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1. Introduction 
 

Among several approaches to SHM, vibration 

monitoring is an effective technique since it is non-

destructive and able to detect damages located deeply in the 

structure (Reynders et al. 2010). Vibration monitoring 

consists of field tests to identify structural dynamic 

characteristics including natural frequencies, mode shapes, 

and damping ratios. This technique could be used for 
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numerous fields such as damage detection (Meng et al. 

2019); parameter estimation and structural control purposes 

(Guo et al. 2019, Liang et al. 2019, Anitescu et al. 2019). 

According to the excitation methods, vibration excitation 

can be subdivided into forced and ambient. A forced 

vibration test (FVT) requires an artificial excitation force 

measured and controlled. An ambient vibration test (AVT) 

relies on ambient (or natural) excitation sources e.g., wind 

or micro-seismicity. An AVT is also frequently referred to 

as an operational modal analysis (OMA). Recently, system 

identification methods have been used for both operational 

excitation and artificial excitation (Reynders and De Roeck 

2008). This not only makes the identification of modal 

scaling factors possible to conduct in an inexpensive way, 

but also provides modal estimates with a very high degree 

of accuracy. However, using artificial excitation is not 

always possible, e.g., when the structure is difficult to 

access. For long-span bridges, AVT is the most effective 
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Abstract.  This paper proposes a novel approach to model updating for a large-scale cable-stayed bridge based on ambient 

vibration tests coupled with a hybrid metaheuristic search algorithm. Vibration measurements are carried out under excitation 

sources of passing vehicles and wind. Based on the measured structural dynamic characteristics, a finite element (FE) model is 

updated. For long-span bridges, ambient vibration test (AVT) is the most effective vibration testing technique because ambient 

excitation is freely available, whereas a forced vibration test (FVT) requires considerable efforts to install actuators such as shakers 

to produce measurable responses. Particle swarm optimization (PSO) is a famous metaheuristic algorithm applied successfully in 

numerous fields over the last decades. However, PSO has big drawbacks that may decrease its efficiency in tackling the 

optimization problems. A possible drawback of PSO is premature convergence leading to low convergence level, particularly in 

complicated multi-peak search issues. On the other hand, PSO not only depends crucially on the quality of initial populations, but 

also it is impossible to improve the quality of new generations. If the positions of initial particles are far from the global best, it may 

be difficult to seek the best solution. To overcome the drawbacks of PSO, we propose a hybrid algorithm combining GA with an 

improved PSO (HGAIPSO). Two striking characteristics of HGAIPSO are briefly described as follows: (1) because of possessing 

crossover and mutation operators, GA is applied to generate the initial elite populations and (2) those populations are then employed 

to seek the best solution based on the global search capacity of IPSO that can tackle the problem of premature convergence of PSO. 

The results show that HGAIPSO not only identifies uncertain parameters of the considered bridge accurately, but also outperforms 

than PSO, improved PSO (IPSO), and a combination of GA and PSO (HGAPSO) in terms of convergence level and accuracy. 
 

Keywords:  model updating; evolutionary algorithm; cable-stayed bridge; improved particle swarm optimization; ambient 

vibration measurements; genetic algorithm; hybrid algorithm 
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vibration testing technique because ambient excitation is 

freely available, while FVT requires considerable efforts to 

install actuators such as shakers to generate measurable 

responses. Moreover, using FVT not only pushes up the 

high cost of measurements, but also obstructs the traffic 

flow. 

Structural health monitoring (SHM) has been commonly 

applied for large-scale bridges in recent decades. Deng and 

Cai (2009) updated a FE model of a concrete bridge 

employing an evolutionary algorithm (EA) coupled with a 

response surface method to determine uncertain parameters 

including boundary conditions and material properties. Wu 

et al. (2017) employed spatially-distributed optical fiber 

sensors to update a bridge located on the highway. Tran-

Ngoc et al. (2019b) identified the stiffness conditions of 

truss joints of a long-span steel truss bridge using 

experimental measurements carried out under excitation 

sources of train passage, wind, and micro-tremors coupled 

with a FE model. Ashebo et al. (2007) combined field 

measurements with a FE model to consider the influences 

of the skewness of the main girders on the load distribution 

of vehicles in the transverse direction on the bridge. Zhong 

et al. (2016) identified uncertain structural parameters of a 

long-span cable-stayed bridge using model updating 

combined with probability box theory. Arangio and 

Bontempi (2015) used Bayesian neural networks to identify 

damages in a large-scale cable-stayed bridge based on 

structural dynamic characteristics. El-Borgi et al. (2004) 

updated a reinforced concrete bridge using a Femtools 

software combined with an enhanced frequency domain 

decomposition technique. Kouk and Yuen (2016) used a 

Bayesian probabilistic framework to identify structural 

responses of Ting Kau Bridge that is a large-scale cable-

stayed bridge in Korea. Ribeiro et al. (2012) updated a 

bowstring-arch railway bridge applying genetic algorithm 

(GA) coupled with ambient vibration measurements. 

PSO is one of the most effective metaheuristic algorithm 

derived from global search techniques to tackle 

optimization issues. PSO outperforms other metaheuristic 

algorithms such as GA, Artificial Bee Colony (ABC) 

algorithm, and Ant Colony (AC) algorithm in terms of 

computational cost, convergence level, and accuracy 

(Alqattan and Abdullah 2013, Yang et al. 2014, Tran-Ngoc 

et al. 2019a). This can be explained based on the approach 

used to look for the global best that PSO and other 

metaheuristic algorithms use. For PSO, only the best global 

position of particles is given out, and few parameters have 

to adjust after each iteration, whereas other metaheuristic 

algorithms apply too much parameters and information of 

all particles is shared with each other in the iteration 

process. Those metaheuristic algorithms have been 

extensively utilized for different fields e.g., system control, 

identification as well as classification (Tran-Ngoc et al. 

2019a). Qin et al. (2018) coupled PSO with a surrogate 

model to update a continuous railway bridge. Khatir et al. 

(2017) employed both PSO and GA to identify damage 

locations and severity in unidirectional graphite-epoxy 

composite beams based on measured vibration data. The 

results showed that PSO surpasses GA with regard to 

 

convergence rate and accuracy. Khatir et al. (2018) 

combined PSO with experimentally measured natural 

frequencies to detect damages in beam-like structures. 

However, it is noted that, as other swarm intelligence 

methods, a drawback of PSO is the problem of the 

premature convergence causing low convergence level, 

especially in complex multi-peak search issues, which may 

decrease its capability of dealing with optimization 

problems. Therefore, a creative solution to the 

aforementioned limitations of the traditional PSO is strictly 

necessary. 
Numerous researchers have proposed distinct types of 

IPSO used to tackle the problem of premature convergence 
of PSO over the recent decades. Løvbjerg et al. (2001) 
proposed an IPSO based on the theory of reproductive and 
subpopulations making a significant contribution to the 
increase in convergence speed and accuracy of the standard 
PSO. Gaussian mutation is employed to increase the search 
capacity of particles influencing convergence speed and 
accuracy of PSO (Higashi and Iba 2003). Baskar and 
Suganthan (2004) adopted a new approach using two 
particle swarms, which exchange information and work in 
parallel to remedy the shortcomings of PSO due to 
premature convergence. Ali and Tawhid (2017) proposed a 
hybrid PSO to handle optimization problems of molecular 
potential energy. Wang and Li (2004) enhance the efficiency 
of the standard PSO by combining it with simulated 
annealing algorithm. Parsopoulos and Vrahatis (2002) 
proposed a nonlinear method derived from the initialization 
technique of PSO to expand in global search capacity of 
particles. 

However, IPSO still has major drawbacks since this 

algorithm depends greatly on the quality of initial 

populations. If the positions of initial particles are far from 

the global best, it may be challenging to look for the best 

solution. Thus, in this paper, we propose a hybrid algorithm 

by coupling GA with IPSO to tackle optimization problems. 

This hybrid algorithm is completely different from IPSO 

proposed before. HGAIPSO applies potential advantages of 

both GA and IPSO to deal with optimization problems. 

Firstly, the mutation and crossover operators of GA is 

employed to generate the most elite particles and then use 

those particles to look for the best solution based on the 

global search capacity of IPSO. This strategy not only 

remedies the defect of premature convergence, but also 

improves the quality of new generations after each iteration. 

In order to evaluate the effectiveness of the proposed 

approach, a large-scale stayed-cable bridge in Vietnam (My 

Thuan bridge) is employed for model updating. To compare 

with HGAIPSO, the standard PSO, IPSO, and HGAPSO are 

also applied. 

The rest of this article is split into five main parts. The 

overview of GA, PSO, IPSO, and HGAIPSO is presented in 

section 2. The next section gives an introduction to the FE 

model of the bridge. Section 4 describes the ambient 

vibration test. Subsequently, section 5 shows the results of 

model updating. The final section draws some main 

conclusions. 
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2. Hybrid GAIPSO 
 

2.1 GA 
 

GA is a famous evolutionary algorithm commonly 

applied in numerous fields (Tran-Ngoc et al. 2018). This 

algorithm employs a crossover operator to mate initial 

particles (parents) with each other, and a mutation operator 

to create the next generations that have better quality than 

the old ones. Each particle possesses a fitness function to 

minimize the difference between the real and calculated 

results. Relying on the problems that need to be tackled, the 

fitness function could apply any structure of mathematical 

formulation. There are numerous types of GA applying for 

engineering problems, in which real-coded GA is the most 

popular because of its simplicity and effectiveness. 

 

2.2 PSO 
 

Eberhart and Kennedy (1995) developed an 

evolutionary algorithm, namely PSO derived from global 

search techniques to seek the optimal solution. PSO was 

initially employed to simulate the process of seeking food 

of some animals such as birds and fishes. By observing the 

behavior of birds and fishes seeking the food, researchers 

found that communicating with each other was 

advantageous to the search for the optimal solution during 

evolution. PSO algorithm relies on two equations to seek 

the best solution. 

The first equation is to determine the position of each 

element: 
 

𝑥(𝑡+1)(𝑖) = 𝑥𝑡(𝑖) + 𝑣(𝑡+1)(𝑖); (1) 

 

The second one is to determine the velocity of each 

element: 
 

𝑣(𝑡+1)(𝑖) 

= 𝑤 × 𝑣𝑡(𝑖) + 𝑐1 × 𝑟𝑎𝑛𝑑 × (𝑃𝑏𝑒𝑠𝑡(𝑖) − 𝑥𝑡(𝑖)) 

    +𝑐2 × 𝑟𝑎𝑛𝑑 × (𝐺𝑏𝑒𝑠𝑡 − 𝑥𝑡(𝑖)) 

(2) 

 

Where 𝑥𝑡(𝑖), 𝑥𝑡+1(𝑖) indicate the position of element i, 

𝑣𝑡(𝑖), 𝑣𝑡+1(𝑖) represent the velocity of element i at time t 

and t+1, respectively. C1 and C2 are the cognition learning 

factor and social learning factor, whereas ‘rand’ denotes 

random numbers (0 < rand < 1). While w is the inertia 

weight parameter, 𝐺𝑏𝑒𝑠𝑡 and 𝑃𝑏𝑒𝑠𝑡(𝑖) represent the global 

best, and the local best of element i, respectively. After a 

step, each element compares its own optimal solution with 

others to find the global best. The best optimal solution will 

be determined after all iterations are completed. 

 

IPSO 
Due to the capability of dealing with complex 

constrained issues based on global search ability, PSO has 

demonstrated its effectiveness to numerous engineering 

applications. However, as other swarm intelligence 

methods, a defect of the traditional PSO is premature 

convergence leading to low convergence level, especially in 

complex multi-peak search problems, which may decrease 

its capability of handling optimization problems. Some 

improved mechanisms comprising the solution to the 

premature convergence and the design of a novel formula 

for updating velocity of particles should be applied. The 

two improved parameters of IPSO consist of functional 

inertia weight (w) and constant constriction factor (T) used 

to change search velocity and strategy, all of which play an 

integral part in enhancing the effectiveness of the standard 

PSO. While w creates the biggest impacts on the change of 

the velocity of particles, T influences convergence speed. 

 

Functional inertia weight (w) 
During early iterations, inertia weight of particles should 

keep the original velocity. This strategy guarantees that 

local search could be in accordance to global exploration. In 

the search actions, if particles move close to the desired 

position, w should keep a small value, which assists the 

elements in maintaining initial velocity for the next steps. If 

the position of particles is far from the optimal solution, w 

should keep a larger value. This helps the particles to avoid 

suboptimal regions and look for a better optimal solution. 

Therefore, the new value of w is expressed in Eqs. (3)-(4) 

(Lu et al. 2015) as: 

 

𝑤 = 𝑤𝑒𝑛𝑑 + (𝑤𝑠𝑡𝑎𝑟𝑡 − 𝑤𝑒𝑛𝑑) (1 − (
𝐾

𝑄
)) 

𝑖𝑓     ( 𝑃𝑡 (𝑖) ≠ 𝑥𝑡(𝑖)) 

(3) 

 

𝑤 = 𝑤𝑒𝑛𝑑;             𝑖𝑓           (𝑃𝑡 (𝑖) = 𝑥𝑡(𝑖)) (4) 

 
The constriction factor (T) 
To keep IPSO away from premature convergence, in the 

early iterations, the constriction factor (T) needs to choose a 

convex function and hold a larger value, which assists the 

elements in looking for the global best in a large area. In the 

later iterations, T needs to choose a concave function and 

hold a small value so that T can alter slightly to the 

minimum. This strategy guarantees that PSO can converge 

to the best solution. According to the principle mentioned, 

the functional constriction factor (T) needs to follow the 

rule of a cosine function shown in Eq. (5) (Lu et al. 2015): 

 

𝑇 =
𝑐𝑜𝑠(

𝛱

𝑄
× 𝐾) +

1

4

4
 (5) 

 

The parameters obtained from Eqs. (3)-(4) and (5) are 

put into Eq. (2), becomes 

 

𝑣(𝑡+1)(𝑖) 
= 𝑇 × (𝑤 × 𝑣𝑡(𝑖) + 𝑐1 × 𝑟𝑎𝑛𝑑 × (𝑃𝑏𝑒𝑠𝑡(𝑖) − 𝑥𝑡(𝑖)) 
    +𝑐2 × 𝑟𝑎𝑛𝑑 × (𝐺𝑏𝑒𝑠𝑡 − 𝑥𝑡(𝑖))) 

(6) 

 
Q indicates the total number of iterations, whereas K 

represents the 𝐾𝑡ℎ iteration, K ∈ (0, Q). 𝑤𝑠𝑡𝑎𝑟𝑡  is the 

value of initial functional inertia weight and 𝑤𝑒𝑛𝑑 

indicates the value of functional inertia weight in the last 

iteration. 
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Fig. 1 Methodological approach to SHM in the My Thuan 

bridge using HGAIPSO 

 

 

2.2 HGAIPSO 
 

IPSO not only has the capacity of global search, but also 

tackles the problem of premature convergence of PSO. 

However, IPSO relies heavily on the quality of initial 

populations. If the positions of initial particles are far from 

the global best, it may be difficult to find the most optimal 

solution. To remedy this shortcoming of IPSO, we propose 

combining IPSO with GA to generate better next 

generations after each iteration. The process of combining 

GA with IPSO to update the My Thuan bridge is shown in 

Fig. 1 and the steps are summarised as follows. 

 

Step 1. The generation of initial position 𝑥0, velocity 

𝑣0. 

𝑥0 = [𝑥0
1, 𝑥0

2, . . . , 𝑥0
𝑗
]; (7) 

 

𝑣0 = [𝑣0
1, 𝑣0

2, . . . , 𝑣0
𝑗
]; (8) 

 

Step 2. The local best of populations is calculated and 

put in an increasing order based on the objective function 

f(x): 

𝑓(𝑥) = ∑
(𝑓

∼

𝑧 − 𝑓𝑧)2

(𝑓
∼

𝑧)2

𝑛𝑚𝑜𝑑𝑒∑

𝑧=1

 (9) 

 

𝑝0 = [𝑝0
𝑚𝑎𝑥 … 𝑝0

𝑚𝑖𝑛] (10) 

 

Where: 𝑓𝑧, 𝑎𝑛𝑑 𝑓𝑧 introduce calculated and measured 

natural frequencies, respectively 𝑛𝑚𝑜𝑑𝑒  denotes the 

number of mode “z” is the modal order. 

Step 3. Choose the parents from the best particles for 

crossover and mutation. 

Step 3.1. Choose the parents from the best particles: 
 

𝑝𝑙𝑜𝑐𝑎𝑙𝑏𝑒𝑠𝑡 = [𝑝0
𝑚𝑎𝑥]; (11) 

 

Step 3.2. Crossover: 
 

𝑝1
𝑚 = [𝑝0

𝑖 + 𝑝0
𝑘]; (12) 

 

Where i, k represent particles 𝑖𝑡ℎ, 𝑘𝑡ℎ, respectively. 

Step 3.3. Mutation: 
 

𝑝1
𝑚 + 𝑝1

𝑡; (13) 

 

Where m, t represent particles 𝑚𝑡ℎ, 𝑡𝑡ℎ, respectively. 

Step 4. Choose the best offspring particles after 

crossover and mutation for the next iteration: 

 

𝑝𝑙𝑜𝑐𝑎𝑙𝑏𝑒𝑠𝑡 = [𝑝1
𝑚𝑎𝑥]; (14) 

 

Step 5. Repeat the process from step 3 to step 4 until 

termination criteria is satisfied. 

Step 6. Using particles obtained from step 5 to look for 

the best solution based on the global search capacity of 

IPSO. 

Step 6.1. Updated velocity and position of particles: 

 

𝑣(𝑡+1)(𝑖) 
= 𝑇 × (𝑤 × 𝑣𝑡(𝑖) + 𝑐1 × 𝑟𝑎𝑛𝑑 × (𝑃𝑏𝑒𝑠𝑡(𝑖) − 𝑥𝑡(𝑖)) 

    +𝑐2 × 𝑟𝑎𝑛𝑑 × (𝐺𝑏𝑒𝑠𝑡 − 𝑥𝑡(𝑖))) 

(15) 

 

𝑥(𝑡+1)(𝑖) = (𝑥𝑡(𝑖) + 𝑣(𝑡+1)(𝑖)); (16) 

 

𝐼𝑓     (𝑥(𝑡+1)(𝑖) > 𝑥𝑚𝑎𝑥 (17) 

 

𝑥(𝑡+1)(𝑖) = 𝑥𝑚𝑖𝑛𝑚𝑖𝑛 (18) 

 

𝐼𝑓     (𝑥(𝑡+1)(𝑖) < 𝑥𝑚𝑖𝑛 (19) 

 

𝑥(𝑡+1)(𝑖) = 𝑥𝑚𝑖𝑛𝑚𝑖𝑛 (20) 

 

Where 𝑥𝑚𝑖𝑛 , 𝑥𝑚𝑎𝑥  are lower and upper values of 

search areas of particles. 

Step 6.2. Select the local best of each element, and the 

global best for the next iteration based on objective function 

f(x): 

𝐼𝑓(𝑓(𝑥𝑖) < 𝑓(𝑥(𝑖−1))) (21) 

 

𝑓(𝑃𝑏𝑒𝑠𝑡) = 𝑓(𝑥𝑖); 𝑃𝑏𝑒𝑠𝑡 = 𝑥𝑖 (22) 
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𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒(𝑓(𝑃𝑏𝑒𝑠𝑡) = 𝑓(𝑥(𝑖−1)); 𝑃𝑏𝑒𝑠𝑡 = 𝑥(𝑖−1)) (23) 

 

  𝑓(𝐺𝑏𝑒𝑠𝑡) = 𝑚𝑖𝑛( 𝑓(𝑃𝑏𝑒𝑠𝑡)) (24) 

 

Step 7. Repeat step 6 until termination criteria is 

satisfied. 

Step 8. The iteration complete and the best solution is 

obtained. 

𝑓(𝐺𝑏𝑒𝑠𝑡 , 𝑝) = 𝑚𝑖𝑛( 𝑓(𝑥)) (25) 

 

𝐺𝑏𝑒𝑠𝑡 = 𝑥(𝑝) (26) 

 

Where p indicates 𝑝𝑡ℎ iteration. 

 

 

3. My Thuan Bridge 
 

3.1 Bridge description 
 

The My Thuan Bridge as shown in Fig. 2 is a large-scale 

cable-stayed bridge crossing the mighty Mekong River in 

 

 

 

Fig. 2 The My Thuan cable-stayed bridge 

 

 

Table 1 The technical specifications of stay cables 

Cables 
Length 

(m) 

Mass per 

length 

(kg/m) 

Cables 
Length 

(m) 

Mass per 

length 

(kg/m) 

1 177.50 87.1 17 57.46 28.6 

2 173.80 72.8 18 53.49 29.9 

3 170.39 65.0 19 69.65 29.9 

4 162.40 49.4 20 76.44 31.2 

5 152.55 44.2 21 83.95 33.8 

6 142.78 44.2 22 91.95 35.1 

7 133.13 44.2 23 100.44 32.3 

8 123.64 44.2 24 109.26 40.3 

9 114.32 41.6 25 118.34 40.3 

10 105.26 40.3 26 127.66 44.2 

11 96.47 37.7 27 137.16 46.8 

12 88.03 36.4 28 146.79 50.7 

13 80.05 35.1 29 156.56 52.0 

14 72.59 33.8 30 165.44 54.5 

15 65.56 31.2 31 176.35 59.8 

16 58.56 29.9 32 186.41 78.0 
 

southwest Vietnam and was opened to traffic in 2000. The 

total length of the bridge is 1535 m, in which the length of 

the cable-stayed bridge is 650 m with three spans: two side 

spans of 150 m and a central span of 350 m. The bridge 

consists of two vertical cable planes, which are 18.6 m far 

from each other. The total width of the bridge deck is 23.6 

m including four lanes of traffic at the middle and two side 

lanes for pedestrians. 

Two towers of the bridge have a modified H frame 

configuration to keep stay cables in two vertical planes. The 

height of the towers is 123.5 m from the pile caps and 84.43 

m from the bridge deck. The bridge was opened to traffic in 

2000 and is playing a vital role in connecting traffic 

between the two provinces of Tien Giang and Vinh Long in 

the Mekong Delta. The bridge has a total of 128 stay cables; 

with 32 stay cables for each plane of each tower as shown 

in Table 1. Stay cables are located along the two sides of the 

main girder and arranged symmetrically in the bridge 

centreline. The inclination of the cable ranges from 31.090 

to 77.390. 

 

3.2 FE model of the Bridge 
 

A detailed model of the bridge (Fig. 3) is built utilizing 

the MATLAB toolbox Stabil (Dooms et al. 2010) to 

estimate structural dynamic characteristics. 

The bridge is modelled using 438 nodes, 565 three-

dimensional (3-D) beam elements, 128 3-D truss elements, 

1278 degrees of freedoms (DOFs) and nine section types 

including main girder, cross beam, bridge deck, and tower 

as shown in Figs. 4-5 and Table 2. Theoretically, a structure 

can contain a large number of vibration modes. 

Nevertheless, only some first few modes represent the most 

important dynamic behaviour of the structure. Therefore, in 

order to save computational cost, the number of nodes, 

elements, and DOFs should be selected to obtain important 

modes and represent physical features of the structure 

 

 

 

Fig. 3 FE model of the bridge 

 

 

 

Fig. 4 Main bridge typical section 
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Fig. 5 The general arrangement of towers 

 

 

Table 2 Geometric properties of section types for the bridge 

Members 
Area 

(mm2) 

Moment of 

Inertia in Z- 

direction (mm4) 

Moment of 

Inertia in Y-

direction (mm4) 

Main girder 3.53×106 1.49×1012 3.29×1012 

Cross beam 9.38×106 3.70×1011 5.20×1010 

Bridge deck 3.70×106 1.93×1010 6.54×1013 

T
o
w

er
 

Section 1 7.05×106 4.51×1012 1.20×1013 

Section 2 7.40×106 6.24×1012 2.85×1013 

Section 3 9.57×106 1.91×1013 2.11×1013 

Section 4 3.30×106 2.27×1012 2.51×1012 

Section 5 7.57×106 1.91×1013 2.11×1013 
 

 

 

accurately. This selection can be determined based on a 

baseline FE model, which was firstly developed to serve as 

an initial model for the automated model updating 

procedure. Main girder and cross beam are modelled with 

3-D beam elements that have six DOFs at each node 

consisting of translations along the x, y, and z-axes, and 

rotations around the x, y, and z-axes. 

The bridge deck is connected rigidly to the main girder 

and beam with 3-D beam elements (the connection is 

modelled as fully constrained, i.e., all six DOFs are fixed). 

The elements used to model pylons are similar to those 

applied for the main girder and cross beam. The cross-

section of the top of pylon (section 1) is unchanged and 

divided into 25 elements with the same. The remaining 

cross-sections of the pylon (section 2 and section 3) change 

according to its height divided into 14 elements with the 

same length. The cross section of the upper crossbeam 

(section 4), and the cross section of the lower crossbeam 

(section 5) are changed with the smaller dimension for the 

middle section. The connection between components of 

pylon (the top of pylon, the upper crossbeam, the lower 

crossbeam, and the bottom of pylon) is also modelled as 

fully constrained. 

Cables connect towers with main girders with 3-D truss 

elements that have three DOFs at each node comprising 

translational displacements along the x, y, and z axes. The 

properties of materials used for the bridge are shown as in 

Table 3 Properties of materials for the bridge 

Main girder 

𝐸1 39.8 GPa 

𝜌1 2510 kg/m3 

𝜈1 0.2 / 

Bridge deck 

𝐸2 31.7 GPa 

𝜌2 2450 kg/m3 

𝜈2 0.2 / 

Cable 

𝐸3 205 GPa 

𝜌3 7850 kg/m3 

𝜈3 0.3 / 

Cross beam 

𝐸4 31.7 GPa 

𝜌4 2450 kg/m3 

𝜈4 0.2 / 

Tower 

Section 1 

𝐸5 31.7 GPa 

𝜌5 2450 kg/m3 

𝜈5 0.2 / 

Section 2 

𝐸6 31.7 GPa 

𝜌6 2450 kg/m3 

𝜈6 0.2 / 

Section 3 

𝐸7 31.7 GPa 

𝜌7 2450 kg/m3 

𝜈7 0.2 / 

Section 4 

𝐸8 31.7 GPa 

𝜌8 2450 kg/m3 

𝜈8 0.2 / 

Section 5 

𝐸9 31.7 GPa 

𝜌9 2450 kg/m3 

𝜈9 0.2 / 
 

 

 
 

Table 3 obtained from design documents. 

Four bearings under the main girders are movable 

bearings modelled using spring elements. Two supports 

under the tower legs are fixed. Connections between the 

main girders and the lower crossbeam of towers are 

modelled by using spring elements. 

The natural frequencies of the first four modes are 

shown in Table 4. All modes are vertical bending. Figs. 6-9 

show mode shapes of modes obtained from the FE model. 

 

 
 

Table 4 Natural frequencies of the first four modes from the 

FE model  

Modes f (Hz) Mode type 

1 0.36 1st  

2 0.56 2nd  

3 0.59 3rd  

4 0.67 4th  
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Fig. 6 Mode 1 - f = 0.36 Hz 
 

 

 

Fig. 7 Mode 2 - f = 0.56 Hz 
 

 

 

Fig. 8 Mode 3 - f = 0.59 Hz 
 

 

 

Fig. 9 Mode 4 - f = 0.67 Hz 

 

 

4. The operational modal analysis 
 
4.1 Test descriptions 
 

The vibration measurements were performed on the 

cable-stayed bridge. The dynamic response was generated 

by free vibration of the bridge caused by passing vehicles 

and ambient wind forces. In total, 276 DOFs (138 nodes × 2 

DOFs) located on the tower and the bridge deck were 

configured in two directions y, and z. While 68 DOFs (34 

nodes × 2 DOFs) are measured nodes, 208 DOFs (104 

nodes × 2 DOFs) are selected as virtual (slave) nodes. There 

are four reference sensors (sensors with fixed position) 

placed at the bridge deck slab, including nodes 9, 25, 40, 

and 56 (Fig. 10). Although the basis of selection of the 

number of fixed sensors depends on available equipment, 

they should be chosen as many as possible in vibration 

measurements. In any case, at least one reference sensor has 

to be employed, while the other roving sensors used to 

collect data from all the residual nodes. Reference sensors 

should be located at positions with modal displacements of 

all relevant modes. In this case, the positions of reference 

sensors were chosen deriving from the analysis results of 

the preliminary FE model. The other nodes (30 nodes) were 

measured by eight roving sensors (sensors can move on the 

bridge) through 12 setups. The application of roving sensors 

is necessary if the number of DOFs that need to be taken the 

measurements is higher than the number of available ones. 

The measurement grid is shown in Fig. 10. Eight sensors 

were placed at bearings at the end of the bridge (nodes 1, 

101, 64, 164) to update the real operational conditions of 

the bearings. All those sensors worked in directions y and z. 

Table 5 Overview of the measurement setups 

Setups Reference nodes Measured nodes 

Setup 1 (Deck) 9 

9 

6 

11 

14 

Setup 2 (Deck) 9 

9 

1 

101 

109 

Setup 3 (Pylon) 9, 25 

9 

25 

211 

289 

Setup 4 (Pylon) 9, 25 

9 

25 

238 

246 

Setup 5 (Deck) 25 

25 

28 

31 

34 

Setup 6 (Deck) 25 

25 

19 

22 

125 

Setup 7 (Deck) 25, 40 

25 

37 

40 

43 

Setup 8 (Deck) 40 

40 

140 

46 

51 

Setup 9 (Pylon) 40, 56 

40 

56 

311 

389 

Setup 10 (Pylon) 40, 56 

40 

56 

338 

346 

Setup 11 (Deck) 56 

56 

54 

59 

- 
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Table 5 Continued 

Setups Reference nodes Measured nodes 

Setup 12 (Deck) 56 

56 

64 

156 

164 
 

 

 

The vibration test was divided into twelve setups as 

shown in Table 5. Each setup consists of 8 (PCB-393B12) 

accelerometers with high sensitivity (965 to 1083 

mV/m/s2). Nevertheless, the sensitivity of the 

accelerometers should be cautiously evaluated because 

utilizing a high sensitivity sensor can cause clipping of the 

response or distortion. Since structural dynamic 

characteristics, especially the natural frequencies are 

influenced by environmental conditions, e.g., temperature, 

the ambient vibration measurements should be performed at 

constant temperature. 
 

 

 

 

 

 

In order to receive the signals from the sensors, a 12-

channel data acquisition system using three National 

Instruments (NI) 9234 modules was applied. A portable 

computer was employed to process and save the data from 

the data acquisition system. The sampling frequency is 

1651 Hz. The average measurement duration was about 

twenty minutes per one output-only setup, which was 

chosen from experience with analogous structures. The 

normally operating traffic was the main excitation source. 

Fig. 11 shows the set-up of the field equipment. 
 

4.2 System identification 
 

4.2.1 Data pre-processing 
To handle the data from the measurements, MACEC 

software (Reynders et al. 2014) used. A typical acceleration 

record is shown in Fig. 12. 

The data preprocessing comprises the following steps: 
 

● At first, a grid of measured nodes is built, and then 

those nodes are connected with each other by lines to 
 

 

 

 

 

 

(a) Side view 
 

 

(b) Top view 

Fig. 10 Overview of the measurement locations 

  

(a) Data acquisition system (b) Accelerometer (PCB-393B12) 

Fig. 11 Field measurement 

 

Fig. 12 Time history of the acquired acceleration data for setup 1 
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generate a visualization of the bridge. 

● Input parameters consist of measurement units, 

labels, amplification factors, data types, and 

sensitivities. 

● A function, namely “Filter-Filter” is employed to 

remove low-frequency disturbance (blurring) or 

noises from the measured data. 

● Since the frequency range of interest in the 

considered large-scale cable-stayed bridge is 0-2 Hz, 

digital filtering is used for the measurement signals. 

This solution not only helps reduce the redundant 

measured data, but also facilitates the system 

identification. 

 

4.2.2 Covariance based system identification 
After pre-processing the data, a measurement model of 

the structure is determined from the data in the system 

identification. For the purpose of performing dynamic 

system identification for OMA or the output-only of 

structures, the stochastic subspace identification (SSI) 

method is applied. SSI includes two implementation types 

consisting of the covariance (SSI-cov) option and the data-

driven (SSI-data) option, in which the implementation of 

SSI-cov not only reduces computational costs, but also is 

more straightforward than the SSI-data. For that reason, 

SSI-cov is employed to determine the dynamic behavior of 

the My Thuan Bridge. The raw time data could be split up 

into the number of blocks employed to calculate the sample 

covariance of the output matrices. In the theoretical aspect, 

fifty percent of the number of block rows (i) could be 

selected depending on the direct correlation of the Nyquist-

frequency with the lowest one of interest. Practically, the 

value of block rows creates major impacts on the quality of 

the dynamic system identification. The value of i should be 

chosen as large as possible. Nevertheless, memory usage 

and computational costs should be considered. In this paper, 

the value of i is selected as 250. Maximum system order (n) 

is also another parameter that is extremely vital for dynamic 

system identification. Theoretically, the system order (n) 

could be identified by observing the quantity of non-zero 

singular values of the block Toeplitz. Nevertheless, it is not 

simple to inspect this number due to measurement noise or 

the noise from modeling inaccuracies, etc. In this case, 

 

 

 

Fig. 13 The stabilization diagram of setup 1 
 

 

Fig. 14 Mode 1 - f = 0.39 Hz 
 

 

 

Fig. 15 Mode 2 - f = 0.59 Hz 
 

 

 

Fig. 16 Mode 3 - f = 0.65 Hz 
 

 

 

Fig. 17 Mode 4- f = 0.71 Hz 

 

 

a maximal gap between two consecutive values is 

considered as the main factor to seek n. The considered 

model order used for system identification of the My Thuan 

Bridge is ranging from 2 to 140 in steps of 2. A detailed 

explanation of how to build the stabilization diagram (Fig. 

13) can be sought in Ref (Peeters and De Roeck 1999). 

The measured mode shapes are plotted in Figs. 14-17. 

Theoretically, a bridge will have an infinite number of 

vibration modes. Nevertheless, some first few modes are 

enough to tackle the model updating problem. In this study, 

we only use the first four modes, shown in Figs. 14-17. 

 

 

5. Model updating for the Bridge 
 

Ideally, all uncertain parameters that are related to the 

boundary conditions, geometric properties, as well as the 

material properties of the bridge should be selected as 
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Fig. 18 Spring links are selected for model updating 

 

 

Table 6 Boundary conditions together with material 

properties selected as updated parameters 

Parameters Structures Notations Lower values Upper values 

Young’s 

modulus 

Main girder 𝐸1 29.6 GPa 47 GPa 

Bridge deck 𝐸2 28.7 GPa 40.1 GPa 

Cable 𝐸3 190 GPa 230 GPa 

Cross beam 𝐸4 29.2 GPa 41.0 GPa 

Section 1 𝐸5 28.7 GPa 40.1 GPa 

Section 2 𝐸6 28.7 GPa 40.1 GPa 

Section 3 𝐸7 28.7 GPa 40.1 GPa 

Section 4 𝐸8 28.7 GPa 4.01 GPa 

Section 5 𝐸9 28.7 GPa 4.01 GPa 

The springs 

connect the 

piers with 

the deck 

Vertical 

spring 
𝐾1 1.5×1010 N/m 2.5×1010 N/m 

Vertical 

spring 
𝐾2 1.5×1010 N/m 2.5×1010 N/m 

The springs 

connect the 

piers with 

the deck 

Vertical 

spring 
𝐾3 1.5×1010 N/m 2.5×1010 N/m 

Vertical 

spring 
𝐾4 1.5×1010 N/m 2.5×1010 N/m 

 

 

 
parameters for model updating. Nevertheless, if too many 

parameters are chosen for adjustments, it not only increases 

computational time, but also makes the model more 

 

 

complex or even impossible for convergence (Hjelmstad et 

al. 1995). Therefore, only some main uncertain structural 

parameters that the most influences on structural dynamic 

characteristics chosen for model updating as shown in Fig. 

18 and Table 6. They consist of Young modulus of main 

girders, cables, cross beams, pylons, and the boundary 

conditions linking between the deck and the towers as well 

as between the deck and the piers. Initial estimated values 

of the uncertain structural parameters are calculated derived 

from experience (Tran-Ngoc et al. 2018) and a baseline FE 

model. A baseline FE is firstly developed, which serves as 

an initial model for the automated model updating 

procedure. And then, model updating is used to tune and 

determine the exact values of uncertain parameters. 

HGAIPSO combining GA with IPSO is employed to 

look for the best solution. For GA, the real-coded is used in 

which crossover and mutation operators are 0.8 and 0.1, 

respectively. For IPSO, while the population size is 50, the 

values of the learning factors 𝐶1, and 𝐶2 are 2. In order to 

compare with HGAIPSO, PSO, IPSO and HGAPSO are 

also employed. The number of populations, crossover and 

mutation operators the learning factors 𝐶1, and 𝐶2 using 

for PSO, IPSO and HGAPSO are similar to those of 

HGAIPSO. For PSO and HGAPSO, the inertia weight 

parameter (w) is 0.3. The search process will finish if the 

quantity of iterations is 100 or the discrepancy in two 

consecutive iterations (fitness) is lower than 10−6 . The 

objective function comprises natural frequencies of the first 

four modes. Theoretically, both natural frequencies and 

mode shapes can be used for the optimization problems. 

However, for simple optimization issues e.g., model 

updating, only the natural frequencies of the first modes are 

enough to deal with this problem. This selection helps to 

reduce computational cost. Mode shapes should only apply 

for more complex optimization problems e.g., damage 

detection because they are sensitive to the structural damage 

characteristics. 

Fig. 19 shows that HGAIPSO obtains a higher 

convergence level than PSO, IPSO, and HGAPSO. The 

difference between calculated and measured natural 
 

 

 

 

Fig. 19 Fitness tolerance of PSO, IPSO, HGAPSO, and HGAIPSO 
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Table 7 The natural frequencies of the first four modes of 

numerical model compared to those of the 

measurement (Hz) 

Modes 

Before 

model 

updating 

P
S

O
 

IP
S

O
 

H
G

A
P

S
O

 

H
G

A
IP

S
O

 

Measure-

ment 

1 
0.36 

(7.7 %) 

0.37 

(5.1 %) 

0.38 

(2.6 %) 

0.38 

(2.6 %) 

0.38 

(2.6 %) 
0.39 

2 
0.56 

(5.1 %) 

0.58 

(1.7 %) 

0.58 

(1.7 %) 

0.59 

(0 %) 

0.59 

(0 %) 
0.59 

3 
0.59 

(9.2 %) 

0.62 

(4.6 %) 

0.62 

(4.6 %) 

0.63 

(3.2 %) 

0.63 

(3.2 %) 
0.65 

4 
0.67 

(5.6 %) 

0.69 

(2.8 %) 

0.69 

(2.8 %) 

0.69 

(2.8 %) 

0.70 

(1.4 %) 
0.71 

 

 

 

frequencies determined by HGAPSO is approximately 

0.041, whereas the deviations of those calculated by PSO, 

IPSO, and HGAPSO are 0.058, 0.051, and 0.045 

respectively. 

Table 7 shows that before model updating, natural 

frequencies of all modes obtained by FE model coincide 

with those achieved by measurement, except for mode 3 

(the discrepancy of the natural frequency between 

calculated and measured results is approximately 10%). 

After model updating, a close correspondence between 

analysis natural frequencies and measured ones is 

established (the difference of natural frequencies between 

analytical and measured results is lower than 5%). IPSO, 

HGAPSO, and HGAISPO are superior to PSO in terms of 

convergence level and accuracy because these algorithms 

apply some improvements in the search for the global best. 

Specifically, IPSO adjusts search parameters consisting of w 

and T to tackle the problem of premature convergence of 

PSO. HGAPSO employs GA to generate the best 

 

 

populations before using the global search capacity of PSO 

to look for the best solution, whereas HGAIPSO uses GA to 

generate the best populations and then employs the global 

search capacity of IPSO to handle the problems of 

premature convergence of PSO. 

Table 8 presents the values of the uncertain structural 

parameters after model updating using PSO, IPSO, 

HGAPSO, and HGAIPSO. Most of the parameters 

increases, which demonstrates that the stiffness of the 

bridge is underestimated. 

 

 

6. Conclusions 
 

This paper proposes a fresh approach to model updating 

for the My Thuan Bridge based on ambient vibration tests 

coupled with a hybrid GAIPSO. The vibration 

measurements are carried out under excitation sources of 

passing vehicles and wind, whereas a FE model is created 

to predict structural dynamic characteristics. HGAIPSO 

employs the crossover and mutation operators of GA to 

create the best population, and then applies the global 

search ability of IPSO to the search for the best solution. 

This strategy not only remedies the defect of premature 

convergence, but also generates better generations after 

each iteration. The natural frequencies of the first four 

vertical bending modes are chosen as an objective function 

used to reduce the discrepancy between numerical and 

experimental modal analysis results. A close 

correspondence of natural frequencies between measured 

and analysis results is obtained after model updating. From 

the results obtained, several main conclusions can be drawn 

as follows: 
 

● Evolutionary algorithms coupled with a precise FE 

model are useful tools to deal with optimization 

issues. 

● PSO, IPSO, HGAPSO, and HGAIPSO can identify 

uncertain structural parameters in the My Thuan 
 

 

Table 8 Uncertain parameters after model updating 

Parameters Structures Notations PSO IPSO HGAPSO HGAIPSO 

Young’s 

modulus 

Main girder 𝐸1 41.8 GPa 44.0 GPa 44.8 GPa 45.2 GPa 

Bridge deck 𝐸2 30.5 GPa 31.8 GPa 32.1 GPa 32.5 GPa 

Cable 𝐸3 214 GPa 219 GPa 222 GPa 225 GPa 

Cross beam 𝐸4 29.5 GPa 32.1 GPa 32.4 GPa 32.9 GPa 

Section 1 𝐸5 34.5 GPa 36.9 GPa 37.2 GPa 37.5 GPa 

Section 2 𝐸6 32.5 GPa 33.5 GPa 33.9 GPa 34.1 GPa 

Section 3 𝐸7 36.0 GPa 37.4 GPa 37.4 GPa 37.8 GPa 

Section 4 𝐸8 35.4 GPa 36.7 GPa 37.1 GPa 37.5 GPa 

Section 5 𝐸9 34.6 GPa 35.5 GPa 35.8 GPa 35.9 GPa 

The springs 

connect the piers 

with the deck 

Vertical spring 𝐾1 1.75×1010 N/m 1.98×1010 N/m 2.0×1010 N/m 2.0×1010 N/m 

Vertical spring 𝐾2 1.64×1010 N/m 1.72×1010 N/m 1.78×1010 N/m 1.81×1010 N/m 

The springs 

connect the piers 

with the deck 

Vertical spring 𝐾3 1.78×1010 N/m 1.84×1010 N/m 1.86×1010 N/m 1.88×1010 N/m 

Vertical spring 𝐾4 1.58×1010 N/m 1.89×1010 N/m 1.92×1010 N/m 1.95×1010 N/m 
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Bridge with a very high degree of accuracy. After 

model updating, the results of natural frequencies of 

modes calculated by FEM and measurement do 

perfectly match (the difference is lower than 5%, and 

especially lower than 3% for HGAIPSO). 

● Due to the application of potential advantages of 

both GA and IPSO, HGAIPSO demonstrates its 

ability to tackle optimization problems. 

● HGAIPSO outperforms than PSO, IPSO, and 

HGAPSO in connection with level convergence and 

accuracy. 

● Further investigation should be conducted to 

measure the effectiveness of HGAIPSO e.g., using 

HGAIPSO to deal with optimization issues of other 

structures, buildings, dams, etc. 
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