.06% and 

 

Fig. 6 The estimated values and relative errors in the large noise scenario 

 

Fig. 7 The estimated values and relative errors using the CMCM and three/five stages approach 
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17.63, which are greatly improved than that of CMCM 

method even with 𝑁𝑖 = 3 baseline modes, respectively. It is 

indicated that the multistage approach guarantees superb 

performances on structural model updating with a few of 

modal parameters. 
 

 

5. Experimental validation 
 

5.1 Experiment setup 
 

Model updating was carried out for the prototype of the 

simulated numerical structure given in Section 4. The 

experimental structure (see Fig. 8) was with a height of 1.53 

m and was fixed to the ground via bolts. A steel plate was 

installed at the structure top to simulate the topside mass. 

The elevations of four stories of the structure were 1.53, 

1.25, 0.88, and 0.40 m, from top to bottom, respectively. 
 

 

 

Fig. 8 The measured structure of offshore platform 
 

 

 

 

Vibration responses were excited via a hammer by 

beating on the corner of the top plate. Totally 26 

accelerometers were installed on the joints of the structure 

to collect the vibration signals in 62 DoFs, of which 18 

three-component acceleration sensors (Model 4803A-0002) 

were installed at nodal points 13-16/17/19/21/23/25-

32/37/39}, and the other 8 one-component acceleration 

sensors (Model 2220-002) were installed at nodal points 

5/7/9/11 in the x or y direction. These sensors were 

connected to a CRONOS PL 64-DCB8 dynamic data 

acquisition system. Fig. 9 shows two typical acceleration 

signals with the 500 Hz sampling rate with a duration of 10 

s. The Eigen-system realization algorithm (Wang and Liu 

2010) was used for identifying the modal parameters. 

Because only partial DoFs were measured, an interpolation 

modal expansion technique based on the optimal fitting 

method (Zhang and Wei 1999) was used to obtain spatially-

completeness mode shapes. The identified FREs are 

10.9026, 11.0321, and 14.7827 Hz, respectively. Note that 

the baseline model of the measured structure was 

established as given in Section 4. The third frequency of the 

baseline model is 14.3923 Hz, with a relative difference 

2.64% to that of the measured structure. The MACs are 

93.13, 91.81, and 99.99% between the mode shapes of the 

baseline model and those of the measured structure. 
 

5.2 Sensitivity analysis and ranking 
 

The special components (e.g., the flange replacements, 

as shown in Fig. 8) that would change the dynamic features 

of the structure were not considered into the baseline model. 

Thus the baseline model has to be updated to eliminate the 

modeling errors. In addition, the plate was divided into five 

elements with different masses. For simplicity, the lumped 

mass matrix was used for these elements in the modeling, 

which could also cause modeling errors unavoidable, 

especially for the third torsional mode. Thus the mass of the 

top plate is also under an obligation to be updated. In this 

study, these correction coefficients α25, α51, α60, β73, β74, β75, 

β76, and β77 are selected in the experimental validation. 
 

 

 

Table 8 Four factors using different mode combinations 

Combinations Methods mREF (%) mMAC (%) mREC (%) stdREC 

𝑁𝑖 = 3 & 𝑁𝑗 = 3 
CMCM 0.32 99.95 69.19 60.50 

Multistage 0.06 99.98 17.06 17.63 

𝑁𝑖 = 5 & 𝑁𝑗 = 3 
CMCM 0.20 99.98 61.06 52.76 

Multistage 0.05 99.99 16.01 16.36 

𝑁𝑖 = 9 & 𝑁𝑗 = 3 
CMCM 0.17 99.98 60.89 50.13 

Multistage 0.02 99.99 15.46 16.16 
 

 

Fig. 9 The typical acceleration signals of measured structure 
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Sensitivity analysis and ranking strategy were conducted 

and showed in Table 9. These coefficients were divided into 

three and five levels with the same interval ∆𝑆 = 0.2 and 

gradient distribution, respectively. 

 

5.3 Model updating results 
 

Given the first three measured modes together with five 

baseline modes, fifteen CMCM equations were constructed. 

The estimations are 𝒙̃ = [β73; β77; β74; β76; β75; α51; α60; α25] 

= [0.0252; -0.1817; -0.1776; 0.0748; -0.0057; 0.1512; -

0.6840; -1.4043]. Note that the correction coefficient α25 

has no physical meaning because these coefficients are 

generally not less than -1 in practice, and thus be discarded. 

The estimation using the multistage approach is 𝒙̃  = 

[0.0252; {-0.2288; -0.3021; 0.2473; 0.1896}; 0.0018; -

0.0007; -0.0086]. The REFs are negligible and MACs are 

larger than that of the baseline model as shown in Table 10. 

It is concluded that the multistage approach can achieve 

better agreement between the target model and the 

measured structure. The correction coefficients has definite 

physical meaning. Same conclusion was drawn from the 

three stage approach. 

 

 

6. Conclusions 
 

A novel multistage approach is developed based on 

sensitivity ranking for structural model updating. Modal 

energy-based sensitivities are formulated, and maximum-

normalized sensitivity indices are developed for sensitivity 

ranking. Based on the ranking strategy, a multistage model 

updating strategy is proposed, where updating parameters 

with the same sensitivity level are estimated simultaneously 

in one single stage, and the whole updating procedure 

continues sequentially in several stages. In each single 

 

 

 

 

stage, the previously developed cross model cross mode 

(CMCM) method is used for model updating. Numerical 

study and experimental validation are examined to verify 

the effectiveness of the proposed multistage approach. 

Compared to CMCM method, three main conclusions are 

drawn as follows. 

 

● The multistage approach guarantees more stable and 

accurate estimations for structural model updating in 

the presence of noise and a few of the lower order 

modal parameters in the numerical study. Better 

agreements are also achieved between the target 

model and measured structure in the numerical study 

and experimental validation. 

● The precision and accuracy of correction coefficients 

are greatly improved by using the multistage 

approach. 

● Ill-conditioned problems of CMCM equations with 

polluted noise are significantly improved by means 

of the multistage approach. 
 

 

Acknowledgments 
 

This work was supported by the National Science Fund 

for Distinguished Young Scholars (51625902), the National 

Key Research and Development Program of China 

(2019YFC0312404), the Major Scientific and 

Technological Innovation Project of Shandong Province 

(2019JZZY010820), the National Natural Science 

Foundation of China (51809134), the Natural Science 

Foundation of Shandong Province (ZR2017MEE007), and 

the Taishan Scholars Program of Shandong Province 

(TS201511016). 
 

 

Table 9 MSI and sensitivity ranking in experimental validation 

Correction coefficients α25 α60 α51 β75 β76 β74 β77 β73 

MSI 0.419 0.590 0.743 0.862 0.862 0.867 0.867 1.000 

Ranking A III III II I I I I I 

Ranking B V IV III II II II II I 
 

Table 10 FREs, REFs and MACs before and after model updating in experimental validation 

Factors Modes Baseline Three stage Five stage 

FREs 

(Hz) 

1st 10.8963 10.9090 10.9030 

2nd 11.0188 11.0290 11.0310 

3rd 14.3923 14.7778 14.7831 

REFs 

(%) 

1st 0.06 0.06 0.00 

2nd 0.12 0.03 0.01 

3rd 2.64 0.03 0.00 

MACs 

(%) 

1st 93.13 93.57 94.74 

2nd 91.81 92.45 93.72 

3rd 99.99 99.99 100.00 
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