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1. Introduction 

 

Nowadays scientists are trying to use new materials to 

improve the mechanical responses of the structures. Smart 

materials can be named of the best materials which can 

adopt the mechanical behaviors of the structures in 

accordance with the desired ones. Using smart materials 

leads to achieving the desired action from the engineering 

structures. Magneto-strictive (MS) materials are from one 

of the well-known smart materials. They deform when are 

subjected to a magnetic field. Cobalt, iron, nickel, and 

ferrite are known as MS materials. These materials are 

appropriate to provide enormous forces, strains, high energy 

densities, noise, and vibration control and can be used as 

sensors and actuators (Squire 1999, Duc et al. 2015a, 

2016a, Tabbakh and Nasihatgozar 2018, Duc 2018, Duc and 

Cong 2018, Zucca et al. 2015). The MS strain originates 

from the rotation of the atomic magnetic moment in a 

magnetic field without changing crystallographic 

orientation or structure (Ghorbanpour Arani et al. 2017b). 

MS materials are taken into consideration by the 

researchers, recently. The analysis of a curved beam with 

MS layers was provided by Bayat et al. (2015). They used 

Terfenol-D as the MS material. Ebrahimi and Dabbagh 

(2018b) studied about MS sandwich composite nanoplates. 

They used classical plates theory (CPT) to describe the 
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displacements of the structure and modified strain gradient 

theory to take into account the small scale effect and also 

solved the equations analytically. Ghorbanpour Arani and 

Khoddami Maraghi (2016) employed sinusoidal shear 

deformation theory to consider the vibrational behavior of 

an MS plate. They concluded MS materials help to control 

vibrations of the structures. Suman et al. (2017) presented 

bending and strength analyses of the laminated plate with 

MS layers. They used ANSYS to analyze their model. The 

results for the effect of thermo-magnetic fields on the 

behavior of three-layered MS plates which its top and 

bottom layers were made of ceramic presented by Ebrahimi 

and Dabbagh (2018a). Their study was on small scale and 

considered different variants effects. Trigonometric higher 

order shear deformation theory used by Ghorbanpour Arani 

et al. (2017b) to control vibrations of the MS plate which 

was subjected to multi-physical loads. 

Mohammadrezazadeh and Jafari (2019) used classical shells 

theory to consider vibration control of a laminated truncated 

conical shell which was integrated by MS layers. They 

obtained the results via Galerkin method and compared 

them with those of finite element software. Also, transient 

response of an FG nanobeam which two MS layers was 

bonded to its top and bottom surfaces presented by 

Ghorbanpour Arani and Abdollahian (2017). They used 

modified couple stress theory to account the small scale 

effect. 

Rheological fluids are a well-known branch of the smart 

materials which are attracted the scientist attention recently 

that includes two types, namely magneto-rheological (MR) 

and electro-rheological (ER) which are sensitive to 

magnetic and electric fields, respectively. MR fluids refer to 
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the colloidal suspensions which are made from ferrous 

particles in the low permeability oil. By exposure to a 

magnetic field, ferrous particles attached to each other 

quickly, form chain-like in the applied field direction and 

MR fluids are converted to quasi-solid materials from the 

liquid phase. The most important features of MR fluids that 

encouraged the scientist to use them in the smart devices 

and structures are their high capacity for vibration damping, 

quick response, good reversibility, and controllable 

performance (Duan et al. 2019, Huang et al. 2019, Tzou et 

al. 2004, Zhang et al. 2019). An experimentally vibrations 

test of MR cantilever sandwich beams was provided by 

Lara-Prieto et al. (2010). They considered both partial and 

full activation effects of the MR beams and changes in 

natural frequencies shows the controllability of the 

structure’s vibration. Sandwich rectangular plates vibrations 

with MR elastomer damping presented by Yeh (2013). He 

found that the MR elastomer has a noteworthy effect on the 

vibrational response of the rectangular plate and obtained 

the results for different values of magnetic field intensity. 

Manoharan et al. (2014) carried out a dynamic analysis of 

laminated composite MR fluids plate and the motion 

equations were presented in FE formulation form and 

considered variations of frequencies and loss factor by 

changing the other parameters such as a magnetic field. The 

vibration of a partially treated laminated composite MR 

fluid sandwich rectangular plate considered by 

Ramamoorthy et al. (2016). They presented the results for 

both free and forced vibration cases. Eshaghi et al. (2015) 

presented both experimental and theoretical analyses about 

the effect of MR fluid on the vibration of sandwich plates. 

They considered two different sandwich plates with 

polyethylene terephthalate face layers. It is noticeable that 

they employed classical plate theory (CPT) to extract the 

motion equations. Babu and Vasudevan (2016) carried out a 

dynamic analysis of tapered laminated sandwich plate 

which they used MR elastomer as the core and composite 

laminates as the face sheets. They derived governing 

equations based on CPT and solved them numerically and 

presented the results for featured parameters such as applied 

field intensity. Naji et al. (2016) used layerwise theory to 

obtain more accurate results about the dynamic 

characterization of beam structures with MR layers and 

solved the equations via finite element method (FEM). 

They provided an experimental set-up to validate FE model. 

They investigated vibrational behavior of laminated 

composite beams with MR layers in another study (Naji et 

al. 2018). They used experimental tests to validate their 

analytical obtained results. MalekzadehFard et al. (2017) 

discussed mechanical behavior cylindrical sandwich panels 

with MR fluid core. They analyzed vibration and buckling 

behaviors of the mentioned structure for a simply supported 

cylinder based on higher order panel theory and validated 

their results with that of simulated with ABAQUS. 

Different displacement fields have been used by the 

researchers to analyze the structures’ behaviors. For 

example, CPT neglects from the shear deformation effect, 

while the higher-order ones take the shear deformation 

effect into account. Bui and Nguyen (2011) used a novel 

 

meshfree method for free vibration analysis of classical 

Kirchhoff’s plates. In another study, Bui et al. (2011a) 

analyzed buckling of plates subjected to uniformly uniaxial, 

biaxial in-plane compression and pure shear loads using an 

efficient novel meshfree method based on Reissner-Mindlin 

plate theory. Minh and Duc (2019) discussed the effect of 

cracks on the stability of the functionally graded (FG) plates 

with variable-thickness using higher-order shear 

deformation theory (HSDT). Buckling isogeometric 

analysis of FG plates under combined thermal and 

mechanical loads provided by Yu et al. (2017). Thom et al. 

(2017) analyzed bi-directional FG plates by FEM and a new 

third-order shear deformation plate theory. Nonlinear 

dynamic analysis of Sigmoid FG circular cylindrical shells 

on elastic foundations using the third-order shear 

deformation theory in thermal environments provided by 

Duc et al. (2015b). Bui et al. (2016) presented new 

numerical results of mechanical behaviors of FG plates in 

high temperatures. They developed a FEM based on a new 

third-order shear deformation plate theory. An effective 

isogeometric analysis for modeling laminated composite 

plates with cutouts carried out by Yu et al. (2016). They 

described cutouts by the level set method. An efficient 

meshfree method for vibration analysis of laminated 

composite plates presented by Bui et al. (2011b). Their 

formulation was based on the CPT while the moving 

Kriging interpolation satisfied the delta property was 

employed to construct the shape functions. In another study, 

Bui et al. (2009) used a similar interpolation‐based 

meshless method for numerical simulation of Kirchhoff’s 

plate problems. Moreover, in series of paper, the influence 

of different structures’ theories on dynamic response and 

also their structural behavior in different thermo-mechanical 

environments considered by various authors (Duc 2014, 

Duc et al. 2015c, Anh et al. 2015, Chan et al. 2019, Minh et 

al. 2018). 

The aim of this work is to analyze the vibrational 

behavior of a smart annular sandwich plate which is made 

from an MR fluid core and two MS face sheets. The 

structure is located on visco-Pasternak medium and is 

subjected to a magnetic field. To the best author’s 

knowledge, there is no study about such a structure in the 

literature. Three different MR fluid types are considered as 

the core’s type. The kinematics relations are on the basis of 

CPT which neglects shear deformation effects and also the 

relation between strains and displacements are investigated 

according to the Von-Karman assumptions. Using energy 

method and Hamilton’s principle the motion equations are 

extracted and are solved for various boundary conditions by 

employing GDQ as an accurate and rapid-convergence 

numerical method. Influences of the most prominent 

parameters of the structure such as the geometrical size of it 

and also different MR fluid types, applied magnetic field, 

velocity feedback gain and visco-Pasternak medium are 

considered in detail. The outcomes of this work may be 

useful to design more accurate smart structures and devices 

such as sensors and actuators. 
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Fig. 1 Schematic of the under consideration smart annular 

sandwich plate 

 

 

2. Mathematical formulations 
 

One MR smart annular plate which is located between 

two MS layers is taken under investigation as can be seen in 

Fig. 1. The origin of the coordinate system is located at the 

center of the mid-plane of the core. The inner radius of the 

plate is shown by a and the outer one is b. also, hi (i = t, c, 

b) represents the thickness of each layer. To consider the 

effect of the medium, a viscoelastic type foundation is 

selected and the structure is rested on. 

The formulations are presented based on the following 

assumptions: 
 

● The core and face layers are fully bonded to each 

other and their transverse displacement is the same. 

● The Young’s elasticity modulus of the MR fluid is 

lower than MS face sheets. Therefore, the normal 

stresses of the MR fluids vanish. 

● The shear strains of the core are much greater than 

the face layers. So, those of the face layers are 

relinquished. 
 

CPT is employed to describe the displacement 

components of the faces. Based on the CPT, the effect of 

shear deformations is not taken into consideration and the 

displacements are presented as follows (Arshid and 

Khorshidvand 2018) 
 

𝑈1𝑖(𝑟, 𝜃, 𝑧, 𝑡) = 𝑢𝑖(𝑟, 𝜃, 𝑡) − 𝑧
𝜕𝑤(𝑟, 𝜃, 𝑡)

𝜕𝑟
, 

𝑈2𝑖(𝑟, 𝜃, 𝑧, 𝑡) = 𝑣𝑖(𝑟, 𝜃, 𝑡) − 𝑧
𝜕𝑤(𝑟, 𝜃, 𝑡)

𝑟𝜕𝜃
, 

𝑈3(𝑟, 𝜃, 𝑧, 𝑡) = 𝑤(𝑟, 𝜃, 𝑡) 

(1) 

 

in which U1i, U2i (i = t, b), and U3 are displacements of an 

arbitrary point of the faces in the radial, tangential and 

transverse directions, respectively and ui, vi and w are those 

of their mid-plane. 

Also, the strain-displacement relations are expressed 

based on the Von-Karman assumptions which indicate 

(Brush et al. 1975) 
 

𝜀𝑖𝑗 =
1

2
[𝛻𝑈𝑘 + (𝛻𝑈𝑘)𝑇],         𝑘 = 1,2,3 (2) 

 

where εij (i, j = r, θ, z) are the strain components. 

The constitutive relations for each of the face sheets 

may be demonstrated as (Ghorbanpour Arani and 

Khoddami Maraghi 2016) 
 

{

𝜎𝑟𝑟

𝜎𝜃𝜃

𝜎𝑟𝜃

} = [
𝑐11 𝑐12 0
𝑐12 𝑐22 0
0 0 𝑐44

] {

𝜀𝑟𝑟

𝜀𝜃𝜃

𝛾𝑟𝜃

} − [

0 0 𝑒31

0 0 𝑒32

0 0 𝑒34

] {
0
0

𝐻𝑧

} (3) 

 

where σij and εij are stress and strain tensors, respectively. eij 

and Hz also are the MS coupling moduli and external 

transverse magnetic field, respectively. Furthermore, cij 

denotes the MS stiffness components which are expressed 

as 
 

𝑐11 =
𝐸𝑀𝑆

1 − 𝜈𝑀𝑆
2 ,       𝑐12 = 𝜈𝑀𝑆𝑐11,      𝑐44 =

𝐸𝑀𝑆

2(1 + 𝜈𝑀𝑆)
 (4) 

 

in which EMS denotes Young’s elasticity modulus of MS 

layers and νMS represents their Poisson’s ratio. 

The generated transverse magnetic field may be defined 

as (Ebrahimi and Dabbagh 2018a) 
 

𝐻𝑧 = 𝐾𝑐𝐼(𝑟, 𝜃, 𝑧, 𝑡) (5) 

 

where coil constant is shown by Kc and depends on the 

coil’s turns (nc), width (bc) and radius (rc) which can be 

determined using 𝐾𝑐 =
𝑛𝑐

√𝑏𝑐
2+4𝑟𝑐

2
. Also, the coil current 

(I(r,θ,z,t)) is defined as 𝐶(𝑡)
𝜕𝑤(𝑟,𝜃,𝑧,𝑡)

𝜕𝑡
 where C(t) is the 

constant control gain. By introducing the velocity feedback 

gain (Kvcf) as the multiple of coil constant and control gain, 

the transverse magnetic field can be rewritten as follow 
 

𝐻𝑧 = 𝐾𝑣𝑐𝑓

𝜕𝑈3(𝑟, 𝜃, 𝑧, 𝑡)

𝜕𝑡
 (6) 

 

To determine MS coupling moduli, the following 

relations can be employed 
 

𝑒31 = 𝑒31𝑀𝑆 𝑐𝑜𝑠2 𝜓 + 𝑒32𝑀𝑆 𝑠𝑖𝑛2 𝜓 , 
𝑒32 = 𝑒32𝑀𝑆 𝑐𝑜𝑠2 𝜓 + 𝑒31𝑀𝑆 𝑠𝑖𝑛2 𝜓 , 
𝑒34 = (𝑒31𝑀𝑆 − 𝑒32𝑀𝑆) 𝑐𝑜𝑠 𝜓 𝑠𝑖𝑛 𝜓 

(7) 

 

where the angle of induced magnetic anisotropy is shown 

by ψ. 

As stated before, the core’ type is from MR fluids. The 

shear properties of MR fluids are presented by numerous 

researchers. Pre- and post-yield are the regions that both 

shear stress and strain of MR fluids are characterized in. 

Also, should be noted that according to experimental tests, 

the magnetic field has a significant effect on their behavior, 
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especially their shear properties. In the pre-yield region, the 

shear stress and strain are related to each other on the basis 

of linear viscoelastic theory as below (Ghorbanpour Arani 

et al. 2017a) 
 

{𝜏𝑟𝑧, 𝜏𝜃𝑧} = 𝐺𝑐{𝛾𝑟𝑧, 𝛾𝜃𝑧} (8) 
 

The complex shear modulus of MR fluid is presented by 

Gc which introduced the viscoelastic behavior in the pre-

yield regime 
 

𝐺𝑐 = 𝐺 ′ + 𝑖𝐺″ (9) 
 

where 𝐺′ is the storage modulus which depicts the average 

energy stored of MR fluid during a cycle of deformation 

and 𝐺″ is the loss modulus which is related to average 

energy dissipated during a cycle. The MR fluid behavior in 

the post-yield regime can be investigated like to the 

Bingham plastic model, approximately 
 

𝜏 = 𝜏𝑦 + 𝜇 (
𝜕𝛾

𝜕𝑡
) (10) 

 

Here, τy, μ and 
𝜕𝛾

𝜕𝑡
 are respectively the induced dynamic 

yield stress magnetic field, the plastic viscosity, and rate of 

shear strain. 

For the MR fluid core, the shear strains can be defined 

as follows (Ghorbanpour Arani et al. 2017b) 
 

𝛾𝑟𝑧
𝑐 =

𝜕𝑈3

𝜕𝑟
+

𝜕𝑢𝑐

𝜕𝑧
, (11) 

 

𝛾𝜃𝑧
𝑐 =

𝜕𝑈3

𝑟𝜕𝜃
+

𝜕𝑣𝑐

𝜕𝑧
 (12) 

 

Based on the geometric relationship between the 

displacements as shown in Fig. 2 for before and after 

deformation (Chen and Hansen 2005), those of the MR 

fluid core can be described as follow 
 

𝜕𝑢𝑐

𝜕𝑧
=

[(
(ℎ𝑡+ℎ𝑏)

2
) (

𝜕𝑈3

𝜕𝑟
) + (𝑢𝑡 − 𝑢𝑏)]

ℎ𝑐
, (13) 

 

𝜕𝑣𝑐

𝜕𝑧
=

[(
(ℎ𝑡+ℎ𝑏)

2
) (

𝜕𝑈3

𝑟𝜕𝜃
) + (𝑣𝑡 − 𝑣𝑏)]

ℎ𝑐
 (14) 

 

 

Replacing Eqs. (13)-(14) into Eqs. (11)-(12), the 

following relations for the MR fluid core may be achieved 
 

𝛾𝑟𝑧
𝑐 = [

(
ℎ𝑡

2
+ ℎ𝑐 +

ℎ𝑏

2
)

ℎ𝑐
]

𝜕𝑈3

𝜕𝑟
+

(𝑢𝑡 − 𝑢𝑏)

ℎ𝑐
, (15) 

 

𝛾𝜃𝑧
𝑐 = [

(
ℎ𝑡

2
+ ℎ𝑐 +

ℎ𝑏

2
)

ℎ𝑐
]

𝜕𝑈3

𝑟𝜕𝜃
+

(𝑣𝑡 − 𝑣𝑏)

ℎ𝑐
, (16) 

 

To consider the effect of different types of MR fluids, in 

the present study three types of them are investigated. The 

first type was presented by Yeh (2014) and has the 

following specifications 
 

𝐺 ′ = −3.3691𝐵2 + 4997.5𝐵 + 873000, 
𝐺″ = −0.9𝐵2 + 812.4𝐵 + 185500, 
𝜌 = 3500 

(17) 

 

The second type of MR fluid was presented by 

Ramamoorthy et al. (2016) as follow 
 

𝐺 ′ = −0.05035𝐵2 + 428.455𝐵 + 858.8, 
𝐺″ = −0.057𝐵2 + 452.105𝐵 + 848.35, 
𝜌 = 2812 

(18) 

 

And Aguib et al. (2014) presented the third type of MR 

fluid with the following specifications 
 

𝐺 ′ = −3.238 × 10−6𝐵3 + 0.02733𝐵2 
          +38.29𝐵 + 1600000, 
𝐺″ = −6.889 × 10−6𝐵3 + 0.02122𝐵2 
          +70.11𝐵 + 330000, 
𝜌 = 1100 

(19) 

 

Noted that the above-mentioned specifications are 

obtained based on experimental tests and B denotes the 

magnetic field intensity in Gauss. 
 

 

3. Governing equations 
 

Energy method and Hamilton’s principle are used in this 

work to extract the governing motion equations and 
 

 

  

(a) (b) 

Fig. 2 Geometrics of MR fluids before and after deformation 
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boundary conditions of the smart annular plate as 

following (Ghorbanpour Arani et al. 2019, Karami and 

Shahsavari 2019) 
 

∫ 𝛿[𝑈 − 𝑇 − 𝑉]dt = 0
𝑡

0

 (20) 

 

in which U, T, and V are strain energy, kinetic energy, and 

works of external loads. The total strain energy of the smart 

plate may be expressed as follow (Arshid et al. 2019c, 

Sidhoum et al. 2018) 
 

𝑈 = 0.5 ∫ ∫ ∫(𝜎𝑖𝑗𝜀𝑖𝑗)
𝜃𝑟𝑓𝑎𝑐𝑒𝑠

 𝑟 d𝑟 d𝜃 d𝑧 

        +0.5 ∫ ∫ ∫(𝜏𝑘𝑧
𝑐 𝛾𝑘𝑧

𝑐 )
𝜃𝑟𝑐𝑜𝑟𝑒

 𝑟 d𝑟 d𝜃 d𝑧  
(21) 

 

in which ij = rr, θθ and rθ and k = r, θ. 

Also, the total kinetic energy of the structure can be 

obtained using the below relation (Amir et al. 2019a, Amir 

2019) 
 

𝑇 = 0.5 ∫ ∫ ∫ 𝜌𝑡,𝑏  [(
𝜕𝑈1

𝜕𝑡
)2 + (𝜕

𝑈2

𝜕𝑡
)2 + (

𝜕𝑈3

𝜕𝑡
)2]

𝜃𝑟𝑓𝑎𝑐𝑒𝑠

𝑟 d𝑟 d𝜃 d𝑧 

+0.5 ∫ ∫ ∫ 𝜌𝑐 [(
𝜕𝑈3

𝜕𝑡
)

2

+ 𝑧2 ((
𝜕𝛾𝑟𝑧

𝑐

𝜕𝑡
)

2

+ (
𝜕𝛾𝜃𝑧

𝑐

𝜕𝑡
)

2

)]
𝜃𝑟𝑐𝑜𝑟𝑒

 𝑟 d𝑟 d𝜃 d𝑧 
(22) 

 

Noted that the kinetic energy of the MR fluid core is due 

to the transverse motion and the rotational deformation of 

the core as can be seen in the above relation. 

Also, the smart plate is rested on visco-Pasternak elastic 

foundation. The force due to this type of elastic foundation 

can be demonstrated as (Arshid et al. 2019a, 

Mohammadimehr et al. 2019, Duc et al. 2017) 
 

𝐹 = 𝐾1𝑤(𝑟, 𝜃, 𝑡) − 𝐾2𝛻2𝑤(𝑟, 𝜃, 𝑡) + 𝐷 (
𝜕𝑤(𝑟, 𝜃, 𝑡)

𝜕𝑡
) (23) 

 

where K1, K2, and D are the springs, shear layer, and 

dampers constants, respectively and𝛻2 denotes Laplacian 

operator. Consequently, the work of the foundation can be 

stated as (Amir et al. 2018, Guerroudj et al. 2018, Duc et al. 

2016b) 

𝑉 = 0.5 ∫ ∫(𝐹. 𝑈3)
𝜃𝑟

 𝑟 d𝑟 𝑑𝜃 (24) 

 

Rewriting the strains in terms of displacements and 

inserting in the strain and kinetic energies and also external 

work relations, using the variational formulation and by 

mathematical manipulations, the governing motion 

equations in the axial-symmetric case will be obtained. It 

should be noted that in axial-symmetric case, the 

derivatives respect to θ will be removed 
 

𝛿𝑢𝑡:     𝑟𝐴110𝑢𝑡
″ + (𝐴110)𝑢𝑡

′ − (
𝑟𝐺1

ℎ𝑐
2 +

𝐴220

𝑟
) 𝑢𝑡 

            + (
𝑟𝐺1

ℎ𝑐
2) 𝑢𝑏 − 𝑟𝐴111𝑤‴ − (𝐴111)𝑤″ 

            − (
𝑟𝐺1𝑑

ℎ𝑐
2 −

𝐴221

𝑟
) 𝑤 ′ − 𝑟𝑃310 (

𝜕𝑤 ′

𝜕𝑡
) 

(25) 

            −(𝑃310 − 𝑃320) (
𝜕𝑤

𝜕𝑡
) − (𝐼0 +

𝐽2

ℎ𝑐
2) 𝑟 (

𝜕2𝑢𝑡

𝜕𝑡2
) 

            + (
𝑟𝐽2

ℎ𝑐
2) (

𝜕2𝑢𝑏

𝜕𝑡2
) − (

𝐽2𝑑

ℎ𝑐
2 − 𝐼1) 𝑟 (

𝜕2𝑤 ′

𝜕𝑡2
) = 0 

(25) 

 

𝛿𝑢𝑏 :     
𝑟𝐺1

ℎ𝑐
2 𝑢𝑡 + 𝑟𝐵110𝑢𝑏

″ + (𝐵110𝑏)𝑢𝑏
′  

            − (
𝐵220

𝑟
+

𝑟𝐺1

ℎ𝑐
2) 𝑢𝑏 − 𝑟𝐵111𝑤‴ − (𝐵111)𝑤″ 

            + (
𝐵221

𝑟
+

𝑟𝐺1𝑑

ℎ𝑐
2 ) 𝑤 ′ − 𝑟𝑇310 (

𝜕𝑤 ′

𝜕𝑡
) 

            +(𝑇320 − 𝑇310) (
𝜕𝑤

𝜕𝑡
) + (

𝑟𝐽2

ℎ𝑐
2) (

𝜕2𝑢𝑡

𝜕𝑡2
) 

            − (
𝐽2

ℎ𝑐
2 + 𝑌0) 𝑟 (

𝜕2𝑢𝑏

𝜕𝑡2
) + (

𝐽2𝑟𝑑

ℎ𝑐
2 + 𝑌1𝑟) (

𝜕2𝑤 ′

𝜕𝑡2
) 

            = 0 

(26) 

 

𝛿𝑤:     𝑟𝐴111𝑢𝑡
‴ + (2𝐴111)𝑢𝑡

″ + (
𝑑𝑟𝐺1

ℎ𝑐
2 −

𝐴221

𝑟
) 𝑢𝑡

′  

            + (
𝐴221

𝑟2
+

𝑑𝐺1

ℎ𝑐
2 ) 𝑢𝑡 + 𝑟𝐵111𝑢𝑏

‴ + (2𝐵111)𝑢𝑏
″  

            − (
𝐵221

𝑟
+

𝑑𝑟𝐺1

ℎ𝑐
2 ) 𝑢𝑏

′ + (
𝐵221

𝑟2
−

𝑑𝐺1

ℎ𝑐
2 ) 𝑢𝑏 

            −(𝐴112 + 𝐵112)𝑟𝑤(4) − 2(𝐴112 + 𝐵112)𝑤‴ 

            + (
𝐴222

𝑟
+

𝐵222

𝑟
+

𝑑2𝑟𝐺1

ℎ𝑐
2 + 𝑟𝐾2) 𝑤″ 

            − (
𝐴222

𝑟2
+

𝐵222

𝑟2
−

𝑑2𝐺1

ℎ𝑐
2 − 𝐾2) 𝑤 ′ − 𝑟𝐾1𝑤 

            −(𝑃311 + 𝑇311)𝑟 (
𝜕𝑤″

𝜕𝑡
) 

            −(2𝑇311 − 𝑃321 − 𝑇321 + 2𝑃311) (
𝜕𝑤 ′

𝜕𝑡
) 

            −𝑟𝐷 (
𝜕𝑤

𝜕𝑡
) − (𝐼1 −

𝐽2𝑑

ℎ𝑐
2) 𝑟 (

𝜕2𝑢𝑡
′

𝜕𝑡2
) 

            − (𝐼1 −
𝐽2𝑑

ℎ𝑐
2) (

𝜕2𝑢𝑡

𝜕𝑡2
) − (𝑌1 +

𝐽2𝑑

ℎ𝑐
2) 𝑟 (

𝜕2𝑢𝑏
′

𝜕𝑡2
) 

            − (
𝐽2𝑑

ℎ𝑐
2 + 𝑌1) (

𝜕2𝑢𝑏

𝜕𝑡2
) 

            + (𝐼2 + 𝑌2 +
𝐽2𝑑2

ℎ𝑐
2 ) 𝑟 (

𝜕2𝑤″

𝜕𝑡2
) 

            + (𝐼2 + 𝑌2 +
𝐽2𝑑2

ℎ𝑐
2 ) (

𝜕2𝑤 ′

𝜕𝑡2
) 

            −(𝐼0 + 𝑌0 + 𝐽0)𝑟 (
𝜕2𝑤

𝜕𝑡2
) = 0 

(27) 

 

Noted that the prime sign denotes derivative with 

respect to r. Also 
 

𝐴𝑖𝑗𝑘 = ∫ 𝑐𝑖𝑗𝑘𝑧𝑘𝑑𝑧
𝑡𝑜𝑝

,     𝑖, 𝑗 = 1,2,     𝑘 = 0,1,2 

𝐵𝑖𝑗𝑘 = ∫ 𝑐𝑖𝑗𝑘𝑧𝑘𝑑𝑧
𝑏𝑜𝑡𝑡𝑜𝑚

,     𝑖, 𝑗 = 1,2,     𝑘 = 0,1,2 

𝑃𝑖𝑗𝑘 = ∫ 𝑒𝑖𝑗𝑘𝐾𝑣𝑐𝑓𝑧𝑡
𝑘𝑑𝑧

𝑡𝑜𝑝

,     𝑖𝑗 = 31,32,     𝑘 = 0,1 

(28) 
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𝑇𝑖𝑗𝑘 = ∫ 𝑒𝑖𝑗𝑘𝐾𝑣𝑐𝑓𝑧𝑏
𝑘𝑑𝑧

𝑏𝑜𝑡𝑡𝑜𝑚

,     𝑖𝑗 = 31,32,     𝑘 = 0,1 

𝐺1 = ∫ 𝐺𝑐𝑑𝑧
𝑐𝑜𝑟𝑒

, 

{𝐽𝑖 , 𝐼𝑖 , 𝑌𝑖} = {∫ 𝜌𝑐 ,
𝑐𝑜𝑟𝑒

  ∫ 𝜌𝑡 ,
𝑡𝑜𝑝

  ∫ 𝜌𝑏
𝑏𝑜𝑡𝑡𝑜𝑚

} 𝑧𝑖𝑑𝑧𝑖 

                         = 0,1,2 

𝑑 =
ℎ𝑡

2
+ ℎ𝑐 +

ℎ𝑏

2
 

(28) 

 

where 
 

𝑧𝑡 = 𝑧 −
ℎ𝑐

2
−

ℎ𝑡

2
,       𝑧𝑏 = 𝑧 +

ℎ𝑐

2
+

ℎ𝑏

2
 (29) 

 

The conditions of both inner and outer edges of the plate 

may be one of simply supported or clamped. For the simply 

supported edges conditions, the following relation should be 

ruled in inner or outer edges 
 

𝒖𝒕 = 𝟎,     𝒖𝒃 = 𝟎,     𝑤 = 𝟎, 
−𝒓𝑨𝟏𝟏𝟏𝒖𝒕

′ − 𝒓𝑩𝟏𝟏𝟏𝒖𝒃
′ + (𝑩𝟏𝟏𝟐 + 𝑨𝟏𝟏𝟐)𝒓𝒘″ 

+(𝑩𝟏𝟐𝟐 + 𝑨𝟏𝟐𝟐)𝒘′ + (𝑻𝟑𝟏𝟏 + 𝑷𝟑𝟏𝟏)𝒓 (
𝝏𝒘

𝝏𝒕
) = 𝟎 

(30) 

 

And for the clamped edges annular plate the boundary 

conditions are as follows 
 

𝒖𝒕 = 𝟎,        𝒖𝒃 = 𝟎,       𝑤 = 0,        𝑤 ′ = 0 (31) 
 

 

4. Results and discussion 
 
4.1 Solution procedure 
 

In this study, GDQM is used as the numerical solution 

method to solve the governing motion equations. Based on 

the GDQ basis, the differential equations are discretized and 

are converted to the algebraic ones based on the following 

relation (Arshid et al. 2019b, Shu 2012) 
 

𝑓(𝑚)(𝑥𝑖) = ∑ 𝐶𝑖𝑗
(𝑚)

𝑓(𝑥𝑗)

𝑁

𝑗=1

,     𝑖 = 1,2, … , 𝑁 (32) 

 

in which 𝐶𝑖𝑗
(𝑚)

 is the weighting coefficient of the GDQM 

and N refers to the number of grid points. 

Also, the grid points are distributed radially and non-

uniformly according to the Chebyshev pattern as follow 

(Shokravi 2018, Tohidi et al. 2018) 

 

𝑥𝑖 = 𝑎 +
(𝑏 − 𝑎)

2
{1 − 𝑐𝑜𝑠

(𝑖 − 1)𝜋

(𝑁 − 1)
} ,     𝑖 = 1,2, . . . , 𝑁 (33) 

 

Using the GDQ relations, with regard to the harmonic 

manner for the displacements, and by converting the motion 

and boundary conditions equations to the following matrix 

form, the frequencies of the structure can be achieved by 

solving it (Amir et al. 2019b, c) 

 
([𝐾] + 𝑖𝜔[𝐶] − 𝜔2[𝑀]){𝑋} = 0 (34) 

in which [K], [C] and [M] are the stiffness, damping and 

mass matrices, respectively, and displacements vector is 

shown by {𝑋}which is defined as follow 

 
{𝑋} = {𝑢𝑡 , 𝑢𝑏, 𝑤}𝑇 (35) 

 

4.2 Validation and convergence of the results 
 

In order to examine the reliability of the results, they 

should be compared to the other studies in the literature. 

Since there is no study about such a plate, the results are 

obtained for the simpler state and are compared with those 

of previous studies. To this aim, a single-layer homogenous 

annular plate is taken under consideration in the absence of 

elastic foundation and magnetic field. The results for 

different boundary conditions are presented in Table 1. 

Noted that in this table, the Poisson’s ratio is equal to 1/3 

and the inner to outer radius ratio is 0.4. Also, the 

dimensionless frequency for this table is reported as Ω =

𝜔𝑎√𝜌ℎ/𝐴110. As can be seen in this table, the results are in 

good coincident with the previous studies’ ones 

(Chakraverty et al. 2001, Zhou et al. 2011) and the little 

difference is raised from different solution methods that the 

mentioned works used, namely Rayleigh-Ritz and variable 

seperation methods. Therefore, the reliability of the results 

is ensured. 

Furthermore, the convergence of the results for the 

under consideration plate is studied. In the numerical 

 

 

Table 1 Comparison of the present results with previously 

published studies 

Boundary 

conditions 

Ω1 

Present 

Chakraverty 

et al. 

(2001) 

Percentage 

error 

Zhou 

et al. 

(2011) 

Percentage 

error 

C-C 61.881 61.88 0.001% 61.872 0.015% 

S-C 44.928 44.93 0.004% 44.932 0.009% 

C-S 41.273 41.27 0.007% 41.261 0.030% 

S-S 28.121 28.08 0.145% 28.184 0.224% 
  

 

 

 

Fig. 3 Considering the convergence rate of the results 
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methods by increasing the number of grid points, the results 

should converge to their final values. Rate of convergence 

and moreover, using the lowest possible number of nodes to 

converge, show the power of the solution method. Here, for 

example, the convergence of the natural frequencies for 

various boundary conditions is shown in Fig. 3. The second 

type of MR fluids which was presented by Ramamoorthy et 

al. (2016) is selected for the core of the structure and the 

inner radius of the plate is considered to be 5 cm. Also, the 

outer to inner radii ratio which is shown by λ is equal to 5. 

It is seen that for all the boundary conditions the results 

are converged with approximately a few numbers of nodes, 

about 11. Therefore, the convergence of the results is also 

ensured and all of the following results, are extracted with 

15 number of grid points. 
 

4.3 Case study 
 

The motion equations of the smart sandwich structure 

which its faces were subjected to a uniform magnetic field, 

were extracted using Hamilton’s principle and solved 

numerically via the GDQ method. Three types of MR fluids 

are considered for the core’s material type and the Terfenol-

D is selected as the face sheets with E = 30 GPa, ρ = 9250 

kg/m3, ν = 0.25, and e31 = e32 = 442.55 N/m.A 

(Ghorbanpour Arani et al. 2017b). Now, the effect of 

different geometric and physical parameters such as radius 

and aspect ratios of the annular plate, magnetic field 

intensity, velocity feedback gain, types of MR fluids, 

viscoelastic medium and also boundary conditions will be 

carried out. 

Fig. 4 shows the influence of different types of MR 

fluids on the results. By considering this figure, can be 

found that enhancing the magnetic field intensity, causes an 

increase in the natural frequencies values due to increasing 

the rigidity of the structure. As stated before, when the MR 

fluids are subjected to a magnetic field, they will be 

converted to a quasi-solid phase from liquid one. So, it 

leads to increasing the rigidity of the plate. Also, by 

changing the magnetic field intensity in a logical range, the 

MR fluid type 2 will be most affected in comparison to two 
 

 

 

Fig. 4 Effect of magnetic field intensity on the three types 

of MR fluids 

other types. By reviewing the Eqs. (17)-(19) which denote 

the MR fluids types specifications, it can be expected that 

since the third type of MR fluid is affected by the cube of 

magnetic field intensity, and also due to its very small 

factor, therefore the magnetic field intensity has the least 

effect on this type. Vice versa, for the second type, 

according to its specifications, the magnetic field intensity 

has the maximum effect among the mentioned types of MR 

fluids. Generally, the shear complex modulus affects the 

stiffness of the structure and it’s increasing, leads the 

natural frequency of the plate to enhance. 

Tables 2 and 3 illustrate the effect of MR fluid type on 

the results. Table 2 shows this effect on the four first modes 

and for both edges clamped annular plate which can be seen 

that the third type of MR fluids that was presented by Aguib 

et al. (2014) has the maximum values of the results and the 

second type (Ramamoorthy et al. 2016) has the minimum 

one. 

 

 

Table 2 MR fluids types influence on the first four 

frequencies of the C-C annular plate 

MR fluid 

ω (×104) 

First 

mode 

Second 

mode 

Third 

mode 

Fourth 

mode 

Type 1 1.3407 3.0744 3.4724 5.8467 

Type 2 1.3055 3.0578 3.3882 5.8132 

Type 3 1.4466 3.1341 3.7181 5.9416 
 

 

 
Table 3 Effect of MR fluids types on the natural frequencies 

for various boundary conditions 

MR Fluid  
ω1 (×104) 

C-C C-S S-C S-S 

Type 1 1.3407 0.8724 1.0437 0.6548 

Type 2 1.3055 0.8497 1.0164 0.6379 

Type 3 1.4466 0.9441 1.1278 0.7109 
 

 

 

 

Fig. 5 Face sheets thickness variations effect on the 

fundamental frequency of the plate 
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Table 3 presents a similar effect but for the first mode 

and different boundary conditions. Since the rigidity of the 

structure for both edges clamped plate is more than the 

other conditions, so its results have the most values, too. 

And vice versa about both simply supported edges plate 

which has the least values of the frequencies. 

The effect of MS face sheets thickness on the results is 

shown in Fig. 5. The intensity of the magnetic field for this 

figure is 100 Gauss. It is found that due to more stiffness of 

the face sheets of the structure than its core, as the face 

layers become thicker, so the stiffness of the structure will 

be enhanced and following it, the natural frequency 

increases. Also, again the effect of three mentioned types of 

MR fluids is seen in this figure which confirms the previous 

findings. 

Influence of radii ratio is presented in Fig. 6. Fig. 6(a) 

depicts that by increasing the outer radius more than inner 

ones, the stiffness of the structure will be reduced and the 

natural frequency of the structure will be enhanced. Fig. 

6(b) shows this effect but for the two first modes. 

Fig. 7 presents the effect of thicknesses variations 

simultaneously. As can be expected, increasing both of the 

 

 

 

Fig. 7 Thicknesses influence on the results 

 

 

core’s and face’s thicknesses will enhance the natural 

frequency, but the effect of that of faces is more than the 

core’s due to its more rigidity. 

Figs. 8 and 9 show the viscoelastic foundation and also 

velocity feedback gain effects on the results. It can be 

understood that by increasing the Kvcf, the natural 

frequencies will be reduced. These two figures are plotted 

for the second type of MR fluid core. Generally, the effect 

of velocity feedback gain is not significant and a large value 

of it is needed to show the effect clear. Different models of 

elastic foundation and their effect on the vibrational 

behavior of the plate are compared in Fig. 8. It  is 

noteworthy that the medium of a structure can be much 

effective on its vibrations. Although the elastic medium is 

simulated by an external load, its effect enters to stiffness 

matrix and increasing the stiffness of the elastic medium, 

leads to higher values of the stiffness matrix. Noted that the 

stiffness of the elastic medium should be coordinated with 

the structure’s application and always increasing the 

foundation stiffness is not good. For example, to reduce the 

vibrations of an engineering structure without changing its 

geometrical size and material properties due to specific 

 

 

Fig. 8 Velocity feedback gain and foundation types 

effect on the results 

  

(a) (b) 

Fig. 6 Radii ratio effect on the natural frequency of the structure for a) various boundary conditions; b) two first modes 
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Fig. 9 Viscoelastic foundation effect on the first frequency 

of the C-C plate 
 

 

limitations, adding elastic foundation can help to achieve 

this aim. Nowadays different types of elastic medium in 

various fields such as civil, mechanical or industrial 

engineering are used widely. With regard to Fig. 8, it is 

found when the elastic foundation is neglected, the 

frequencies have the least values. But when springs are 

added to the structures, in other words, the foundation is 

simulated by the Winkler model, the frequencies are 

increased for increasing the rigidity of the structure. Also, 

by enhancing the spring constant, the frequencies are 

raising, too. Adding the shear layer converts the foundation 

to Pasternak model and leads the frequency to rise. 

But adding the dampers to the foundation as is shown in 

Fig. 9, which causes the foundation converts to viscoelastic 

one, reduces the frequency. Increasing the damping constant 

reduces the rigidity and consequently, frequencies reduce. 
 

 

5. Conclusions 
 

Free vibration analysis of a smart annular three-layered 

plate provided in this work. MR fluids are used as the core’s 

material type and the face sheets are made from MS 

materials and it is assumed that they are fully bonded to 

each other. The sandwich plate is rested on a visco-

Pasternak foundation and also is subjected to a magnetic 

field. The kinematic relations are provided based on the 

CPT which neglects the shear deformations effect which is 

more common for thin structures. Three different types of 

MR fluids are considered as core’s material. The differential 

motion equations and associated boundary conditions are 

extracted by employing Hamilton’s principle and are solved 

via GDQ as an accurate numerical method. 

Different parameters effect on the results was discussed 

in details and the following items can be concluded: 
 

● Enhancing the magnetic field intensity leads the 

natural frequencies to increase. 

● The applied magnetic field affects the second type of 

MR fluids more the two other types. 

● Comparing three types of MR fluids, it can be found 

that the third type leads to the most and the second 

type leads to the least values of the natural 

frequencies. 

● As both core and faces become thicker, the natural 

frequencies of the plate increase. Noted that the 

effect of face sheets’ thickness variations is more due 

to its more rigidity. 

● Increasing the velocity feedback gain values leads to 

reduce the natural frequency. 

● The frequencies of both edges clamped plate are 

more than other types of boundary conditions. 

● By neglecting the elastic foundation, the results are 

in their minimum values and by adding the spring 

and shear layer, they lead to increase. 

● Adding the dampers to the foundation reduces the 

frequencies of the structure. 
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