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1. Introduction 

 

The SFG cylindrical shells are impressively utilized in 

variety of engineering systems such as bridges, offshore, 

submarines, ships, aircraft, and satellite structures. Thus, 

research on the vibration analysis of these structures has 

been done by scientists from many years ago. In recent 

years vibration control has been considered by using 

piezoelectric materials. 

In vibration control of isotropic cylindrical shell, many 

researches have been concentrated on the active control of 

shells vibration with the linear controller. Kwak et al. 

(2012) presented the active control of a submerged 

cylindrical shell vibration with piezoelectric actuators and 

sensors using the method of Rayleigh-Ritz. Also, Kwak et 

al. (2009) addressed the active vibration control of the 

cylindrical shell by means of piezoelectric actuators and 

sensors. Hasheminejad and Oveisi (2016) studied active 

control of vibration for a type of circular cylindrical panel 

with piezoelectric sensor and actuator layers. Ma et al. 

(2014) coupled a two stage vibration isolation to an elastic 

cylindrical shell for active acoustic control of the system. A 

feedforward controller for analysis of active control of 

semi-infinite cylinder using a circumferential array of 

control forces and error sensors was presented by Pan and 

Hansen (1997). Biglar et al. (2014) used piezoelectric 

transducers for configurationally optimization and the 

active control of a cylindrical shell vibration. They derived 
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dynamic modeling of shell by means of the method of 

Rayleigh-Ritz. Loghmani et al. (2017) investigated a linear 

quadratic Gaussian controller for vibration suppression of 

the cylindrical shell with piezo-ceramic actuators and 

sensors. The vibration response of a cylindrical shell using 

the concurrent active and passive damping treatments was 

analyzed by Plattenburg et al. (2017). Correia et al. (2002) 

presented active control of axisymmetric shell vibration 

with piezoelectric ring actuators and sensors. 

Some researchers have studied the nonlinear analysis 

and vibration control of non-isotropic cylindrical shells and 

plates. The nonlinear axisymmetric response of FG shallow 

spherical shells resting on elastic foundation subjected to 

the uniform external pressure and temperature was studied 

by Duc et al. (2014). Cong et al. (2018) presented the 

nonlinear thermo-mechanical buckling and post-buckling 

response of FG porous plates utilizing Reddy’s HSDT. 

Thom et al. (2017) investigated the behavior of bi-

directional FG plates by FEM and a new third-order shear 

deformation plate theory. The control of composite shell 

vibration using the optimized actuator and sensor systems 

were analyzed by Kim et al. (2001). Duc et al. (2019) 

addressed the free vibration and nonlinear dynamic 

response of imperfect nanocomposite FG-CNTRC double 

curved shallow shells under thermal condition. Tan and 

Vu‐Quoc (2005) presented the active control of composite 

shell vibration with the optimal solid shell element. The 

static response and free vibration behavior of FG carbon 

nanotube-reinforced composite rectangular plates resting on 

elastic foundation were studied by Duc et al. (2017a). Duc 

and Cong (2018) investigated the nonlinear dynamic 

response and vibration of sandwich composite plates with 

negative Poisson’s ratio in auxetic honeycombs. Using the 

theory of first-order shear deformation, Sheng and Wang 
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(2010) studied the control of vibration for FG laminated 

piezoelectric cylindrical shells. Also, Sheng and Wang 

(2009) used thin piezoelectric layers to investigate the 

active control of vibration for functionally graded 

cylindrical shells. Duc et al. (2018a) investigated the 

nonlinear dynamic behavior of FG porous plates resting on 

elastic foundation under thermal and mechanical loads. The 

nonlinear thermal dynamic behavior of shear deformable 

FG plates resting on elastic foundation was studied by Duc 

et al. (2016). Using 1–3 piezoelectric composites, Kumar 

and Ray (2013) addressed the active control of vibration for 

analysis of the smart sandwich shells. Duc (2018) presented 

the nonlinear thermo-electro-mechanical dynamic behavior 

of shear deformable piezoelectric Sigmoid FG sandwich 

circular cylindrical shells resting on elastic foundation. Yue 

et al. (2017) experimentally analyzed the active control of 

vibration for a piezoelectric laminated paraboloidal shell. 

The active control of vibration for the FG cylindrical shell 

that reinforced with carbon nanotube using piezoelectric 

sensor and actuator was investigated by Song et al. (2016). 

Using piezoelectric sensor and actuator, the vibration of 

shallow doubly curved functionally graded panels was 

actively controlled by Kiani et al. (2013). Using the 

piezoelectric actuators and sensors, Moita et al. (2006) 

investigated the control of vibration responses for 

reinforced composite structures. Roy and Chakraborty 

(2009) used a genetic algorithm to improve the control of 

vibration for the fiber reinforced polymer composite shell. 

Jha and Inman (2002) investigated the vibration control 

analysis of an inflated toroidal shell with piezoelectric 

patches as actuators and sensors. 

In above mentioned studies the influences of stiffeners 

on the stability and vibration control of systems have not 

been considered. Some researchers have been focused on 

the stability and vibration control of stiffened cylindrical 

shells and plates. 

Khoa et al. (2019) addressed the nonlinear buckling of 

imperfect piezoelectric Stiffened FG circular cylindrical 

shells with metal-ceramic-metal layers under thermal 

condition. Nonlinear dynamic behavior and vibration 

analysis of stiffened Stiffened FG elliptical cylindrical 

shells resting on elastic foundations under thermal condition 

were studied by Duc et al. (2017b). Duc (2013) studied the 

nonlinear dynamic behavior of imperfect stiffened FG 

double curved shallow shells resting on elastic foundation. 

Also, Duc (2016) investigated the nonlinear thermal 

dynamic behavior of stiffened FG circular cylindrical shells 

resting on elastic foundations utilizing the theory of 

Reddy’s third-order shear deformation. Mechanical and 

thermal stability of stiffened FG conical shell panels resting 

on elastic foundations under thermal condition was 

presented by Duc et al. (2015). Duc et al. (2018b) 

investigated the nonlinear thermo-mechanical behavior of 

stiffened Sigmoid FG circular cylindrical shells under 

compressive and uniform radial loads. Also, Duc et al. 

(2018c) addressed the thermal buckling analysis of FG 

sandwich truncated conical shells reinforced by FG 

stiffeners resting on elastic foundation. (Kwak and Yang 

(2013) used the piezoelectric actuators and sensors to 

suppress the vibration of the ring-stiffened cylindrical shell 

subjected to the external fluid. Sohn et al. (2014) studied 

the control of vibration for the reinforced cylindrical shell 

with ring stiffeners. They used the advanced flexible 

piezoelectric actuator and derived the governing equation 

using the finite element method. These researchers 

considered that the material of stiffeners and shell is 

isotropic and their control methods are linear. 

The literature review reveals that there are no studies on 

the nonlinear control of SFG cylindrical shells vibration 

reinforced by internal stiffeners. Therefore, in this study, 

two nonlinear control strategies consist of sliding mode 

controller and feedback linearization are developed to 

suppress the nonlinear vibration of stiffened FG cylindrical 

shell in the presence of thermal uncertainty. The system is 

subjected to couple of axial and transverse periodic loads. 

The nonlinear vibrations of SFG cylindrical shell are 

controlled by a piezoelectric actuator and sensor. The 

piezoelectric thin layer actuator is located outside and the 

ring sensor is attached to inside surface of cylindrical shell. 

The material composition is considered to be continuously 

graded in the thickness direction, also these properties 

depend on temperature. Using the theory of classical shell, 

smeared stiffeners technique and Galerkin method, the 

discretized nonlinear differential equations of the system 

are derived. The effects of stiffeners and different control 

algorithms such as PID, feedback linearization and sliding 

mode control on the decreasing the maximum deflection of 

SFG cylindrical shell are investigated. 

 

 

2. SFG cylindrical shell with piezoelectric layer 
 

Configuration of the SFG cylindrical shell with thin 

piezoelectric layer is illustrated in Fig. 1. Coordinate x and 

𝑦 = 𝑅𝜃  represent the axial and the circumferential 

direction of the cylindrical shell and z for the radial 

direction (Fig. 1). According to the Fig. 1, the coordinate 

system (𝑥, 𝑦 and 𝑧) is attached to the left end of middle 

surface of system. The geometrical of shell 𝐿, 𝑅 and ℎ 

are axial length, radius and thickness, respectively. For 

stiffeners 𝑠𝑖 , 𝑑𝑖  and ℎ𝑖  (𝑖 = 𝑟, 𝑠) are the spacing, width 

and thickness, respectively. The subscripts 𝑟 and 𝑠 refer to 

ring and stringer stiffeners, respectively. It is considered 

that the outer surface of shell is metal and the inner surface 

is ceramic, and for stiffeners it is selected as reverse order. 

Also, the upper surface of shell is covered by piezoelectric 

layer with thickness ℎ𝑝. 

 

 

3. The theoretical formulation 
 

According to the power law, the volume fractions of the 

constituents are defined as follows 

 

𝑉𝑐(𝑧) = (
2𝑧 + ℎ

2𝐻
)
𝑁

;    𝐻 = ℎ,  ℎ𝑖 (𝑖 = 𝑠,  𝑟);   𝑁 = 𝑘,  𝐾 

𝑉𝑚(𝑧) = 1 − 𝑉𝑐(𝑧)  ;   −ℎ/2 ≤ 𝑧 ≤ ℎ/2 

(1) 

 

The parameters 𝑉𝑐  and 𝑉𝑚  denote the ceramic and 

metal volume fractions and the subscripts c and m refer to 
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Fig. 1 Configuration of SFG cylindrical shell with 

piezoelectric layer 

 

 

the ceramic and metal constituents. 𝐾 ≥ 0 and 𝑘 ≥ 0 are 

the material power law index of the FG stiffeners and shell, 

respectively. 

The effective properties  P𝑒𝑓𝑓  can be determined as 

(Ahmadi and Foroutan 2019, Chen 2018) 

 

𝑃𝑒𝑓𝑓 = 𝑃𝑚(𝑧)𝑉𝑚(𝑧) + 𝑃𝑐(𝑧)𝑉𝑐(𝑧) (2) 

 

A material coefficient P  is defined as a temperature 

nonlinear function in the following form (Ghiasian et al. 

2013) 
 

𝑃 = 𝑃0(𝑃−1𝑇
−1 + 1 + 𝑃1𝑇 + 𝑃2𝑇

2 + 𝑃3𝑇
3) (3) 

 

Due to the mentioned law, the mass density and Young’s 

modulus of the shell and stiffeners are defined as follows 

(Tounsi and Mahmoud 2016, Boukhelf et al. 2018) 

Shell 
 

𝐸(𝑧, 𝑇) = 𝐸𝑚(𝑇) + (𝐸𝑐(𝑇) − 𝐸𝑚(𝑇)) (
2𝑧 + ℎ

2ℎ
)
𝑘

 

𝜌(𝑧, 𝑇) =𝑚 (𝑇) + (𝑐(𝑇)−𝑚(𝑇)) (
2𝑧 + ℎ

2ℎ
)
𝑘

 

−
ℎ

2
≤ 𝑧 ≤

ℎ

2
 

(4a) 

 

Internal stiffener 
 

𝐸𝑖(𝑧, 𝑇) = 𝐸𝑐(𝑇) + (𝐸𝑚(𝑇) − 𝐸𝑐(𝑇)) (
2𝑧 − ℎ

2ℎ𝑖
)
𝐾

 

𝜌𝑖(𝑧, 𝑇) = 𝜌𝑐(𝑇) + (𝜌𝑚(𝑇) − 𝜌𝑐(𝑇)) (
2𝑧 − ℎ

2ℎ𝑖
)
𝐾

 

ℎ

2
≤ 𝑧 ≤

ℎ

2
+ ℎ𝑖 ;   𝑖 = 𝑠, 𝑟 

(4b) 

 

where 𝜌𝑖(𝑧, 𝑇) , 𝜌(𝑧, 𝑇)  and 𝐸𝑖(𝑧, 𝑇) , 𝐸(𝑧, 𝑇)  are the 

mass density and Young’s modulus of the FG stiffeners and 

shell, respectively. 

The strain components are obtained across the thickness 

of shell at a distance 𝑧 from the middle surface as follows 
 

𝜀𝑥 = 𝜀𝑥
0 − 𝑧𝜒𝑥 ,           𝜀𝑦 = 𝜀𝑦

0 − 𝑧𝜒𝑦 , 

𝛾𝑥𝑦 = 𝛾𝑥𝑦
0 − 2𝑧𝜒𝑥𝑦 

(5) 

 

Also, based on the relations of von Kármán strain-

displacement (Brush and Almroth 1975), the strain 

components on the middle surface of shells are given by 
 

𝜀𝑥
0 =

𝜕𝑢

𝜕𝑥
+
1

2
(
𝜕𝑤

𝜕𝑥
)
2

 

𝜀𝑦
0 =

𝜕𝑣

𝜕𝑦
−
𝑤

𝑅
+
1

2
(
𝜕𝑤

𝜕𝑦
)
2

 

𝛾𝑥𝑦
0 =

𝜕𝑢

𝜕𝑦
+
𝜕𝑣

𝜕𝑥
+
𝜕𝑤

𝜕𝑥

𝜕𝑤

𝜕𝑦
  

 𝜒𝑥 =
𝜕2𝑤

𝜕𝑥2
,    𝜒𝑦 =

𝜕2𝑤

𝜕𝑦2
,    𝜒𝑥𝑦 =

𝜕2𝑤

𝜕𝑥𝜕𝑦
 

(6) 

 

where 𝜀𝑦
0 and 𝜀𝑥

0 are the normal strains, and 𝛾𝑥𝑦
0  is the 

shear strain at the middle surface. 𝑢 = 𝑢(𝑥, 𝑦), 𝑣 =
𝑣(𝑥, 𝑦), 𝑤 = 𝑤(𝑥, 𝑦) are the displacement components 

along 𝑥, 𝑦, 𝑧 axes, respectively. 𝜒𝑥, 𝜒𝑦, 𝜒𝑥𝑦 are the change 

of curvatures and twist of shell. 

Considering Eq. (6), compatibility equation are given by 

 

𝜕2𝜀𝑥
0

𝜕𝑦2
+
𝜕2𝜀𝑦

0

𝜕𝑥2
−
𝜕2𝛾𝑥𝑦

0

𝜕𝑥𝜕𝑦
 

= −
1

𝑅

𝜕2𝑤

𝜕𝑥2
+ (

𝜕2𝑤

𝜕𝑥𝜕𝑦
)

2

−
𝜕2𝑤

𝜕𝑥2
𝜕2𝑤

𝜕𝑦2
 

(7) 

 

The relation of stress-strain for FG shell can be written 

as 

{

𝜎𝑥
𝑠ℎ

𝜎𝑦
𝑠ℎ

𝜏𝑥𝑦
𝑠ℎ

} = [

𝐴11 𝐴12 0
𝐴12 𝐴11 0
0 0 𝐴66

] {

𝜀𝑥
𝜀𝑦
𝛾𝑥𝑦
} (8) 

 

where 
 

𝐴11 =
𝐸(𝑧, 𝑇)

1 − 𝜈2
;  𝐴12 =

𝜈𝐸(𝑧, 𝑇)

1 − 𝜈2
;   𝐴66 =

𝐸(𝑧, 𝑇)

2(1 + 𝜈)
  (9) 

 

𝜎𝑦
𝑠ℎ, 𝜎𝑥

𝑠ℎ and 𝜏𝑥𝑦
𝑠ℎ are normal stress in 𝑦, 𝑥 direction 

and shear stress of un-stiffened shell, respectively and the 

constant parameter 𝜈 is Poisson’s ratio. 

The relation of stress-strain for FG stiffeners is 

represented by 
 

{
𝜎𝑠
𝑠𝑡

𝜎𝑟
𝑠𝑡} = [

𝐸𝑠 0
0 𝐸𝑟

] {
𝜀𝑥
𝜀𝑦
} (10) 

 

where 𝜎𝑟
𝑠𝑡  and 𝜎𝑠

𝑠𝑡  are normal stress of the ring and 

stringer stiffeners, respectively. 

 

3.1 Usage the piezoelectric sensors and actuators 
 

In many recent studies, two common types of 

piezoelectric materials are widely used (Baillargeon and Vel 

2005, Wrona and Pawełczyk 2013), which are piezo- 
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polymer, PVDF and piezo-ceramic, PZT. piezo-ceramic can 

be used both as actuator and sensor but Piezo-polymer are 

usually utilized as sensor (Hong 1993). The constitutive 

equation of piezoelectric material for the actuator is given 

by (Bailey and Hubbard 1985, Fuller et al. 1996) 
 

𝜀𝑝 = 𝑆𝑝𝑞
𝐸 𝜎𝑞 + 𝑑𝑝𝑖𝐸𝑖

𝑒 (11) 
 

Also, the dynamic equation of sensor can be expressed 

as 

𝐷𝑖 = 𝑑𝑖𝑝𝜎𝑝 + 𝜉𝑖𝑗
𝜎𝐸𝑗

𝑒 (12) 
 

where 𝑖, 𝑗 = 1,2,3 and 𝑞, 𝑝 = 1,… ,6 as shown in Fig. 2 

are directions of polarization of piezoelectric material and 

strain or stress on the vertical planes, respectively. 𝑆𝑝𝑞
𝐸  and 

𝑑𝑝𝑖 are the elastic compliance and the piezoelectric strain 

constant, respectively. 𝜉 is material dielectric permittivity 

and 𝐷𝑖 is electrical displacement. 

The stress-strain relations for piezoelectric layer are 

given by (Song et al. 2016) 
 

{

𝜎𝑥
𝑝

𝜎𝑦
𝑝

𝜏𝑥𝑦
𝑝

} = [

𝐶11 𝐶12 0
𝐶12 𝐶22 0
0 0 𝐶66

] 

                ({

𝜀𝑥
𝜀𝑦
𝛾𝑥𝑦
} − [

0 0 𝑒31
0 0 𝑒32
0 0 0

]{

0
0
𝑉(𝑡)

ℎ𝑝

}) 

(13) 

 

where 
 

𝐶11 =
𝐸𝑝

1 − 𝜈𝑝
2
;     𝐶12 =

𝜈𝑝𝐸𝑝
1 − 𝜈𝑝

2
;    𝐶66 =

𝐸𝑝

2(1 + 𝜈𝑝)
 (14) 

 

In Eq. (14), 𝑉(𝑡) is the input voltage. 𝜈𝑝 and 𝐸𝑝are 

the Poisson’s ratio and Young’s modulus of the piezoelectric 

material. 

Considering the relation of stress-strain of FG shell, 

stiffeners and piezoelectric layer and then by integrating 

these equations, the resultant moments and forces for SFG 

cylindrical shell with piezoelectric layer can be obtained as 

Resultant force 
 

{

𝑁𝑥
𝑁𝑦
𝑁𝑥𝑦

} = [

𝐼11 𝐼12 0 −𝐽11 −𝐽12 0
𝐼12 𝐼22 0 −𝐽12 −𝐽22 0
0 0 𝐼33 0 0 −2𝐽33

]

{
  
 

  
 
𝜀𝑥
0

𝜀𝑦
0

𝛾𝑥𝑦
0

𝜒𝑥
𝜒𝑦
𝜒𝑥𝑦}

  
 

  
 

 (15) 

 

 

−{
𝑇1
𝑇2
0
} 𝑉(𝑡)                                               (15) 

 

Resultant moment 
 

{

𝑀𝑥

𝑀𝑦

𝑀𝑥𝑦

} = [

𝐽11 𝐽12 0 −𝐾11 −𝐾12 0
𝐽12 𝐽22 0 −𝐾12 −𝐾22 0
0 0 𝐽33 0 0 −2𝐾33

]

{
  
 

  
 
𝜀𝑥
0

𝜀𝑦
0

𝛾𝑥𝑦
0

𝜒𝑥
𝜒𝑦
𝜒𝑥𝑦}

  
 

  
 

 

                   − {
𝐹1
𝐹2
0
} 𝑉(𝑡) 

(16) 

 

where 𝐽𝑖𝑗 , 𝐾𝑖𝑗   and 𝐼𝑖𝑗  (𝑖, 𝑗 = 1,2,3) are the components 

of the bending, coupling and extensional stiffness of SFG 

cylindrical shells with piezoelectric layer which are 

presented in Appendix A. Also, 𝑇𝑖 and 𝐹𝑖 (𝑖 = 1,2) are the 

external voltage coefficient which are presented in 

Appendix A. According to Eq. (15), the strain components 

are rearranged as follows 
 

{

𝜀𝑥
0

𝜀𝑦
0

𝛾𝑥𝑦
0

} = [

𝐼22
∗ −𝐼12

∗ 0 𝐽11
∗ 𝐽12

∗ 0

−𝐼12
∗ 𝐼11

∗ 0 𝐽21
∗ 𝐽22

∗ 0

0 0 𝐼33
∗ 0 0 2𝐽33

∗
]

{
 
 

 
 
𝑁𝑥
𝑁𝑦
𝑁𝑥𝑦
𝜒𝑥
𝜒𝑦
𝜒𝑥𝑦}

 
 

 
 

 

                + {
𝑇1
∗

𝑇2
∗

0

} 𝑉(𝑡) 

(17) 

 

Substituting Eq. (17) in Eq. (16) the resultant moments 

are given by 

 

{

𝑀𝑥

𝑀𝑦

𝑀𝑥𝑦

} = [

𝐽22
∗ 𝐽21

∗ 0 −𝐾11
∗ −𝐾12

∗ 0
𝐽12
∗ 𝐽22

∗ 0 −𝐾21
∗ −𝐾22

∗ 0
0 0 𝐽33

∗ 0 0 −2𝐾33
∗
] 

                  

{
 
 

 
 
𝑁𝑥
𝑁𝑦
𝑁𝑥𝑦
𝜒𝑥
𝜒𝑦
𝜒𝑥𝑦}

 
 

 
 

+ {
𝐹1
∗

𝐹2
∗

0

}𝑉(𝑡) 

(18) 

 

where coefficients 𝐼𝑖𝑗
∗ , 𝐽𝑖𝑗

∗  and 𝐾𝑖𝑗
∗  ( 𝑖, 𝑗 = 1,2,3 ) are 

presented in Appendix B. Also, coefficients 𝑇𝑖
∗  and 

𝐹𝑖
∗(𝑖 = 1,2) are presented in Appendix B. 

 

Fig. 2 Directions of the polarization of the piezoelectric material and stress or strain on the vertical planes 
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Based on the classical shell theory, the non-linear 

governing equations of circular shell are as follows (Bich et 

al. 2013, Foroutan et al. 2018) 
 

𝜕𝑁𝑥
𝜕𝑥

+
𝜕𝑁𝑥𝑦
𝜕𝑦

= 0 

𝜕𝑁𝑥𝑦
𝜕𝑥

+
𝜕𝑁𝑦
𝜕𝑦

= 0 

𝜕2𝑀𝑥

𝜕𝑥2
+ 2

𝜕2𝑀𝑥𝑦

𝜕𝑥𝜕𝑦
+
𝜕2𝑀𝑦

𝜕𝑦2
+𝑁𝑥

𝜕2𝑤

𝜕𝑥2
 

+2𝑁𝑥𝑦
𝜕2𝑤

𝜕𝑥𝜕𝑦
+ 𝑁𝑦 (

𝜕2𝑤

𝜕𝑦2
+
1

𝑅
) = 𝜌1

𝜕2𝑤

𝜕𝑡2
 

(19) 

 

where 𝑡 is the time and 𝜌1 is the mass density which can 

be obtained as 
 

𝜌1 = (𝜌𝑚 +
𝜌𝑐 − 𝜌𝑚
𝑘 + 1

)ℎ + (𝜌𝑐 +
𝜌𝑚 − 𝜌𝑐
𝐾 + 1

)
𝑑ℎ𝑠
𝑆
+ 𝜌𝑝ℎ𝑝 (20) 

 

According to the first and second relations of Eq. (19), 

the resultant forces in term of stress function (𝜑)  are 

defined as follows 
 

𝑁𝑥 =
𝜕2𝜑

𝜕𝑦2
,  𝑁𝑦 =

𝜕2𝜑

𝜕𝑥2
,  𝑁𝑥𝑦 = −

𝜕2𝜑

𝜕𝑥𝜕𝑦
 (21) 

 

Substituting Eq. (17) in Eqs. (7) and (18) in the third 

relation of Eq. (19) and according to Eqs. (6) and (21), we 

yields 

 

𝐼11
∗
𝜕4𝜑

𝜕𝑥4
+ (𝐼33

∗ − 2𝐼12
∗ )

𝜕4𝜑

𝜕𝑥2𝜕𝑦2
+ 𝐼22

∗
𝜕4𝜑

𝜕𝑦4
+ 𝐽21

∗
𝜕4𝑤

𝜕𝑥4
 

+(𝐽11
∗ + 𝐽22

∗ − 2𝐽33
∗ )

𝜕4𝑤

𝜕𝑥2𝜕𝑦2
+ 𝐽12

∗
𝜕4𝑤

𝜕𝑦4
+
1

𝑅

𝜕2𝑤

𝜕𝑥2
 

+[(
𝜕2𝑤

𝜕𝑥𝜕𝑦
)

2

−
𝜕2𝑤

𝜕𝑥2
𝜕2𝑤

𝜕𝑦2
] = 0 

(22) 

 

𝜌1
𝜕2𝑤

𝜕𝑡2
+ 𝐾11

∗
𝜕4𝑤

𝜕𝑥4
+ (𝐾12

∗ + 𝐾21
∗ + 4𝐾33

∗ )
𝜕4𝑤

𝜕𝑥2𝜕𝑦2
 

+𝐾22
∗
𝜕4𝑤

𝜕𝑦4
− 𝐽21

∗
𝜕4𝜑

𝜕𝑥4
− (𝐽11

∗ + 𝐽22
∗ − 2𝐽33

∗ )
𝜕4𝜑

𝜕𝑥2𝜕𝑦2
 

−𝐽12
∗
𝜕4𝜑

𝜕𝑦4
−
1

𝑅

𝜕2𝜑

𝜕𝑥2
−
𝜕2𝜑

𝜕𝑦2
𝜕2𝑤

𝜕𝑥2
+ 2

𝜕2𝜑

𝜕𝑥𝜕𝑦

𝜕2𝑤

𝜕𝑥𝜕𝑦
 

−
𝜕2𝜑

𝜕𝑥2
𝜕2𝑤

𝜕𝑦2
+
𝜕2𝑀𝑥

𝑝

𝜕𝑥2
+
𝜕2𝑀𝑦

𝑝

𝜕𝑦2
= 0 

(23) 

 

In Eq. (23), 𝑀𝑦
𝑝

 and 𝑀𝑥
𝑝

, are the actuator induced 

bending moment. When piezoelectric is subjected to 

external loads, charges are produced on the sensor as 

follows (Song et al. 2016) 
 

𝑄𝑠(𝑡) = �̂�𝑠𝑊(𝑡) (24) 
 

where �̂�𝑠  is coefficient matrix. The voltage for sensor 

(𝑉𝑠(𝑡)) is defined as 
 

𝑉𝑠(𝑡) =
ℎ𝑝

𝛯33𝐴𝑠
𝑄𝑠(𝑡) (25) 

where Ξ33 is the dielectric constant and 𝐴𝑠 is the sensor 

surface area. 

Substituting Eq. (24) into Eq. (25) as follows 
 

𝑉𝑠(𝑡) =
ℎ𝑝

𝛯33𝐴𝑠
�̂�𝑠𝑊(𝑡) (26) 

 

3.2 Boundary conditions 
 

A simply supported SFG cylindrical shell under the 

couple of transverse and axial periodic loads is considered. 

The applied boundary conditions are the following form 

 

𝑤 = 0;              𝑀𝑥 = 0;              𝑁𝑥 = −𝑃𝑥ℎ, 
 𝑁𝑦 = −𝑃𝑦ℎ;    𝑁𝑥𝑦 = 0;     𝑎𝑡   𝑥 = 0,   𝐿 

(27) 

 

Due to above boundary condition, the proposed 

approximate solution of deflection is considered as 

(Foroutan et al. 2018, Volmir 1972) 
 

𝑤 = 𝑊(𝑡) 𝑠𝑖𝑛
𝑚𝜋𝑥

𝐿
𝑠𝑖𝑛

𝑛𝑦

𝑅
 (28) 

 

In Eq. (28), 𝑊(𝑡) is time dependent amplitude, 𝑛 and 

𝑚  are the number of full and half wave in the 

circumferential and axial directions, respectively. 

Eq. (28) is substituted in Eq. (22) and then the resultant 

equation is solved to find the unknown stress function (𝜑) 

as follows 
 

𝜑 = 𝐹1 𝑐𝑜𝑠
2𝑚𝜋𝑥

𝐿
+ 𝐹2 𝑐𝑜𝑠

2𝑛𝑦

𝑅
 

        −𝐹3 𝑠𝑖𝑛
𝑚𝜋𝑥

𝐿
𝑠𝑖𝑛

𝑛𝑦

𝑅
− 𝑃𝑥ℎ

𝑦2

2
− 𝑃𝑦ℎ

𝑥2

2
 

(29) 

 

where 𝑃𝑦 and 𝑃𝑥 are the average circumferential and axial 

stresses, respectively. Also, the coefficients 𝐹𝑖(𝑖 = 1,2,3) 
are in the following form 

 

𝐹1 =
𝑛2𝜆2

32𝐽11
∗ 𝑚2𝜋2

𝑊(𝑡)2 

 𝐹2 =
𝑚2𝜋2

32𝐽22
∗ 𝑛2𝜆2

𝑊(𝑡)2 

 𝐹3 =
𝐵

𝐴
𝑊(𝑡) 

(30) 

 

where coefficients 𝐴 and 𝐵 are presented in Appendix B. 

Eqs. (28)-(30) are substituted in Eq. (23) and then the 

Galerkin method is applied to obtain the discretized 

equation as follows 
 

�̈� + 𝑎1𝑊+ 𝑎2𝑊
3 − 𝑎3𝑃𝑋𝑊 

−𝑎4𝑃𝑦𝑊+ 𝑎5𝑉(𝑡) = 0 
(31) 

 

In the Eq. (31), 𝑎𝑖 (𝑖 = 1,… , 5)  are defined in 

appendix B. 

 

3.3 Free vibration analysis 
 

To analyze the free vibration of SFG cylindrical shell, 

the controller, periodic loads and nonlinear term (𝑊3) in 
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Eq. (31) are ignored. Thus, Eq. (31) reduces to 

 

𝜕2𝑤

𝜕𝑡2
+ 𝑎1𝑤 = 0 (32) 

 

According to Eq. (32), natural frequencies for the SFG 

cylindrical shell are obtained as 

 

𝜔𝑛 = √𝑎1 (33) 

 

3.4 Control strategy formulation 
 

A linear and two nonlinear control methods are utilized 

to suppress the nonlinear vibration of SFG cylindrical shell. 

These control methods are as follows: (1) PID control 

method, (2) feedback linearization and (3) sliding mode 

control, which are design in order to compare with PID 

control method. 

 

3.4.1 PID controller 
A proportional–integral–derivative controller (PID 

controller) is a control loop feedback mechanism that is 

widely used in industrial control systems. A PID controller 

continuously calculates an error value (𝑒(𝑡)) and applies a 

correction based on proportional, integral, and derivative 

terms (denoted P, I and D, respectively). The control law of 

PID controller is expressed as (Ogata and Yang 2002) 

 

𝑉(𝑡) = 𝐾𝑝𝑒(𝑡) + 𝐾𝑖∫𝑒(𝑡)𝑑𝑡 + 𝐾𝑑�̇�(𝑡) (34) 

 

where 𝐾𝑖 , 𝐾𝑑  and 𝐾𝑝  are the integral, derivative and 

proportional gains, respectively. 

 

3.4.2 Feedback linearization strategy 
A common well-known approach that is used in the 

control of nonlinear plants, is feedback linearization. Using 

this controller, the nonlinear models are transformed into 

linear ones. With regard to Eq. (31), feedback linearization 

control is considered as follows 

 

𝑉(𝑡) =
1

𝑎5
[−𝑎1𝑊− 𝑎2𝑊

3 + �̈�𝑑 + 𝐾𝑝𝑒(𝑡) + 𝐾𝑑�̇�(𝑡)] (35) 

 

To prove the stability of proposed controller, Eq. (35) is 

substituted into Eq. (31) and then the closed loop system is 

obtained as 

 
1

𝑎5
[�̈� + 𝐾𝑑�̇�(𝑡) + 𝐾𝑝𝑒(𝑡)] = −𝑎3𝑃𝑋𝑊− 𝑎4𝑃𝑦𝑊 (36) 

 

Because of the 𝑊𝑑(𝑡) = �̇�𝑑(𝑡) = �̈�𝑑(𝑡) = 0 , then 

𝑒(𝑡) = 𝑊(𝑡) , �̇�(𝑡) = �̇�(𝑡) , �̈�(𝑡) = �̈�(𝑡) . Therefore, 

according to Eq. (36), the error dynamic is simplified as 

 

�̈� + 𝐾𝑑�̇�(𝑡) + [𝐾𝑝 − 𝑎5(𝑎3𝑃𝑋 + 𝑎4𝑃𝑦)]𝑒(𝑡) = 0 (37) 

 

With regard to Eq. (37), for closed loop system stability, 

𝐾𝑑 and 𝐾𝑝 must be considered as follows 

𝐾𝑑 > 0     𝑎𝑛𝑑     𝐾𝑝 > 𝑎5(𝑎3𝑃𝑋 + 𝑎4𝑃𝑦) (38) 

 

3.4.3 Sliding mode controller 
Because of the system is in presence of thermal 

uncertainty, A robust control strategy should be used. The 

sliding mode algorithm is the one of the robust control 

methods that this method is utilized to control of system. 

For this purpose, first, Eq. (31) is changed in the following 

form 

�̈� + 𝐹 = 𝑔𝑉(𝑡) (39) 
 

where 
 

𝐹 = 𝑎1𝑊+ 𝑎2𝑊
3 − 𝑎3𝑃𝑋𝑊− 𝑎4𝑃𝑦𝑊; 

𝑔 = −𝑎5 
(40) 

 

In Eq. (39), 𝐹 is unknown dynamics, but estimated of 

that 𝑓 is assumed known. The bound of ∆𝐹  i.e., H is 

assumed known function as follows 

 

𝐹 = 𝑓 + 𝛥𝐹;   𝛥𝐹 = 𝐹 − 𝑓 ≤ 𝐻 (41) 

 

To control of system using the sliding method, we 

define the Sliding surface i.e., S as 
 

𝑆 = �̇� + 𝜆𝑒 (42) 
 

According to method of sliding mode control, in order 

to stability of system, sliding surface must be satisfy the 

following condition 
 

�̇�sgn(𝑆) ≤ −𝜂 (43) 
 

By considering �̈�(𝑡) = �̈�(𝑡)  and according to Eq. 

(39), Eq. (42) and its derivative substitute into (43), yields 

 

(𝑓 + 𝛥𝐹 − 𝑔𝑉(𝑡) + 𝜆�̇�)sgn(𝑆) ≤ −𝜂 (44) 

 

To compensate for the uncertainties, the controller law is 

proposed as follows 
 

𝑔𝑉(𝑡) = 𝑓 + 𝜆�̇� + 𝑈sgn(𝑆) (45) 

 

𝑈 is defined such that satisfy the Eq. (44). Substituting 

Eq.(45) into Eq. (44) and according to Eq. (41), we yields 
 

𝑈 = 𝜂 + 𝐻 (46) 
 

Finally, by substituting Eq. (46) into Eq. (45), the sliding 

mode control for SFG cylindrical shell is obtained as 
 

𝑔𝑉(𝑡) = 𝑓 + 𝜆�̇� + (𝜂 + 𝐻)sgn(𝑆) (47) 
 

 

4. Numerical results 
 

4.1 Validation of the present approach 
 

For validating the present approach, in Table 1, the 

natural frequencies of simply supported cylindrical shell 

presented in this work is considered in comparison with the 

(Pellicano 2007) and (Qin et al. 2017) results. The 
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differences between present results and the literature are 

less than 0.8%. Also, in Table 2, the natural frequencies of 

SFG cylindrical shell for our study are compared with the 

obtained natural frequencies by (Dung and Nam 2014). So, 

comparisons show that the good conformance is obtained. 

In Figs. 3 and 4, the natural frequencies of the 

cylindrical shells for the various number of full waves 

without stiffeners and with internal stiffeners are compared 

with those of Sewall and Naumann (1968) and Sewall et al. 

(1964). They experimentally analyzed the vibration 

response of the cylindrical shells. These comparisons also 

show that good agreements are obtained. 

 

 

4.2 Vibration response of stiffened FG cylindrical 
shell 

 

Here, the vibration for SFG cylindrical shell with 

piezoelectric layer is analyzed. The influence of material 

parameters and different geometrical such as internal 

stiffeners, volume fraction of FG, the effect of periodic load 

and different control algorithms on nonlinear vibration 

responses of SFG cylindrical shells are considered. The 

number of stiffeners is assumed considered to be thirty. The 

FG cylindrical shell is considered to be made of SUS304 

 

 

Table 1 Comparison of the natural frequencies of simply 

supported (𝐿 = 0.2 m, 𝑅 = 0.1 m, ℎ = 0.247 ×
10−3 m,𝑚 = 1, 𝜈 = 0.31, 𝐸 = 7.12 ×
1010 N m2⁄ , 𝜌 = 2796 kg m3⁄ ) 

𝑚 𝑛 Present (Qin et al. 2017) (Pellicano 2007) 

    Errors (%)  Errors (%) 

1 7 486.0 484.6 0.2 484.6 0.2 

1 8 490.3 489.6 0.1 489.6 0.1 

1 9 545.8 546.2 0.07 546.2 0.07 

1 6 555.8 553.3 0.4 553.3 0.4 

1 10 634.8 636.8 0.3 636.8 0.3 

1 5 728.5 722.1 0.8 722.1 0.8 

1 11 746.6 750.7 0.5 750.7 0.5 

1 12 875.5 882.2 0.7 882.2 0.7 

2 10 962.3 968.1 0.5 968.1 0.5 

2 11 976.6 983.4 0.6 983.4 0.6 
 

 

 

Table 2 Comparison of the natural frequencies of SFG 

cylindrical shell (𝐿 = 0.75 m, 𝑅 = 0.5 m, 𝑅 ℎ⁄ =
250, 𝑚 = 1, 𝐸𝑚 = 7 × 1010 N m2⁄ , ℎ𝑠 = ℎ𝑟 =
0.01 m, 𝜌𝑚 = 2702 kg m3⁄ , 𝐸𝑐 = 38 ×
1010 N m2⁄ ,  𝜌𝑐 = 3800 kg m3⁄ , 𝜈 = 0.3, 𝑑𝑠 =
𝑑𝑟 = 0.0025 m) 

Present (Dung and Nam 2014) Errors (%) 

Un-stiffened 

1654.05 1654.05 0.00 

Internal stiffeners 

2539.43 2539.43 0.00 
 

 

 

Fig. 3 Comparison of the natural frequencies of isotropic 

cylindrical shells without stiffeners (𝑚 = 1) 
 

 

 

Fig. 4 Comparison of the natural frequencies of isotropic 

cylindrical shells with internal stiffeners (𝑚 = 1) 
 

 

(Metal) and 𝑆𝑖3𝑁4 (Ceramic). Table 3 shows the material 

properties for FG cylindrical shells. 

The Poisson’s ratio for ceramic, metal and piezoelectric 

is considered to be equal (i.e., 𝜈 = 𝜈𝑚 = 𝜈𝑐 = 𝜈𝑝). The rest 

of material parameters and geometrical characteristics of 

system are listed in Table 4. 

The effect of stiffeners on vibration response of the FG 

cylindrical shell is illustrated in Fig. 5. Considering Fig. 5, 

the stiffeners strongly decrease the maximum deflection of 

FG cylindrical shell. 

The influence of material properties of the FG stiffeners 

and shell without piezoelectric layer on the vibration 

behavior is shown in Table 4. Due to this table, metallic 

shell with metallic stiffeners and ceramic shell with ceramic 

 

 

Table 3 Material properties of the constituent materials of 

the considered FG cylindrical shells (Duc and 

Thang 2015) 

Present (Dung and Nam 2014) Errors (%) 

Un-stiffened 

1654.05 1654.05 0.00 

Internal stiffeners 

2539.43 2539.43 0.00 
 

 

649



 

Habib Ahmadi and Kamran Foroutan 

Table 4 The geometrical and material parameters of system 

Material 

parameters 
Value 

Geometrical 

characteristics 
Value 

𝐸𝑝 63 GPa 𝑅 0.5 m 

𝜌𝑚 2702 kg/m3 𝐿 0.75 m 

𝜌𝑐 3800 kg/m3 ℎ 0.002 m 

𝜌𝑝 7600 kg/m3 ℎ𝑠 0.01 m 

ν 0.3 𝑑 0.0025 m 

𝑒31 = 𝑒32 245 × 10−12 mV−1 ℎ𝑝 0.002 m 

Ξ33 1.5 × 10−8 Fm−1 𝑚, 𝑛 1, 5 
 

 

 

 

Fig. 5 Effect of stiffeners on vibration response of FG 

cylindrical shell 
 

 

 

Fig. 6 Effect of stiffeners on vibration response of FG 

cylindrical shell 
 

 

 
 

Table 5 Effect of material properties on the maximum 

deflection of vibration response of SFG cylindrical 

shell without piezoelectric layer (× 10−3m) 

 
Type of stiffeners 

Ceramic FGM Metal 

Ceramic shell 0.000014 0.000016 0.000018 

FGM shell 0.000016 0.0011 0.000016 

Metal shell 0.000043 0.0091 0.0107 
 

 

 

stiffeners have the lowest and the highest resistance against 

the nonlinear vibration response, respectively. 

Fig. 6 shows the effect of different controls such as PID, 

feedback and sliding mode on the response of nonlinear 

vibration for FG cylindrical shell without stiffeners under 

uncertainty. Due to this figure, sliding mode and PID 

control have the most and least effect on decreasing the 

maximum deflection of nonlinear vibration of cylindrical 

shell. Actuator voltage of PID, feedback and sliding mode 

control is shown in Fig. 7. According to this figure, the 

range of maximum actuator voltage of the three controllers 

is almost at the same level. 

The influence of different temperatures on the SFG 

cylindrical shell vibration is demonstrated in Fig. 8. As can 

be seen, generally increasing the temperature leads to 

increasing the maximum deflection of SFG cylindrical 

shell. 

The effect of various controllers on the response of 

nonlinear vibration for stiffened and un-stiffened FG shell is 

illustrated in Fig. 9. With regard to Fig. 9, the effect of 

feedback and sliding mode controls on decreasing the 

maximum deflection of cylindrical shell without stiffener is 

more than one with stiffener. But the effect of PID control 

on decreasing the maximum deflection of cylindrical shell 

without stiffener much less than one with stiffener. 
 

 

5. Conclusions 
 

Active control of nonlinear vibration of stiffened 

functionally graded (SFG) cylindrical shell is studied in this 

study. Different control algorithms are applied to SFG shell 

in presence of thermal uncertainty for investigation of 

vibration reduction. The material composition is considered 

to be continuously graded in the thickness direction, 
 

 

   

(a) PID control (b) Feedback control (c) Sliding mode control 

Fig. 7 Maximum actuator voltage of controllers 
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also these properties varies with temperature. The inner 

surface of SFG cylindrical shell reinforced by eccentrically 

stringer and ring stiffeners and outer surface of shell is 

covered by the piezoelectric layer. Using the theory of 

classical shell, smeared stiffeners technique and Galerkin 

method, the discretized nonlinear differential equations of 

system are derived. The effects of stiffeners and various 

controls such as PID, feedback and sliding mode on the 

 

 

 

 

response of nonlinear vibration for SFG cylindrical shells 

are examined and the following conclusions are obtained 

 

● The stiffeners strongly decrease the maximum 

deflection of FG cylindrical shell. 

● Generally increasing the temperature leads to 

increasing the maximum deflection of SFG 

cylindrical shell. 

  

(a) 𝑇 = 100℃ (b)  𝑇 = 300℃ 
 

  

(c)  𝑇 = 500℃ (d)  𝑇 = 700℃ 
 

  

(e)  𝑇 = 900℃ (f)  𝑇 = 1100℃ 

Fig. 8 Effect of different temperatures on the vibration response of SFG cylindrical shell 

   

(a) PID control (b) Feedback control (c) Sliding mode control 

Fig. 9 Maximum actuator voltage of controllers 
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● Metallic shell with metallic stiffeners and Ceramic 

shell with ceramic stiffeners have the lowest and 

highest the resistance against the nonlinear vibration 

response, respectively. 

● Sliding mode and PID control have the most and 

least effect on decreasing the maximum deflection of 

cylindrical shell vibration. 

● The influence of feedback and sliding mode controls 

on decreasing the maximum deflection of cylindrical 

shell with stiffener is more than cylindrical shell 

without stiffener. 

● Sliding mode controller is more effective than other 

controllers on the vibration reduction in presence of 

uncertainty. 
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