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1. Introduction 

 

Many mechanical and civil engineering structures were 

constructed several decades ago. In order to prevent 

undesirable failures, many techniques have been developed 

by researchers in the context of structural health monitoring 

to predict damage at early stages. The process of damage 

detection by modal analysis is usually known as vibration-

based damage identification, which is classified into four 
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cases: (1) damage existence; (2) localization; (3) quantifica-

tion; and finally (4) prognosis. Tiachacht et al. (2018b) 

presented a Modified Cornwell indicator for damage 

quantification. This indicator was investigated numerically 

using a FEM of truss and 3D structures. (Dahak et al. 2017) 

presented normalized frequencies technique in cantilever 

steel beam based on experimental results. 

The discretization was based on the number of zones in 

a beam structure. Each zone had a specific classification 

using the first four natural frequencies. A newly proposed 

indicator for damage identification based on dynamic 

analysis in plate-like structures, such as mode shapes and 

their derivatives, was presented by Navabian et al. (2016). 

Inverse analysis for damage detection in beams using 

vibration data and a genetic algorithm was presented by 

Kim et al. (2007). Fast crack identification in Carbon Fibre 

Reinforced Polymer (CFRP) composite structures using 

model reduction using frequency based on different crack 

location to build snapshot matrix was presented by Samir et 

al. (2018). This approach was based on measured and 
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Abstract.  The existence of damages in structures causes changes in the physical properties by reducing the modal parameters. 

In this paper, we develop a two-stages approach based on normalized Modal Strain Energy Damage Indicator (nMSEDI) for 

quick applications to predict the location of damage. A two-dimensional IsoGeometric Analysis (2D-IGA), Machine Learning 

Algorithm (MLA) and optimization techniques are combined to create a new tool. In the first stage, we introduce a modified 

damage identification technique based on frequencies using nMSEDI to locate the potential of damaged elements. In the second 

stage, after eliminating the healthy elements, the damage index values from nMSEDI are considered as input in the damage 

quantification algorithm. The hybrid of Teaching-Learning-Based Optimization (TLBO) with Artificial Neural Network (ANN) 

and Particle Swarm Optimization (PSO) are used along with nMSEDI. The objective of TLBO is to estimate the parameters of 

PSO-ANN to find a good training based on actual damage and estimated damage. The IGA model is updated using experimental 

results based on stiffness and mass matrix using the difference between calculated and measured frequencies as objective 

function. The feasibility and efficiency of nMSEDI-PSO-ANN after finding the best parameters by TLBO are demonstrated 

through the comparison with nMSEDI-IGA for different scenarios. The result of the analyses indicates that the proposed 

approach can be used to determine correctly the severity of damage in beam structures. 
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calculated frequencies as objective function using 

optimization techniques, namely Genetic algorithm (GA) 

and Cuckoo Search (CS). Furthermore, Khatir et al. (2018a) 

created an application for crack identification in steel beam 

structures using PSO. The objective function minimizes the 

measured and calculated frequencies after model updating. 

Pandey et al. (1991) created an approach based on the mode 

shape curvatures for damage identification. (Wu and Law 

2004) presented an application using mode shape 

curvatures. This application was tested on plate structures. 

Structural Health Monitoring (SHM) in beam and truss 

structures using damage indicator, using Frequency 

Response Function (FRF) was presented by Zenzen et al. 

(2018). The authors extended the work for damage 

quantification using inverse analysis and calculated and 

measured FRFs as an objective function using Bat 

Algorithm. (Capozucca 2014, Capozucca and Bonci 2015) 

presented a new analytical solution of double notch crack in 

CRFP beam composite with different boundary conditions. 

The proposed technique was validated experimentally. 

Odessa et al. (2019) presented two-step procedure based 

on the contribution of the analytical platform and the 

nonlinear response of delaminated sandwich panel. Funari 

et al. (2019) proposed a numerical model using moving 

mesh technique to predict the crack growth. Inverse 

analysis for inclusion interfaces identification using XFEM 

piezoelectric structure was reported by Nanthakumar et al. 

(2016). Vu-Bac et al. (2018) used gradient-based 

optimization algorithms for inverse analysis using measured 

and calculated displacements at a number of discrete 

locations. Inverse applications using optimization 

techniques were presented by Khatir et al. (2015, 2018b), 

Benaissa et al. (2017), Samir et al. (2018), Tiachacht et al. 

(2018a). 

ANN is powerful technique inspired from the biological 

nervous systems. Recently, this technique was applied to 

SHM. SHM of beam and bridge using improved ANN 

technique was presented by Tran-Ngoc et al. (2019). The 

solution of second-order boundary value problems based on 

ANN methods was presented by Anitescu et al. (2019). 

Delamination detection in composite laminated using MLA 

was reported by Gomes et al. (2019). Abdeljaber et al. 

(2017) provided a convolutional neural network in large-

scale steel frame structures for damage detection and 

localization. Damage identification using FRFs as input 

data in ANN was studied by Zang and Imregun (2001). Kim 

et al. (2008) used neural networks algorithm for fast 

damage prediction. Maity and Saha (2004) used back-

propagation algorithm in ANN for crack identification using 

strains and displacements. Guo et al. (2019) analyzed 

bending problem using a deep collocation method (DCM). 

Damage index data based on Cornwell indicator in 

laminated composite were collected for PSO-ANN to 

quantify damage by Khatir et al. (2019a). 

Hughes et al. (2005) created a new powerful numerical 

tool, namely IGA, which aims to simplify the computer aid 

design to describe geometry. Thanh et al. (2018) used IGA 

to analyse the static and free vibration of nanoplates using 

higher order shear deformation theory. Furthermore, using 

IGA technique, a thermal bending and buckling of 

composite laminated micro-plate was developed by Thanh 

et al. (2019a) and thermal post-buckling of porous FG 

micro-plate by Thanh et al. (2019b). The authors extended 

the work to nonlinear static and dynamic responses of FG-

CNTRC in Thanh et al. (2019c). Thanh et al. (2020) used 

IGA and couple stress theory to analyse complex 

geometrical structures with internal cutouts. A numerical 

IGA example of flexoelectric composites was reported by 

Ghasemi et al. (2018) to describe the flexibility of the 

model as well as to obtain more accurate results. A level-set 

function based IGA was provided by Ghasemi et al. (2017) 

for topology optimization of flexoelectric materials. Khatir 

et al. (2019b) presented a normalized frequency using MSE 

combined with two-dimensional IGA model of steel beam. 

The proposed indicator can predict the damage location 

with more accuracy. Moreover, the inverse analysis was 

presented using TLBO and a proposed indicator as an 

objective function to predict the potential of damage. Khatir 

and Wahab (2019a, b) presented extended Isogeometric 

analysis (XIGA) and extended finite element (XFEM) to 

predict the location and size of crack based on inverse 

problem using different optimization techniques. The results 

showed that XIGA has good convergence compared with 

XFEM. 

The main objective of this present study is to enhance 

the regression of PSO-ANN based on their parameters using 

TLBO. Beams, which are important structures in civil and 

mechanical engineering industrial applications, are used as 

examples and modelled using IGA. Experimental modal 

analysis using frequency data is performed to validate the 

proposed application. This paper is organized as follows. In 

the second section, a brief description of Non-Uniform 

Rational Basis Spline (NURBS) based IGA analysis is 

explained. The Hybrid TLBO-PSO-ANN is described in 

section 3. In section 4, the damage indicator nMSEDI is 

presented. Section 5 presents the numerical damage 

identification procedures. Experimental validation is 

presented in section 6 and finally, some concluding remarks 

are summarized. 

 

 

2. NURBS based IGA analysis fundamentals 
 

2.1 Basis function 
 

The B-Spline basis function is constructed by the 

following equation 

 

𝑁𝑖,𝑝(𝜁) =
𝜁 − 𝜁𝑖

𝜁𝑖+𝑝 − 𝜁𝑖
𝑁𝑖,𝑝−1(𝜁) 

                  +
𝜁𝑖+𝑝+1 − 𝜁

𝜁𝑖+𝑝+1 − 𝜁𝑖+1
𝑁𝑖+1,𝑝−1(𝜁)        (𝑝 > 1) 

(1) 

 

𝑁𝑖,0(𝜁) = {
1 if  𝜁𝑖 ≤ 𝜁 < 𝜁𝑖+1

0       otherwise
                      (𝑝 = 0) (2) 

 

In the case of p = 0 and 1, the IGA analysis gives 

identical results as those of FEM (Hughes, Cottrell, et al. 

2005). 
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2.2 The B-spline curve and surface 
 

The B-spline curve 𝐶(𝜁) of order p is defined as 
 

𝐶(𝜁) = ∑𝑁𝑖,𝑝

𝑛

𝑖=1

(𝜁)𝑃𝑖 (3) 

 

where 𝑃𝑖 is control points in a bidirectional control net and 

𝑁𝑖,𝑝 (𝜉) is B-spline basis function. 

A B-spline surface 𝑆(𝜁, 𝜂) is given by 
 

𝑆(𝜁, 𝜂) = ∑∑𝑁𝑖,𝑝(𝜁)

𝑚

𝑗=1

𝑀𝑗,𝑞(𝜂)𝑃𝑖,𝑗

𝑛

𝑖=1

 (4) 

 

Where p and q are the degree of basis function for 

𝑁𝑖,𝑝(𝜁), and 𝑀𝑗,𝑞(𝜂) and 𝑃𝑖,𝑗 are the bidirectional control 

nets. Eq. (4) can be expressed as follows 
 

𝑆(𝜁, 𝜂) = ∑ 𝑁𝐀(𝜁, 𝜂)

𝑛×𝑚

𝐀

𝑃𝐀 (5) 

 

where 𝑁𝐀(𝜁, 𝜂) = 𝑁𝑖,𝑝(𝜁)𝑀𝑗,𝑞(𝜂)  is the shape function. 

NURBS surface 𝑆(𝜉, 𝜂) is given by 
 

𝑆(𝜁, 𝜂) = ∑ 𝑅𝐀(𝜁, 𝜂)

𝑛×𝑚

𝐀

𝑃𝐀 ;      𝑅𝐀 =
𝑁𝐀𝑤𝐀

∑ 𝑁𝐀𝑤𝐀
𝑛×𝑚
𝐀

 (6) 

 

Where 𝑤𝐀  is the weight function. A quadratic basis 

functions example is presented in Fig. 1 with different 

NURBS orders. 
 

 

3. TLBO-PSO-ANN 
 

3.1 TLBO 
 

TLBO algorithm is introduced by Rao and More (2015). 

 

 

This algorithm is divided into two parts, the first is ‘Teacher 

phase’ and the second is ‘Learner phase’ as explained 

below. 

 

3.1.1 Teacher phase 
This is the first part in which the learners learn from the 

teacher. For each iteration i, there are ‘m’ number of 

subjects used to solve the problem, ‘n’ number of learners, 

which present the number of population. If Mj,i are the 

learners results in a particular subject ‘j’ (j = 1, 2,…, m), 

then the population (Po) can be expressed by the following 

formulation 
 

𝐏𝑜 =

[
 
 
 
 
𝑥1,1 𝑥1,2             𝑥1,𝑛

𝑥2,1

⋮
⋮

𝑥2,2

⋮
⋮

⋯ ⋯       

𝑥2,𝑛

⋮
⋮

𝑥𝑖,1 𝑥𝑖,2              𝑥𝑖,𝑛 ]
 
 
 
 

 (7) 

 

Where, n is number of the element and i is number of 

generation. 

The best overall result is Xtotal-kbest,i and all the subjects 

are presented as the result of best learner kbest. 

For each subject based on (ΔX) between the 

corresponding result and existing mean of the teacher is 

given by the following equation 

 

∆𝑋 = 𝑟𝑖(𝑋𝑗,𝑘𝑏𝑒𝑠𝑡,𝑖 − 𝑇𝐹𝑀𝑗,𝑖) (8) 

 

where 𝑋𝑗,𝑘𝑏𝑒𝑠𝑡,𝑖 presents the result of the best learner. ri = 

[0~1], and TF is the teaching factor. 

The value of TF can be either 1 or 2 as provided in the 

following formulation. 

 

𝑇𝐹 = 𝑟𝑜𝑢𝑛𝑑 [1 + 𝑟𝑎𝑛𝑔𝑒 (0,1){2 − 1}] (9) 

 

The value of 𝑇𝐹 is not a parameter of TLBO, which is 

determined randomly in Eq. (9). 

If 𝑇𝐹 = [0~1], the algorithm performs more accurate. 

The existing solution is updated in the first part according to 

  

(a) P = 1 (b) P = 3 
 

  

(c) P = 4 (d) P = 5 

Fig. 1 B-splines, P = 1, 2, 3, 4 and 5 
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the following equation 

 

𝑋𝑗,𝑘,𝑖
′ + 𝑋𝑗,𝑘,𝑖 + ∆𝑋 (10) 

 

where, 𝑋𝑗,𝑘,𝑖
′  is the updated value from 𝑋𝑗,𝑘,𝑖 . If 𝑋𝑗,𝑘,𝑖

′  

gives better function value, it is accepted. 

 

3.1.2 Learner phase 
Secondly, the learners rise their knowledge based on the 

interaction among themselves. Randomly, two learners P 

and Q are selected such that 

 

𝑋𝑡−𝑃,𝑖 
′ ≠ 𝑋𝑡−𝑄,𝑖 

′  (11) 

 

where 𝑋𝑡−𝑃,𝑖 
′  and 𝑋𝑡−𝑄,𝑖 

′  are the updated function of Xt-P,i 

and Xt-Q,i of P and Q, respectively, at the end of the last part 

presented already, i.e. 

 

Xj,P,i 
′′ = 𝑋𝑗,𝑃,𝑖 

′ + 𝑟𝑖(𝑋𝑗,𝑃,𝑖 
′ − 𝑋𝑗,𝑄,𝑖 

′ ), 

If     𝑋𝑡−𝑃,𝑖 
′ < 𝑋𝑡−𝑄,𝑖 

′  
(12) 

 

Xj,P,i 
′′ = 𝑋𝑗,𝑃,𝑖 

′ + 𝑟𝑖(𝑋𝑗,𝑄,𝑖 
′ − 𝑋𝑗,𝑃,𝑖 

′ ), 

If     𝑋𝑡−𝑄,𝑖 
′ < 𝑋𝑡−𝑃,𝑖 

′  
(13) 

 

The last two equations are used to minimize the 

problems. Furthermore, to maximise the problems we have 

to introduce the following formulation. 

 

Xj,P,i 
′′ = 𝑋𝑗,𝑃,𝑖 

′ + 𝑟𝑖(𝑋𝑗,𝑃,𝑖 
′ − 𝑋𝑗,𝑄,𝑖 

′ ), 

If     𝑋𝑡−𝑄,𝑖 
′ < 𝑋𝑡−𝑃,𝑖 

′  
(14) 

 

Xj,P,i 
′′ = 𝑋𝑗,𝑃,𝑖 

′ + 𝑟𝑖(𝑋𝑗,𝑄,𝑖 
′ − 𝑋𝑗,𝑃,𝑖 

′ ), 

If     𝑋𝑡−𝑃,𝑖 
′ < 𝑋𝑡−𝑄,𝑖 

′  
(15) 

 

3.2 Artificial neural network 
 

ANN is a powerful trained technique based on complex 

input and output datasets from measurements, numerical 

model or both of them (Rukhaiyar et al. 2018). The ANN 

consists of an input layer, a hidden layer, and an output 

layer as presented in Fig. 2. 

The parameters presented in Fig. 2 are described as 

follows: 
 

 

 

Fig. 2 ANN architecture 

(1) 𝑊𝑖𝑗 is the weight of 𝑖𝑡ℎneurons and 𝑗𝑡ℎ output. 

(2) 𝑏𝑗 is the bias value of the 𝑗𝑡ℎneuron in the hidden 

layer. 

(3) 𝑊𝑗 is the weight of neuron, which represents the 

connection between 𝑗𝑡ℎ neuron and single neuron 

in the output. 

(4) 𝑏1  is bias associated with the single neuron in 

output layer neuron. 

(5) The indices [i = 1, 2, …, m] are input features from 

numerical analysis or measurements and [j = 1, 2, 

…, n] are hidden layer neurons, which can be 

selected according to the number of data used. 
 

The number of parameters used in the network is 

𝑛 × (𝑚 + 2) + 1. 

After introducing the data (input and output) for ANN, 

the training with input and output is performed by PSO 

based on the best two parameters (weights and biases) of 

the neurons and it can be used in other optimization 

techniques. In this paper, we used simple and fast 

algorithm, namely PSO. 
 

3.3 Objective function 
 

The objective function provided in this paper is to 

minimize Root-Mean-Square-Error (RMSE), it can be 

expressed as 
 

RMSE = √∑ (𝑦𝑎𝑐𝑡𝑖𝑎𝑙 − 𝑦𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑)
2𝑛

𝑖=1

𝑛
 (16) 

 

where 𝑦𝑎𝑐𝑡𝑢𝑎𝑙  𝑎𝑛𝑑  𝑦𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 are the actual and predicted 

values and 𝑛 is number of data. 
 

3.4 PSO 
 

PSO is a bioinspired algorithm proposed by Kennedy 

(Kennedy 2011). The algorithm uses a set of particles flying 

in the space to find the global optimum. During an iteration 

of PSO, each particle update its position according to its 

previous experience and the experiences of the neighbours. 

The velocity 𝑣𝑖 and the position 𝑥𝑖 of each particle will 

be changed by the best 𝑝𝑏𝑒𝑠𝑡 and global best value 𝑔𝑏𝑒𝑠𝑡. 

Moreover, two parameters 𝑐1  and 𝑐2  are used for the 

acceleration. 

The objective is to update the positions of each particle 

in the space as presented in Eqs. (17)-(18). The initial 

population of size N and dimension D is denoted as x 

= [𝑥1, 𝑥2, … . . 𝑥𝑛]T. 

The individual (particle) 𝑥𝑝 (p = 1, 2, …, N) is given as 

𝑥𝑝 = [𝑥𝑝,1, 𝑥𝑝,2, … . 𝑥𝑝,𝐷]. Moreover, the initial velocity of 

the population is denoted as v = [𝑣1 , 𝑣2 , … , 𝑣𝑝 ]
T and the 

velocity of each particle 𝑣𝑝 (p = 1, 2, …, N) is given as 𝑣𝑝 

= [𝑣𝑝,1, 𝑣𝑝,2, … . 𝑣𝑝,𝐷]. The index p varies from [1  to  𝑁], 

whereas the index q varies from [1 to D]. 

 

𝑣𝑝,𝑞
𝑘+1 =  𝑤 × 𝑣𝑝,𝑞

𝑘 + 𝑐1𝑟1 (𝑝𝑏𝑒𝑠𝑡𝑝,𝑞
𝑘 − 𝑥𝑝,𝑞

𝑘 ) 

               +𝑐2𝑟2 (𝑔𝑏𝑒𝑠𝑡𝑞
𝑘 − 𝑥𝑝,𝑞

𝑘 ) 
(17) 

608



 

An efficient hybrid TLBO-PSO-ANN for fast damage identification in steel beam structures using IGA 

where 𝑟1 and 𝑟2  are random values generated between 

[0~1]. Furthermore, the present movement is multiplied by 

an inertia factor w. 
 

𝑥𝑝,𝑞
𝑘+1 = 𝑥𝑝,𝑞

𝑘 + 𝑣𝑝,𝑞
𝑘+1 (18) 

 

Where 𝑝𝑏𝑒𝑠𝑡𝑝,𝑞
𝑘  is personal best of the 𝑞𝑡ℎ component 

of 𝑝𝑡ℎ individual. Moreover 𝑔𝑏𝑒𝑠𝑡𝑞
𝑘 is 𝑞𝑡ℎ component of 

the best individual of the population up to the number of 

generation k. 

 

3.5 Architecture of TLBO-PSO-ANN 
 

In the first step, the optimum training of ANN using 

PSO is considered. PSO initialized randomly the two 

parameters selected, weight and biases, for each iteration 

based on N sets and size D, respectively. Each set can be 

presented as the particle of the swarm and as position of the 

particle. 

The fitness for each particle is evaluated, according to 

the best fitness after each generation and 𝑔𝑏𝑒𝑠𝑡 and 𝑝𝑏𝑒𝑠𝑡 

are obtained. In the second step, the powerful optimization 

algorithm TLBO technique is combined with PSO-ANN to 

find the best parameters of ANN (n number of neurons) and 

PSO(𝑐1  and 𝑐2  acceleration factors, population, and 

generation) for fast and high accuracy prediction of 

damage. This algorithm is based on the level of damage 

between real and estimated one, which is used as an 
 

 

objective function. The overall steps of the proposed tool 

are presented in the flowchart shown in Fig. 3. 
 

 

4. Normalized Modal Strain Energy Damage 
Indicator (nMSEDI) 
 

For constructing the newly proposed indicator, a modal 

strain energy formulation is required. Firstly, the free 

vibration problem is formulated as 

 
([𝐾] − 𝜔𝑖

2[𝑀]){𝜙}𝑖 = 0,        𝑖 = (1,2, … . . 𝑛) (19) 

 

where 𝐾 is stiffness matrix and 𝑀  is mass matrix, 

respectively with n× n dimensions. 𝜔𝑖  is ith frequency, 
{𝜙}𝑖  is mode shapes and n is the number of DOFs 

according to the number of elements selected. 

Secondly, modal strain energies of healthy (𝑀𝑆𝐸𝑖
𝑢) and 

damaged (𝑀𝑆𝐸𝑖
𝑑) structure are presented in the following 

equations 
 

𝑀𝑆𝐸𝑢 =
1

2
[𝑥𝑢(𝜔)]𝑇 [𝐾𝑒]

𝑢[𝑥𝑢(𝜔)] 

𝑀𝑆𝐸𝑑 =
1

2
[𝑥𝑑(𝜔)]𝑇 [𝐾𝑒]

𝑑[𝑥𝑑(𝜔)] 
(20) 

 

where, 𝑥(𝜔)  is vector of structural response, 𝜔  is 

frequency, i is mode number and 𝐾𝑒 is elementary stiffness 

matrix. 

The total of MSE can be expressed as 
 

 

 

Fig. 3 TLBO-PSO-ANN 
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Table 1 Mechanical and geometric characteristics of the 

beam 

Properties/unit value 

Young’s modulus E (GPa) 210 

Width (b) (m) 0.04 

Thickness (h) (m) 0.01 

Length (L) (m) 1 

Mass density (ρ) (kg.m-3) 7850 

Poison ratio (υ) 0.3 
 

 

 

 

 

𝑀𝑆𝐸𝑖
𝑇(𝑢)

= ∑𝑀𝑆𝐸𝑖
𝑢

𝑛

𝑒=1

         𝑀𝑆𝐸𝑖
𝑇(𝑑)

= ∑𝑀𝑆𝐸𝑖
𝑑

𝑛

𝑒=1

 (21) 

 

The normalization of 𝑛𝑀𝑆𝐸𝑖
𝑢 and 𝑛𝑀𝑆𝐸𝑖

𝑑  are 

presented in the following equation by dividing each 

elementary energy by the total energy. 
 

𝑛𝑀𝑆𝐸𝑖
𝑢 =

𝑀𝑆𝐸𝑖
𝑢

𝑀𝑆𝐸𝑖
𝑇(𝑢)

, 𝑛𝑀𝑆𝐸𝑖
𝑑 =

𝑀𝑆𝐸𝑖
𝑑

𝑀𝑆𝐸𝑖
𝑇(𝑑)

 (22) 

 

 

 

 

 

  

(a) (b) 

Fig. 4 Experimental set-up (a) and FRF (b) 

 

  .  

IGA NURBS order 1, 11×3 Elements 
 

  

IGA NURBS order 1, 40×3 Elements 
 

 

IGA NURBS order 2, 11×3 Elements 
 

  

IGA NURBS order 3, 11×3 Elements 
 

  

IGA NURBS order 4, 11×3 Elements 
 

 

IGA NURBS order 5, 11×3 Elements 

Fig. 5 IGA with different NURBS orders 
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Table 4 Damage scenarios 

Scenario Damage location Damage level [%] 

1 Element 1 10 

2 Element 14 15 

3 Element 22 25 

4 Element 30 30 
 

 

 

In the last step, the first m mode is chosen as effective 

parameter, and 𝑛𝑀𝑆𝐸𝑢 can be expressed by 

 

𝑛𝑀𝑆𝐸𝑢 =
∑ 𝑀𝑆𝐸𝑖

𝑢𝑚
𝑖=1

𝑚
,       𝑛𝑀𝑆𝐸𝑑 =

∑ 𝑀𝑆𝐸𝑖
𝑑𝑚

𝑖=1

𝑚
 (23) 

 

The normalized MSE Damage Indicator (nMSEDI) can 

be expressed by the following formulation 

 

𝑛𝑀𝑆𝐸𝐷𝐼 =
𝑛𝑀𝑆𝐸𝑢 − 𝑛𝑀𝑆𝐸𝑑

𝑛𝑀𝑆𝐸𝑢
 (24) 

 

The normalized strain energy formulation based on 

frequency response is used to collect the data with different 

levels of damage. 
 

 

5. Results and discussion 
 

In this section, the robustness and effectiveness of the 

proposed indicator are verified using a free-free beam 

structure. General information about the characteristics of 

the beam are presented in Table 1. 

For the measurements, we used NI-9234 acquisition 

card, PCB Accelerometers 356A15, and Hammer PCB 

 

 

 

 

086C03 to analyse the healthy and damaged beams. One 

accelerometer is used and data are collected at the extremity 

of beam. The frequencies were calculated after 11 positions 

of hammer impact. 

The experimental set-up, FRF and the first four natural 

frequencies of healthy beam are shown in Fig. 4. 

Fig. 5 presents the different configurations of IGA with 

different NURBS order. IGA frequencies using different 

NURBS order and discretization are compared with the 

measured ones in Table 2. The results showed that IGA with 

NURBS order 3 is more accurate than other methods. 

 

5.1 Model updating 
 

The model updating is a technique to validate the 

simulated IGA model of a real structure based on measured 

frequencies or mode shapes. For this paper, the frequencies 

used to calibrate the IGA model of the beam structure are 

obtained by modifying the stiffness and mass matrix based 

on Young’s modulus and density using TLBO as inverse 

analysis. The objective function minimizing the differentes 

between measured and calculated frequencies. The results 

after model updating are presented in Table 3. 

 

5.2 Damage identification 
 

After model updating, we consider four damage 

scenarios as presented in Table 4. Based on the damage 

indicator nMSEDI, the results for each scenario are 

presented in Fig. 6. 

It can be seen that nMSEDI can predict the correct 

location of damaged elements. Moreover, it is quite difficult 

to predict exactly the level of damaged elements for some 

cases. 

 

Table 2 Natural frequencies based on IGA and measurements with different NURBS order 

Mode 
Measurements 

[Hz] 

IGA NURBS 

order 1 

11×3 

Elements [Hz] 

IGA NURBS 

order 1 

40×3 

Elements [Hz] 

IGA NURBS 

order 2 

11×3 

Elements [Hz] 

IGA NURBS 

order 3 

11×3 

Elements [Hz] 

IGA NURBS 

order 4 

11×3 

Elements [Hz] 

IGA NURBS 

order 5 

11×3 

Elements [Hz] 

1 211.33 369.3 223.2 211.9 211.5 211.5 211.5 

2 578.52 1031.1 610.4 581.8 576.9 576.9 576.8 

3 1121.7 2062.3 1184.0 1139.7 1115.2 1114.3 1114.3 

4 1821.1 2595.5 1931.0 1899.2 1813.6 1807.9 1807.6 
 

Table 3 Updated IGA model 

Mechanical properties Frequency 

Parameters Old New Mode 
Measurements 

[Hz] 

IGA NURBS order 3 

Updated 11×3 

Elements [Hz] 

Error % 

Young modulus (GPa) 210 211.34 
1 211.33 211.9 0.269 

2 578.52 578.3 0.038 

Density (kg.m-3) 7850 7830.81 
3 1121.7 1117.9 0.010 

4 1821.1 1818.2 0.159 
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5.3 Application of TLBO-PSO-ANN for damage 
quantification 

 

In the last stage, we eliminate the healthy elements and 

predict the level of damage. Vo-Duy et al. (2016) used MSE 

combined with Jaya algorithm to predict the potential of 

damage in laminated composite plates. Khatir et al. (2019b) 

modified nMSEDI and used it as objective function with 

different optimization techniques to predict the level of 

damage with high accuracy. However, there are many 

challenges when using inverse analysis to predict the level 

of damage. TLBO-PSO-ANN is used as second stage in this 

paper to predict the level of damage with more accuracy 

and less CPU time. As presented in the flowchart (see Fig. 3), 

 

 

 

 

 

 

 

the TLBO is used to predict the parameters of PSO-ANN 

and to provide good regression. 
 

5.3.1 Damage scenario 1 
In this scenario, local damage is modelled by 30% 

reduction in stiffness for element 1 to calculate the damage 

index of nMSEDI. The estimated parameters are presented 

in Table 5. The results using PSO-ANN (before optimizing 

their parameters) and TLBO-PSO-ANN (using the best 

parameters) are presented in Fig. 7. 
 

5.3.2 Damage scenario 2 
In the second scenario, local damage is modelled by a 

stiffness reduction of 15% for element 14. The estimated 
 

 

 

 

 
 

    

(a) (b) (c) (d) 

Fig. 6 Damage index using nMSEDI: (a) scenario 1; (b) scenario 2; (c) scenario 3; and (a) scenario 4 

Table 5 Estimated parameters using TLBO for scenario 1 

TLBO  

PSO 

 

ANN 

Without 

TLBO 

With 

TLBO 

Without 

TLBO 

With 

TLBO 

Generation 100 
Generation 50 50 

Number of 

neurons 
2 7 

Population 100 78 

Population 200 
Acceleration factor: 

𝑐1 = 𝑐2 
0.9 1.38 

 

  

(a) (b) 

Fig. 7 (a) Training using PSO-ANN; and (b) Training using TLBO-PSO-ANN (Scenario 1) 
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(a) (b) 

Fig. 8 (a) Training using PSO-ANN and (b) Training using TLBO-PSO-ANN (Scenario 2) 

Table 6 Estimated parameters using TLBO for scenario 2 

TLBO  

PSO 

 

ANN 

Without 

TLBO 

With 

TLBO 

Without 

TLBO 

With 

TLBO 

Generation 100 
Generation 50 42 

Number of 

neurons 
2 6 

Population 100 60 

Population 200 
Acceleration factor: 

𝑐1 = 𝑐2 
0.9 1.28 

 

Table 7 Estimated parameters using TLBO for scenario 3 

TLBO  

PSO 

 

ANN 

Without 

TLBO 

With 

TLBO 

Without 

TLBO 

With 

TLBO 

Generation 100 
Generation 50 48 

Number of 

neurons 
2 7 

Population 100 90 

Population 200 
Acceleration factor: 

𝑐1 = 𝑐2 
0.9 1.45 

 

  

(a) (b) 

Fig. 9 (a) Training using PSO-ANN and (b) Training using TLBO-PSO-ANN PSO (Scenario 3) 
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parameters are provided in Table 6. The results for the 

second scenario using PSO-ANN and TLBO-PSO-ANN are 

presented in Fig. 8. 
 

 

 

Fig. 11 Comparison between PSO-ANN and TLBO-PSO-

ANN for each scenario 

 

 

 

 

 

 

5.3.3 Damage scenario 3 
In the third scenario, 25% reduction in stiffness in 

element 22 is introduced to calculate the damage index 

using nMSEDI. The estimated parameters are presented in 

Table 7. The results using PSO-ANN and TLBO-PSO-ANN 

are ANN are presented in Fig. 9. 
 

5.3.4 Damage scenario 4 
In the last damage scenario, 30% reduction in stiffness 

in element 30 is introduced. The estimated parameters are 

presented in Table 8 and the results using PSO-ANN and 

TLBO-PSO-ANN are presented in Fig. 10. 

Fig. 11 summarizes the results of all scenarios before 

and after damage identification procedures compared with 

actual damage. The results show that TLBO-PSO-ANN can 

predict the level of damage more accurate compared with 

PSO-ANN. 
 

 

6. Experimental validation 
 

A free-free steel beam is tested experimentally by 

extending the crack in the middle from 1 till 10 mm as 
 

 

Table 8 Estimated parameters using TLBO for scenario 4 

TLBO  

PSO 

 

ANN 

Without 

TLBO 

With 

TLBO 

Without 

TLBO 

With 

TLBO 

Generation 100 
Generation 40 56 

Number of 

neurons 
2 7 

Population 100 90 

Population 200 
Acceleration factor: 

𝑐1 = 𝑐2 
0.8 1.28 

 

  

(a) (b) 

Fig. 10 (a) Training using PSO-ANN and (b) Training using TLBO-PSO-ANN (Scenario 4) 

 

Fig. 12 A free-free steel beam with a crack in the middle 
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Fig. 15 Level of damage for crack lengths 4 mm and 10 mm 

calculated by TLBO-PSO-ANN 

 

 

 

 

 

 

 

 

Fig. 16 Fitness of two damage scenarios (crack lengths 

4 mm and 10 mm) using TLBO 

   

Crack length 2 mm Crack length 6 mm Crack length 8 mm 

Fig. 13 Examples of crack configurations 

Table 9 Estimated parameters using TLBO based on measured data 

Damaged element 28 

Frequency 

Crack 

2 mm 

Loss of 

rigidity [%] 

Crack 

4 mm 

Loss of 

rigidity [%] 

Crack 

6 mm 

Loss of 

rigidity [%] 

Crack 

8 mm 

Loss of 

rigidity [%] 

Crack 

10 mm 

Loss of 

rigidity [%] 

210.63 

16 

209.53 

24.63 

208.13 

34.34 

205.31 

50.50 

202.81 

61.95 
577.34 577.50 577.03 576.72 577.34 

1118.3 1114.4 1107.8 1095.9 1086.0 

1817.2 1817.7 1816.4 1814.5 1812.9 
 

  

(a) (b) 

Fig. 14 Training performance of two damage scenarios: (a) crack length 4 mm and (b) crack length 10 mm 
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shown in Fig. 12. Examples of extended crack configuration 

are presented in Fig. 13. 

The crack is simulated by calculating the loss of rigidity 

in element 28 based on inverse analysis using TLBO after 

modal updating as presented in Table 9. 

From the IGA model, we collect the data based on 

frequencies and nMSEDI values as input and output data. 

Two scenarios are predicted from Table 9 using TLBO-

PSO-ANN. The trained results are presented in Fig. 14. The 

comparison between real and estimated damages are 

presented in Fig. 15. 

For the training and testing data of nMSEDI values and 

frequencies based on measurements, it can be observed that 

the best results are obtained when n = 8, swarm size = 86, 

generation = 67 and acceleration factor 𝑐1 = 𝑐2 = 1.19 for 

the first scenario and the second best when n = 8, swarm 

size = 75, generation = 70 and acceleration factor 𝑐1 = 𝑐2 

= 1.15. The fitness of both cases is plotted in Fig. 16. 

 

 

7. Conclusions 
 

In this present study, a two-stage method using nMSEDI 

and TLBO-PSO-ANN has been proposed for damage 

detection, localization, and quantification using 2D-IGA 

model of a beam structure. In the first stage, the damage 

elements are detected by nMSEDI and the healthy elements 

are eliminated. Whereas, in the second stage, nMSEDI is 

used as input data and TLBO is used to predict the best 

parameters of PSO-ANN. After collected the new 

parameters, PSO-ANN is used to estimate the level of 

damage. Based on the obtained results, some advantages 

can be presented after using TLBO-PSO-ANN as follows: 

 

(1) The damage indicator, nMSEDI, provides good 

results for damage localization. 

(2) nMSEDI values are used as input data for training 

in PSO-ANN. 

(3) The proposed application nMSEDI-TLBO-PSO-

ANN can detect the level of damage correctly with 

less CPU time after estimating the parameters of 

PSO-ANN using TLBO. 
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