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1. Introduction 

 

Enlarged piles built from common concrete and have 

been employed to increase the ultimate axial pullout the 

capacity of constructed shafts. Besides, the geometry of the 

base is known to be a vital issue. The enlarged piles 

generally include one or more of inverted cones (Bui et al. 

2019b). Consequently, various mathematical solutions have 

been employed to calculate the pile behavior reliably 

(Ghiasi and Ghasemi 2018, Li et al. 2018, Bozorgvar and 

Zahrai 2019, Duan et al. 2019). These techniques have been 

used to estimate the (i) pile dynamic capacity; (ii) pile 

settlements; (iii) uplift capacity of suction caisson; (iv) 

bearing capacity of pile foundation; (v) pile setup, or 

foundation vibrations. Notably, scholars proposed diverse 

approaches for estimating the engineering complex 

problems heating and cooling loads of residential buildings 

(Zhou et al. 2020a), energy storage (Tien Bui et al. 2019), 

rock mechanics as well as employed predictive techniques 

such as wavelet transform-based hybrid model (Qiao and 

Yang 2019), machine learning in general (Yuan and 

Moayedi 2019), particle swarm optimization (Wang et al. 

2019), quantum dolphin swarm algorithm, improved lion 
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swarm optimizer, whale optimization algorithm, modified 

dolphin swarm algorithm, Harris hawks’ optimization, 

improved dolphin swarm algorithm, but they are not 

reliable enough to provide such an excellent output 

avoiding uncertainty in estimating the pile uplift capacity 

(Guo et al. 2020, Mehrabi et al. 2020). Also, there is not a 

proper analysis according to an extensive number of 

experimental laboratory schedule (Bui et al. 2019a, Nguyen 

et al. 2019, Xi et al. 2019). Shi et al. (1998) have described 

in situ experiments on bearing capacity of enlarged piles, 

along with the verifying of the significant parameters 

influencing the deformation and load behaviors of enlarged 

piles. Some of these critical parameters include hydro-

geologic case, primary size of piles, and installing method, 

and resulting from that the enlarged piles in length. Chae et 

al. (2012), applied proper use of field data monitoring, have 

studied the uplift force of enlarged pile placed in UAE, 

Persian Gulf. The experiments consist of several real-scale 

uplift loading experiments located in Abu Dhabi. The 

comparison of theoretical models and 3D finite element 

(FE) results, shows the 3D analysis has overestimated the 

final uplift forces of the enlarged based pile even though the 

bell-shaped was not taken into consideration (Chae et al. 

2012). An elastic-plastic advanced computational-based 

solution for the uplift of the enlarged pile has been 

conducted by Yao and Chen (2014). Finding a reliable 

mathematical solution for complex problems is known as a 

difficult task for civil engineers. There have been numerous 

engineering examples of the laboratory and field simulation 

(Zhang et al. 2018, Saleem and Jo 2019). One of the well-
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Abstract.  The present study intends to find a proper solution for the estimation of the physical behaviors of enlarged piles through 

a combination of small-scale laboratory tests and a hybrid computational predictive intelligence process. In the first step, 

experimental program is completed considering various critical influential factors. The results of the best multilayer perceptron 

(MLP)-based predictive network was implemented through three mathematical-based solutions of dragonfly algorithm (DA), whale 

optimization algorithm (WOA), and ant lion optimization (ALO). Three proposed models, after convergence analysis, suggested 

excellent performance. These analyses varied based on neurons number (e.g., in the basis MLP hidden layer) and of course, the level 

of its complexity. The training R2 results of the best hybrid structure of DA-MLP, WOA-MLP, and ALO-MLP were 0.996, 0.996, 

and 0.998 where the testing R2 was 0.995, 0.985, and 0.998, respectively. Similarly, the training RMSE of 0.046, 0.051, and 0.034 

were obtained for the training and testing datasets of DA-MLP, WOA-MLP, and ALO-MLP techniques, while the testing RMSE of 

0.088, 0.053, and 0.053, respectively. This obtained result demonstrates the excellent prediction from the optimized structure of the 

proposed models if only population sensitivity analysis performs. Indeed, the ALO-MLP was slightly better than WOA-MLP and 

DA-MLP methods. 
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established methods in training the databases (e.g., making 

links between basic inputs and outputs of the problems) is 

highlighted based on the connections among human 

neurons, and it is scientifically called artificial neural 

network (ANN) (Zhou et al. 2020b). The idea of ANN is 

firstly mentioned by McCulloch and Pitts (1943) and 

processed by many researchers. Though, the first researcher 

who proposed this technique to be suggested to training an 

issue was Hebb (1949). Some rules are existing in the case 

of ANN which is mainly according to direct observations 

and also the neuro-physiologic nature hypothesis. The 

multilayer perceptron (i.e., one type of ANN learning 

technique) model can result predictive network (according 

to the database utilize for training). The proposed networks 

enable having an estimation of the values to an unavailable 

result. It is important to know that the major concern in 

these investigations is how identically they may estimate 

the unknown results (we can consider it as a target that 

requries to be obtained using the trained network). 

Hybrid soft computing techniques have been 

successfully employed in various applications and research 

projects. Different examples of soft computing are utilized 

for soil compression coefficient In recent years, many new 

hybrid computational algorithms are developed such as, 

genetic Programming (GP), chaotic moth-flame 

optimization (Wang et al. 2017), bacterial foraging 

optimization (Xu and Chen 2014, Chen et al. 2020), 

improved ant colony optimization (Zhao et al. 2014), fruit 

fly optimization (Shen et al. 2016), grey wolf optimization 

(Zhao et al. 2019), Moth-flame optimizer (Xu et al. 2019), 

multi-swarm whale optimizer (Wang and Chen 2020), etc. 

have become popular among the researchers because they 

can provide estimations with optimal accuracy when 

modeling complicated phenomena. Ardalan et al. (2009) 

have combined a technique called Group Method of Data 

Handling (GMDH) with Genetic Algorithms (GA) to 

predict the values of pile shaft friction. Moreover, Alavi et 

al. (2011) have applied three genetic programming based 

techniques, linear-genetic programming (LGP), the tree 

formed genetic programming (TGP), and gene expression 

programming (GEP) to provide the reliable mathematical 

formula of the pullout capacity. The proposed equations 

could predict pullout forces in suction caissons. In a 

separate study, Cheng et al. (2014) have employed radial 

basis function (RBF) IFRIM techniques (as abbreviated 

from neural network hybrid inference model), as well as 

artificial bee colony (ABC), and fuzzy logic (FL) to predict 

the suction caissons’ uplift capacity. Wu et al. (2015) have 

generated an analysis technique in an axially loaded single 

bored pile. They employed a nonlinear soft technique 

resulting that the side friction’s soft features could be 

predicted with reasonable accuracy. Thomas et al. (2016) 

have established a novel model as an Adaptive neuro-fuzzy 

inference system (ANFIS) to estimate the parameters 

associated with ground motion as well as seismic signals. 

In this regard, recently, hybrid computational 

intelligence is getting much attentions to predict the pullout 

bearing capacity pile foundations. However, providing a 

reliable large-scale experimental program has always been 

struggling. Preparation of such a database, including the 

outputs of centrifuge tests, requires excellent knowledge of 

data collection through a vast number of experiments. The 

main objective of the present research is to simulate the 

physical behaviors of under reamed piles through laboratory 

and hybrid computational intelligence techniques. In this 

regard, two artificial intelligent techniques-based solutions 

were utilized. For checking the reliability of the method (for 

example, the comparison among the exact target and the 

output of this network) calculation procedure of the network 

error is selected according to the comparison among the 

predicted results and the measured values taken from the 

laboratory or other real experiments. To calculate the 

network validity on estimating the outputs, various 

statistical indices may be suggested, like root mean squared 

error (RMSE) and coefficient of determination (R2). First of 

all, artificial intelligent techniques were utilized. To find the 

best network structure, a total of 48 dissimilar MLP 

simulations and required number of evolutionary hybrid 

elephant herding optimization (DA), whale optimization 

algorithm (WOA), an ant lion optimization (ALO) for the 

calculation of pullout capacity (Pult) are performed. 
 

 

2. Methodology and established database 
 

The database that is used for proposing a new learning 

system in this research included a total of 36 small-scale 

pullout capacity experiments on enlarged piles (Nazir et al. 
 

 

 

Fig. 1 A sample of the enlarged base pile and critical 

parameters for modeling 
 

 

 

Fig. 2 Small-scale laboratory pullout capacity tests on 

enlarged piles (Nazir et al. 2015) 
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Fig. 4 Pult Output information versus data numbers 
 

 

 

2015). The tests were performed on a small-scale pile 

model with an enlarged (i.e., type of pile that the base 

diameter is intentionally considered higher than the shaft 

diameter) base, a pile diameter of Ds varied from 30 mm to 

50 mm, a base diameter of Db = 75, 100, 125 and 150 mm, 

and finally a base angle of α = 30°, 45°, and 60°. The tests 

were done in both loose and dense sand density conditions. 

As one more criterion influencing the outputs of the study, 

the enlarged piles were installed considering several 

embedment ratios, L/Db ranging between 1 and 5. The 

details of a sample of the enlarged pile and small-scale 
 

 

 

 
 

 

through the experimental program are shown in Figs. 1 and 

2, respectively. A suitable prediction procedure, which is 

employed by neural network-based simulation models, need 

to be settled by two main steps such as (i) initial 

normalization to the values of -1.0 to + 1.0 (called also data 

pre-processing) and later on data processing, (ii) selecting a 

properly structures hybrid algorithm. The dataset showed 

here was then normalized. The normalization consists of all 

three main inputs, affecting the ultimate pullout bearing 

capacity (Pult) of the enlarged piles and output layer. 

The key input parameters implemented in the analysis 

comprises of soil density value (Dr), under reamed 

embedment length ratio (L/Db), and the ratio of base 

diameter to shaft diameter (Db/Ds), where the output was 

taken pullout bearing capacity of the Pult. The predicted 

results for both datasets from the ANN model was evaluated 

based on several statistical indices. Also, to assess the 

reliability of proposed networks, two ranking methods of (i) 

color intensity, and (ii) total ranking method (TRM) were 

used. Note that these ranking systems were used according 

to the result of their commendable statistical indices. The 

graphical qualification of the range of input information 

against data numbers for employed input layers is shown in 

Fig. 3. The variation of the main output is shown in Fig. 4. 

Besides, the histogram distribution of the input data layers 

and Pul output layer is illustrated in Figs. 5 and 6, 

respectively. Table 1 shown statistical analysis of Pult based 

on three features after the Kolmogorov-Smirnov test. 
 

 

 

   

(a) Soil density (b) Embedment ratio (L/Db) (c) Db/Ds 

Fig. 3 Graphical qualification of the range of input information versus data numbers 

   

(a) Soil density (b) Embedment ratio (L/Db) (c) Db/Ds 

Fig. 5 Histogram of the input data layers, (a) soil density; (b) (L/Db); (c) Db/Ds 
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Fig. 6 Histogram of the Pult Output as the main output 
 

 

2.1 Methodology 
 

Multilayer-perceptron: Among the most effective tools 

that have been used in the last two decades are artificial 

neural networks (ANNs), which were first introduced by 

McCulloch and Pitts (1943). These tools are widely applied 

for modeling complex engineering issues. ANN theory is 

inspired by a biological neural network (Jain et al. 1996), 

 

 

 

 

where the models can learn through establishing non-linear 

equations between the input and output dataset (Rao 2000). 

A typical ANN architecture is composed of some layers that 

contain components called neurons (i.e., shown in Fig. 7). 

In a neural learning approach, a significant role is done 

using computation neurons. A common type of ANN is the 

multi-layer perceptron (MLP), which is distinguished by 

three sorts of the layer. The input layer receives the input 

data, and the number of neurons in it equals the number of 

input parameters. After that, there can be one or more 

hidden layer(s) containing computation neurons and, finally, 

we have one output layer. Similar to the input layer, the 

number of neurons in the last layer equals the number of 

output parameters. As was explained, a specific architecture 

can have more than one hidden layer, but theoretical works 

have shown that a single hidden layer can present a good 

approximation for any complex problem (Hornik et al. 

1989, Soleimani et al. 2018). More specifically, for each 

neuron, if we assume X as the input and W as the 

interconnected weight, the bias term of β will be added to 

the summation of WXs. In the following, an activation 

 

 

 

 

Table 1 Statistical analysis of Pult based on three features after the Kolmogorov-Smirnov test 

 Embedment ratio Db/Ds LAB - Pul 

Sample size 36 36 36 

Lowest value 0 0.3 0 

Highest value 5 0.5 1622.47 

Arithmetic mean 2.5 0.4 376.8667 

95% CI for the Arithmetic mean 1.9140 to 3.0860 0.3720 to 0.4280 219.5001 to 534.2333 

Median 2.5 0.4 173.66 

95% CI for the median 1.6589 to 3.3411 0.3659 to 0.4341 69.3729 to 416.4290 

Variance 3 0.006857 216316.3346 

Standard deviation 1.7321 0.08281 465.0982 

Relative standard deviation 0.6928 (69.28%) 0.2070 (20.70%) 1.2341 (123.41%) 

Standard error of the mean 0.2887 0.0138 77.5164 

Coefficient of Skewness 0.0000 (P = 1.0000) -3.3041E-015 (P = 1.0000) 1.5461 (P = 0.0007) 

Coefficient of Kurtosis -1.2770 (P = 0.0024) -1.5441 (P < 0.0001) 1.7420 (P = 0.0641) 

Kolmogorov-Smirnov testa D = 0.1401 D = 0.2197 D = 0.2162 

For normal distribution Accept normality (P = 0.0716) Reject normality (P = 0.0001) Reject normality (P = 0.0002) 
 

 

 

(a) (b) 

Fig. 7 Typical structure and operation of MLP 
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function (f(I)) will be applied to the acquired term (∑ WX + 

β) to produce the outputs. The activation function for this 

case was considered as Tan-sigmoid (Tansig), which is 

defined by Eq. (1) 

 

𝑇𝑎𝑛𝑠𝑖𝑔(𝑥) =
2

1 + 𝑒−2𝑥
− 1 (1) 

 

In addition to training the network, the Levenberg–

Marquardt technique (trainLM) was selected because it 

provides proper performance compared to the conventional 

gradient descent methods (Hagan and Menhaj 1994, El-

Bakry 2003). Also, the backpropagation method was 

applied to adjust the calculated weights and biases in each 

iteration to achieve the minimum error (Hertz 2018). 

This investigation aimed to predict Pult in buildings 

utilizing artificial intelligence according to predictive tools. 

In the case of an ANN multilayer perceptron (MLP) is 

employed to estimate the Pult. The prepared datasets are 

parted within two sections of the training and testing model. 

The first section that is selected using 70% of the whole 

database is considered for the training the ANN models 

(named training dataset) while the 30 % remained items set 

to be used for evaluation of their network performances 

(called testing dataset). The new testing dataset (i.e., 

selected in each stage of the network simulation) is built 

using data that varies from the training step. Two statistical 

indices of determination coefficient (R2) and root mean 

square error (RMSE) is employed to compute the network 

error efficiency and the regression among the target values 

and system outcomes of Pult. The upper mentioned indices 

are significantly utilized and also are presented by the Eqs. 

(2) and (3), respectively. 

 

𝑅𝑀𝑆𝐸 = √
1

𝑁
∑[(𝑌𝑖𝑎𝑐𝑡𝑢𝑎𝑙

− 𝑌𝑖𝑝𝑟𝑜𝑑𝑢𝑐𝑒𝑑
)]

𝑁

𝑖=1

2

 (2) 

 

𝑅2 = 1 −
∑ [(𝑌)𝑎𝑐𝑡𝑢𝑎𝑙,𝑗 − (𝑌)𝑝𝑟𝑜𝑑𝑢𝑐𝑒𝑑,𝑗)]2𝑁

𝑗=1

∑ [(𝑌)𝑎𝑐𝑡𝑢𝑎𝑙,𝑗 − (𝑌)𝑚𝑒𝑎𝑛)]2𝑁
𝑗=1

 (3) 

 

where, Yi actual, Yi produced, and Ymean indicates values 

considered in each step of the simulation for the exact, 

predicted, and the mean values of showed Pult, respectively. 

Besides, the factor N displays the number of datasets. 

 

Dragonfly Algorithm: Proposed by Mirjalili (2016), 

the dragonfly algorithm (DA) mimics the dynamic and 

static conducts of dragonflies for optimization aims. Many 

scholars have successfully used the DA for non-linear 

engineering problems (Vanishree and Ramesh 2018, 

Moayedi et al. 2019). The cycle of dragonfly’s life 

comprises two major stages, namely the nymph and 

transformation to the adult. Note that the mentioned cycle 

mostly relies on the first stage. The exploration could be 

defined in dynamic conducts where dragonflies join some 

groups and seek food sources (Wikelski et al. 2006). The 

Reynolds swarm intelligence is the basis of this algorithm, 

which follows three distinct principles: namely separation, 

 

Fig. 8 Different stages of the dragonfly algorithm (DA) 

(after Yasen et al. (2018)). (a)-(e) the DA process of 

nymph and transformation to the adult 

 

 

alignment, and cohesion, to discover the solution of weights 

(Fig. 8) 

 

(a) In the separation, the dragonflies avoid other 

individuals because of the collision in a stationary 

position from the vicinity. 

(b) During the alignment, the velocity of the members 

coordinates with each other in the vicinity.  

(c) In the cohesion, the members fly toward the group 

midpoint in the vicinity. 

 

Notably, the position of each swarm is updated through 

two natures of (i) considering prime principals for 

captivating the food sources, and (ii) diverting the sources 

out from invaders (Palappan and Thangavelu 2018). 

 

Whale Optimization Algorithm (WOA): As the name 

implies, the WOA is inspired by the social behavior of 

whale herds, and more clearly, the specific nature inspired-

based bubble-net hunting conduction of humpback whales. 

This technique is first proposed by Mirjalili and Lewis 

(2016). Fig. 9 displays the humpback whale’s bubble-net 

feeding behavior. The WOA comprises three operational 

steps of shrinking encircling hunt, exploitation (i.e., the 

bubble-net attacking), and exploration (i.e., searching for 

the prey) (Mirjalili and Lewis 2016, Rana and Latiff 2018). 

In this algorithm, since there is no information about the 

optimal hunting place, the target prey is considered as the 

most appropriate candidate for the problem solution. In the 

exploitation phase, some spiral mathematical approaches 

are applied in order to detect the equidistance between the 

prey and whale positions. The involving whales also try to 

update their positions close to the most successful member. 

The algorithm continues improving the solution until a 

stopping criterion is met. 

 

 

 

Fig. 9 The humpback whales bubble-net feeding 
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Ant lion optimization: Imitating the herding behavior 

of ant lions in their larvae life period, Mirjalili (2015) 

developed an ant lion optimization (ALO) algorithm as a 

new capable metaheuristic technique. In the ALO, primary 

locations of the target hunt and ant lions are stochastically 

defined in the existing search space. This algorithm 

comprises six steps in each repetition including (a) random 

walk of prey, (b) trapping in holes, (c) constructing a trap, 

(d) sliding of prey towards the ant lion, (e) catching the 

prey/reconstructing the hole, and (f) determining the elite 

ant lion (Mirjalili 2015). 

A cumulative sum (Csum) function is defined to express 

the movement of the target prey, which is mainly ant 
 

𝑋(𝑡) 

= [0, 𝐶𝑠𝑢𝑚 (2𝑟(𝑡1)) − 1, … , 𝐶𝑠𝑢𝑚 (2𝑟(𝑡𝑛)) − 1] 
(4) 

 

 

 

 

 

𝑟(𝑡) = {
1, 𝑟𝑎𝑛𝑑 (0, 1) > 0.5
0, 𝑟𝑎𝑛𝑑 (0, 1) ≤ 0.5

 (5) 

 

Then, a normalization function (Eq. (21)) is applied at 

the tth repetition, where 𝑑𝑖
𝑡  and 𝑐𝑖

𝑡  symbolize the 

maximum and minimum of the proposed variable, 𝑏𝑖 and 

𝑎𝑖 denote the maximum and minimum of random. 
 

𝑋𝑖
𝑡 =  

(𝑋𝑖
𝑡 −  𝑎𝑖). (𝑑𝑖

𝑡 − 𝑐𝑖
𝑡)

𝑏𝑖 − 𝑎𝑖
+ 𝑐𝑖

𝑡 (6) 

 

where 𝑋𝑖
𝑡 is the position of the ith variable. 

Also, assuming 𝐴𝑛𝑡𝑙𝑖𝑜𝑛𝑗
𝑡 as the position of jth ant lion, 

and 𝑑𝑡  and 𝑐𝑡 as the maximum and minimum of all 

variables, the mathematical effect of the ant lion’s holes on 

the random walk of the prey is expressed by Eqs. (22) and 
 

 

 

 

  

(a) (b) 

Fig. 10 (a) Random walk of the prey inside the trap; and (b) the hunting behavior of ant lions (after (Mirjalili 2015)) 

  

(a) (b) 
 

  

(c) (d) 

Fig. 11 Sensitivity analysis of the R2 and RMSE of various suggested MLP predict Pult 
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(23) (see Fig. 10(a)) 
 

𝑐𝑖
𝑡 =  𝐴𝑛𝑡𝑙𝑖𝑜𝑛𝑗

𝑡 + 𝑐𝑡 (7) 

 

𝑑𝑖
𝑡 =  𝐴𝑛𝑡𝑙𝑖𝑜𝑛𝑗

𝑡 + 𝑑𝑡 (8) 

 

The fitness of the prey is contributed to the hunting 

capability of the ant lions. This is because it is supposed 

that each hunter hunts one prey. A so-called function 

“roulette wheel selection (RWS)” is applied for this 

purpose. The victim sliding in the trap (see Fig. 10(b)) is 

mathematically modeled by Eqs. (24) and (25). 

 

𝑐𝑡 =  𝑐𝑡/𝐼 (9) 

 

𝑑𝑡 =  𝑑𝑡/𝐼 (10) 
 

where I represent a factor that depends on the ratio of the 

flowing iteration and the number of iterations, notably, this 

decrease in space results in a better convergence in the 

optimization process. 

Eventually, updating the position of the members and 

catching the prey are expressed as follows 

 

𝑓(𝐴𝑛𝑡𝑖
𝑡) < 𝑓(𝐴𝑛𝑡𝑙𝑖𝑜𝑛𝑗

𝑡)  →  𝐴𝑛𝑡𝑙𝑖𝑜𝑛𝑗
𝑡 = 𝐴𝑛𝑡𝑖

𝑡 (11) 

 

After determining the best search agent, its position is 

considered to influence the position of other members. To 

define this 

𝐴𝑛𝑡𝑖
𝑡 =  

𝑅𝐴
𝑡 + 𝑅𝐸

𝑡

2
⁄  (12) 

 

in which 𝑅𝐴
𝑡  is a random walk of the prey near the hunter 

selected through the RWS, and 𝑅𝐸
𝑡  denotes the random 

walk of that prey near the best ant lion (Mirjalili 2015). 

 

 

3. Results and discussion 
 

3.1 MLP Optimization process 
 

The effectiveness of several multilayer perceptron-based 

networks was assessed in this section. In a multilayer 

perceptron-based networks model, the neurons number for 

 

 

the output and also input layers are continuously taken. 

Such a number is typically considered to be equal to the 

number of output and inputs, respectively. It is essential to 

know that the neurons number in the hidden layer is a 

different factor that changes relying on the amount of user 

data. So, in this step and to create a strong multilayer 

perceptron-based networks structure eight different systems 

were taken into consideration. Also, for more 

trustworthiness, the calculation of each of the proposed 

multilayer perceptron-based networks was repeated six 

times, and totally, forty-eight various structures were built 

to specify the most proper structure. Fig. 11 shows the 

results of considered analysis (i.e., respectively for the R2 

and RMSE, respectively). This trial and error procedure can 

help to determine the most structure of the optimized 

network. As seen, to predict the Pult of the considered 

footing, the best arrangement of the MLP model with 

having the smallest error may be achieved while the 

neurons number in each hidden layer is identical to 5. 

Accordingly, to have a simplified solution and as shown in 

Fig. 11, the number of nodes equal to five was selected as 

the best possible neuron number that requires to be chosen 

in the hidden layers. This will help to find a strong 

multilayer perceptron-based network structure, which in 

this section obtained to be 4×5×1 (i.e., four input layers, 

five neurons in a single hidden layer, and one output layer 

which is Pult). It should be noted that in the last part of the 

present work, various reduced formulas are specified 

according to changes done on the nodes number in a single 

hidden layer. 

 

3.2 The proposed Hybrid model combined with 
MLP in the prediction of 𝑷𝒖𝒍𝒕 

 

Similar to the optimization method that was used for the 

MLP technique, a trial and error process was employed with 

the target of a hybrid dragonfly algorithm (DA), whale 

optimization algorithm (WOA), and ant lion optimization 

(ALO). To specify a suitable structure, various population 

sizes are chosen in performing the DA-MLP, WOA-MLP, 

and ALO-MLP algorithms. The results of this section are 

explained using means of the RMSE performance network 

reduction path. Several sizes of the population are taken 

(i.e., between 25 to 500, as shown in Figs. 12(a) and (b)). In 

 
 

   

(a) DA-MLP (b) WOA-MLP (c) ALO-MLP 

Fig. 12 Efficiency results for various population size values in the estimation of (a) DA-MLP; (b) WOA-ML; (c) ALO-MLP 
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Fig. 13 The minimum MSE outputs of proposed models 
 

 

this regard and after all trial and error progress, the 

proposed DA-MLP network performance (i.e., after 1000 

iterations) is shown in Fig. 12(a). As in the optimized DA- 

MLP structure, the minimum MSE obtained when the 
 

 

 

 

population is equal to 250. The minimum MSE outputs of 

the proposed models are compared and shown in Fig. 13. 

Results of training and testing for different proposed DA-

MLP, WOA-MLP, and ALO-MLP models are tabulated in 

Tables 2, 3, and 4, respectively. It can be seen that in the 

DA-MLP, WOA-MLP, and ALO-MLP proposed techniques, 

the most accurate predictive networks can be found if the 

population size set to be 450, 500, and 400, respectively. In 

this regard, the R2 and RMSE of (0.996 and 0.046) and 

(0.995 and 0.088) were found for the training and testing 

datasets of the DA-MLP technique. Similarly, the R2 and 

RMSE of (0.996 and 0.051) and (0.985 and 0.053) were 

found for the training and testing datasets of the WOA-MLP 

proposed predictive network. Besides, the R2 and RMSE of 

(0.998 and 0.034) and (0.998 and 0.053) were found for the 

training and testing datasets of ALO-MLP proposed 

predictive network. Noting that both of the above networks 

have received rank number one regarding the accuracy of 

the precision when compared to the measured uplift force in 

the laboratory. Population-based sensitivity analysis of DA- 

 

 

 

 

Table 2 Results of training and testing for different proposed DA-MLP models 

Population 

size 

Network result Ranking 
Total 

rank 
RANK Train Test Train Test 

R² RMSE R² RMSE R² RMSE R² RMSE 

25 0.937 0.186 0.918 0.216 1 1 1 2 5 11 

50 0.941 0.155 0.938 0.283 2 3 3 1 9 10 

100 0.956 0.177 0.923 0.200 3 2 2 3 10 9 

150 0.991 0.071 0.985 0.090 9 9 7 9 34 3 

200 0.993 0.067 0.982 0.099 10 10 5 8 33 4 

250 0.989 0.075 0.979 0.107 7 7 4 7 25 6 

300 0.983 0.089 0.985 0.175 5 4 6 4 19 8 

350 0.989 0.074 0.991 0.143 6 8 8 6 28 5 

400 0.990 0.084 0.998 0.072 8 6 11 11 36 2 

450 0.996 0.046 0.995 0.088 11 11 9 10 41 1 

500 0.983 0.088 0.996 0.172 4 5 10 5 24 7 
 

Table 3 Results of training and testing for different proposed WOA-MLP models 

Population 

size 

Network result Ranking 
Total 

rank 
RANK Train Test Train Test 

R² RMSE R² RMSE R² RMSE R² RMSE 

25 0.933 0.195 0.908 0.228 2 2 2 2 8 10 

50 0.920 0.207 0.842 0.304 1 1 1 1 4 11 

100 0.963 0.164 0.967 0.176 3 3 4 3 13 9 

150 0.985 0.095 0.988 0.092 8 7 11 9 35 2 

200 0.976 0.127 0.959 0.143 4 4 3 6 17 8 

250 0.979 0.116 0.970 0.123 5 5 5 7 22 7 

300 0.984 0.094 0.971 0.158 7 8 6 4 25 6 

350 0.989 0.081 0.985 0.094 10 9 8 8 35 2 

400 0.986 0.073 0.981 0.149 9 10 7 5 31 5 

450 0.984 0.111 0.987 0.051 6 6 10 11 33 4 

500 0.996 0.051 0.985 0.053 11 11 9 10 41 1 
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MLP, WOA-MLP, and ALO-MLP for both of the training 

and testing, considering the R2 and RMSE statistical 

indices, are shown in Figs. 14-16, respectively. 

 

3.3 Model assessment and future direction 
 

This part presents the accuracy results of three 

developed structures for the prediction of the Pult. Several 

 

 

 

 

attempts have been performed to illustrates the importance 

of the proper selection of neurons number for each hidden 

layer. Fig. 17 showing the details of the comparison 

between real values that are obtained from the small-scale 

laboratory study and the one we received from proposed 

predictive networks. The high level of accuracy in the 

prediction of Pult shows that models can be successful in 

predicting such a complex problem. In this regard, the 

Table 4 Results of training and testing for different proposed ALO-MLP models 

Population 

size 

Network result Ranking 
Total 

rank 
RANK Train Test Train Test 

R² RMSE R² RMSE R² RMSE R² RMSE 

25 0.979 0.114 0.940 0.185 2 2 1 2 7 11 

50 0.976 0.135 0.982 0.099 1 1 2 5 9 10 

100 0.994 0.052 0.988 0.115 5 3 4 3 15 9 

150 0.998 0.029 0.992 0.100 9 11 7 4 31 3 

200 0.991 0.047 0.990 0.265 3 7 5 1 16 8 

250 0.996 0.051 0.993 0.068 8 5 8 8 29 4 

300 0.994 0.048 0.990 0.096 6 6 6 6 24 6 

350 0.994 0.051 0.996 0.076 4 4 9 7 24 6 

400 0.998 0.034 0.998 0.053 11 10 11 9 41 1 

450 0.995 0.038 0.987 0.038 7 9 3 10 29 4 

500 0.998 0.038 0.997 0.038 10 8 10 11 39 2 
 

  

(a) Training R2 (b) Testing R2 
 

  

(c) Training RMSE (d) Training RMSE 

Fig. 14 Population-based Sensitivity analysis of DA-MLP: (a) Training R2; (b) Testing R2; (c) Training RMSE; 

(d) Training RMSE 

773



 

Xinyu Ye, Zongjie Lyu and Loke Kok Foong 

 

 

 

 

 

  

(a) Training R2 (b) Testing R2 
 

  

(c) Training RMSE (d) Training RMSE 

Fig. 15 Population-based Sensitivity analysis of WOA-MLP: (a) Training R2; (b) Testing R2; (c) Training RMSE; 

(d) Training RMSE 

  

(a) Training R2 (b) Testing R2 
 

  

(c) Training RMSE (d) Training RMSE 

Fig. 16 Population-based Sensitivity analysis of ALO-MLP: (a) Training R2; (b) Testing R2; (c) Training RMSE; 

(d) Training RMSE 
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performance results of the final proposed methods, namely 

(a) optimized DA-MLP (Figs. 17(a)-(b)); (b) WOA-MLP 

(Figs. 17(c)-(d)); and (c) ALO-MLP (Figs. 17(e)-(f)). The 

results of the ultimate pullout capacity obtained from the 

enlarged piles, as well as those outputs we received from 

three nominated hybrid models, are compared together in 

Fig. 17. In this sense, Fig. 18(a) shows the time taken for 

running fourteen different techniques showing the proposed 

technique are reasonable acceptable in regard to the 

calculation time (Fig. 18(a)). Fig. 18(b) illustrated the time 

taken to perform the population-based sensitivity analysis 

for the three proposed algorithms namely, DA-MLP, WOA-

MLP, and ALO-MLP. The time outputs reveal the DA-MLP 

is the slowest algorithm where the WOA-MLP found to be 

the fastest technique. 

 

 

Table 5 evaluated the final output of best-fit proposed 

hybridized predictive networks (e.g., WOA-MLP, ALO-

MLP, DA-MLP). It can be seen that for the proposed DA-

MLP (i.e., the swarm size equal to 450), WOA-MLP (i.e., 

the swarm size similar to 500), and ALO-MLP (i.e., the 

swarm size equal to 400), the total score obtained to be 10, 

9, and 4 (i.e., out of 12), respectively. The results obtained 

from Table 5 show that the DA-MLP can be proposed as the 

best-fit hybrid mathematical solutions among the proposed 

methods due to a total score of 10 out of 12. 

 

 

4. Conclusions 
 

In the current study, the main target was to understand 

  

(a) Training DA-MLP (b) Testing DA-MLP 
 

  

(c) Training WOA-MLP (d) Testing WOA-MLP 
 

  

(e) Training ALO-MLP (f) Training ALO-MLP 

Fig. 17 The performance results of the final: (a) Training DA-MLP; (b) Testing DA-MLP; (c) Training WOA-

MLP; and (d) Training WOA-MLP; (E) Training WOA-MLP; and (F) Training WOA-MLP 

775



 

Xinyu Ye, Zongjie Lyu and Loke Kok Foong 

 

 

 

 

the importance of population sensitivity analysis of two-

hybrid mathematical solutions. Such analysis will help us to 

understand the proper structure of a trustworthy predictive 

approach. To do so, 36 examples of small-scale load-

settlement of laboratory experiments of under reamed piles 

(embedded in a cohesionless environment) are performed. 

Accordingly, the ultimate uplift capacity of such piles (pult). 

After presenting the three applied solutions in this study, 

namely multilayer perceptron and hybrid DA-MLP, WOA-

MLP, and ALO-MLP, are implemented. The results proved 

that suggested approaches have satisfactory prediction 

outcomes in predicting Pult. However, with the help of 

population sensitivity analysis, the optimized ALO-MLP 

model provided better accuracy for the predictive network. 

Noting that both of the proposed hybrid techniques showed 

far better accuracy than the conventional model of MLP in 

the estimation of Pult. The learning approach is proper in all 

three predictive models. In the optimal DA-MLP, WOA-

MLP, and ALO-MLP predictive approaches, the R2 for the 

testing databases were 0.995, 0.985, and 0.998, respectively. 

Similarly, for the proper structure of DA-MLP, WOA-MLP, 

and ALO-MLP, the RMSE of the testing datasets were 

0.088, 0.053, and 0.053, respectively. The feasibility of 

ALO-MLP and WOA-MLP to predict the Pult is promising. 

However, after swarm population-based considerations, the 

results prove the superiority of the proposed ALO-MLP 

structure. 
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