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Abstract.

Stability analysis of three-layered piezoelectric doubly curved nano shell with accounting size dependency is performed

in this paper based on first order shear deformation theory and curvilinear coordinate system relations. The elastic core is integrated
with sensor and actuator layers subjected to applied electric potentials. The principle of virtual work is employed for derivation of
governing equations of stability. The critical electrical and mechanical buckling loads are evaluated in terms of important parameters
of the problem such as size-dependent parameter, two principle angle of doubly curved shell and two parameters of Pasternak's
foundation. One can conclude that mechanical buckling loads are decreased with increase of nonlocal parameter while the electrical

buckling loads are increased.
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1. Introduction

Analysis of structures in very small scale (micro or nano
scales) has enforced researchers to find new non-classical
theories to cover prediction of behavior of those in various
environments. These theories were presented to account
size-dependency in the constitutive relations. Advances in
development of non-classical theories leads to various
theories in micro and nano scales for better prediction of
behavior of small scale structures. Eringen nonlocal
elasticity theory, modified couple stress theory, strain
gradient theory and nonlocal strain gradient theory have
been proposed for analysis of structures in nano and micro
scales. Although application of above mentioned theories to
the custom structures such as rods, beams and plates has
been presented by various researchers, analysis of non-flat
structures such as curved beam and doubly curved shell has
not been performed comprehensively. Literature review on
the subject of paper is presented to justify the novelties and
necessities of this study.

Kapania and Yang (1986) studied post-buckling analysis
of an imperfect doubly curved shell. The influence of
various aspect ratio and imperfections was studied on the
results. Fan and Zhang (1992) used curvilinear coordinate
system to study static and dynamic analysis of the simply
supported orthotropic doubly curved shells based on a
unified analytical solution for thin, moderately thick, and
thick laminated shells. Vibration analysis of geometrically
imperfect single and multilayered composite double-curved
shallow panels subjected to transverse loads and various in-
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lane boundary conditions was studied by Librescu and
Chang (1993). They studied influence of transverse shear
deformations, lamination and various in-plane boundary
conditions on the responses of doubly curved shell. Wu and
Liu (2007) presented three dimensional piezo-elasticity
formulations of  simply-supported doubly  curved
functionally graded elastic and piezoelectric shells based on
state space approach. Using successive approximation
method, the shell was divided into a multilayered shell with
small thickness. Chandrashekhar (1989) presented free
vibration analysis of laminated composite doubly curved
shells. First order shear deformation theory was used for
description of displacement field. Influence of in-plane and
rotary inertia was accounted in the elements of mass matrix.
The influence of shell geometry, orientation of layers,
material parameters, and boundary conditions was studied
on the free vibration responses of doubly curved shells.
Avrefi and Zenkour (2019b) studied the influence of thermo-
magneto-electro-mechanical loads on the static analysis of a
three-layered nanoplate. Sinusoidal shear-deformation plate
theory was used for formulation of the problem and
principle of virtual displacement was employed for
derivation of the governing equations.

Qatu and Asadi (2012) presented free vibration analysis
of a thin shallow shell with various boundary conditions
based on Ritz method. The influence of various parameters
such as different boundary conditions and radii of curvature
was studied on the responses. Size-dependent free vibration
analysis of orthotropic doubly-curved shallow shells with
simply-supported boundary conditions was studied by
Ghavanloo and Fazelzadeh (2013) based on strain gradient
theory and Novozhilov’s linear shallow shell theory. The
various length scale parameters were employed based on
strain gradient theory for better prediction of behavior of
small scale structure. Shooshtari and Razavi (2015) studied
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nonlinear and linear free vibration analyses of laminated
magneto-electro-elastic doubly-curved thin shell with
simply supported curved edges resting on an elastic
foundation based on Donnell’s shell theory. The numerical
results were calculated based on Lindstedt-Poincare
perturbation method. The influence of parameters of
foundation, geometrical characteristics and electric and
magnetic potentials was studied on the linear and nonlinear
behavior of these smart shells. Nonlinear vibrations of
doubly curved cross-ply shells with simply supported
boundary conditions were studied by Yazdi (2013) based on
von-Karman geometric nonlinear theory using Donnell's
shell equations. The nonlinear governing equations of
motion were reduced to a second order nonlinear ordinary
differential equation using Galerkin approach and then
solved using homotopy perturbation method. Zhang et al.
(2001) studied the influence of impact load on the dynamic
stability (buckling and post-buckling) of thin-walled doubly
curved shells.

First order shear deformation theory was used by
Sharma et al. (2013) to present governing equations of
laminated composite doubly curved panels subjected to
uniformly transverse loads. The effect of panel thickness,
curvature, boundary conditions, lamination scheme and
material property was studied on the static response of
panel. Shen (2002) and Chen et al. (2017a) focused on the
vibration and buckling analysis of composite structures in
thermal environment with considering nonlinear strains.
Thakur et al. (2017) studied analysis of a doubly curved
composite shells based on higher order shear deformation
theory. Pouresmaeeli and Fazelzadeh (2016) studied
vibration analysis of doubly curved FG composite panels
reinforced by carbon nanotube based on first-order shear
deformation theory and Galerkin’s method. The vibration
responses were calculated in terms of important parameters
such as volume fraction of carbon nanotubes, thickness
ratio, aspect ratio, curvature ratio and shallowness ratio.
Veysi et al. (2017) studied the nonlinear size dependent
analysis of doubly curved micro shell based on modified
couple stress theory, von-Karman geometric nonlinear
relations and first-order shear deformation theory. They
employed multiple scales method to solve governing
equations of motion. Influence of various micro length scale
parameters was studied on the responses. They mentioned
that the effect of shell dimensions on the vibration
characteristics of micro shell is strongly depending on the
type of shell (this is important for spherical shell and not
important for hyperbolic paraboloidal shells). Arefi and
Zenkour (2019a) used sinusoidal shear deformation theory
for thermo-magneto-electro-elastic analysis of a three
layered curved nanobeam. Nonlocal elasticity relations and
Hamilton's principle was employed for derivation of the
governing equations of motion. They mentioned that
applied electric and magnetic potential leads to important
changes of responses. The sandwich structure was made
from a nano core and two piezomagnetic face-sheets.
Influence of nonlocal parameter, applied electric and
magnetic potentials and two parameters of Pasternak’s
foundation was studied on the responses of the system. The
numerical results indicate that increase of nonlocal

parameters leads to decrease of stiffness of structure. Some
important works on the stability analysis of structures are
observed in Reference (Chen et al. 2017b). Hamdia et al.
(2018) provided a sensitivity analysis for identification of
key input parameters affecting energy conversion factor of
flexoelectric materials. The numerical results indicated that
the flexoelectric constants are the most dominant factors
influencing the uncertainties in the energy conversion
factor. Some related works to optimization and
computational methods of flexoelectric and piezoelectric
structures were studied by various researchers (Yeh 2014,
Zehetner and Irschik 2008, Karami and Shahsavari 2019).

Some important numerical methods have been
developed by researchers to cover wide range of
engineering problems. Rabczuk et al. (2019) studied
application of a novel nonlocal operator theory for solution
of partial differential equations based on variational
principle. The proposed formulation had capability to solve
the differential electromagnetic vector wave equations
based on electric fields. Guo et al. (2019) proposed a deep
collocation method for thin plate bending problems. A loss
function was built with the aim that the governing partial
differential equations of Kirchhoff plate bending problems,
and the boundary/initial conditions were minimized at those
collocation points. Anitescu et al. (2019) presented
application of artificial neural networks and an adaptive
collocation strategy for solving partial differential
equations. They showed capability of their solution method
in classical problems such as Poisson and Helmholtz
equations.

A comprehensive literature review on the various types
of shells especially doubly curved shells and various size
dependent theories has been completed in Introduction.
Based on the best author’s knowledge and complete review
on the previous related works, it is confirmed that there is
no published works on the calculation of mechanical and
electrical buckling loads of doubly curved piezoelectric
nano shells. The novelties of the present paper are
application of nonlocal piezoelasticity relations and shear
deformation theory to mechanical and electrical buckling
loads of doubly curved piezoelectric nano shells. The
principle of virtual work is applied to derive governing
equations for a doubly curved piezoelectric nano shell. The
mechanical and electrical buckling loads are calculated in
terms of significant parameters of the problem such as
nonlocal parameter, two angles of doubly curved nano shell
and two parameters of Pasternak’s foundation.

2. Stability formulation of piezoelectric doubly
curved nano shells

The stability formulation of shear deformable doubly
curved shell made of piezoelectric materials based on
piezoelasticity relations, nonlocal elasticity theory and
curvilinear coordinate system is derived in this section. The
three-layered doubly curved nanoshell is composed of an
elastic core and two piezoelectric nanoshell. Shown in Fig.
1 is a doubly curved piezoelectric nanoshell subjected to
electrical loads. In this figure, a,8,z are employed
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Pieznelertric Layers

Fig. 1 The schematic of a doubly curved piezoelectric shell

coordinates along two planar and thickness directions. In
addition, two principle radii of curvature are depicted with
R;, R, and the lengths of middle surfaces are defined with
Ly, L,.

First order shear deformation theory is developed for
kinematic relations of deformations. Based on this theory
the deformation at a point is linear function of z coordinate.
The strain components based on first order shear
deformation theory are defined as follows

gq = &0 + zk,, (1a)
gp = €5 + zk,, (1b)
Ypz = €4 (1c)
Yaz = €3, (1d)
Yap = €6 + zkg, (1e)

in which the defined variables in Eqg. (1) are expressed as
(Arefi 2018a, b)
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in which u,v,w are displacements of middle surface of
piezoelectric doubly curved nano shell and ¢,,¢, are
rotation functions about 8, a directions, respectively.

Based on the assumed strain field (Eqg. (1)), the
displacement field is continuous and no discontinuity is
occurred between core and integrated layers.

The piezoelectric layers are subjected to applied electric
potential. Electric potential distribution is assumed as
follows (Arefi et al. 2018, Arefi and Zenkour 2017a-c)

_ 2z nz
Y=—Y,—¥(a,pB)cos—, ?3)

h h
In which ¥, is applied electric potential and ¥(a, B)
is two-dimensional distribution of electric potential along
a, B directions. Based on Eq. (3), the first term is
represented the applied electric potential and the second
term applies for homogeneous conditions at four boundaries
and also top and bottom. Electric field components are

derived using electric potential distribution as follows

1 ¥ nz

E,=————cos—
« Z\oa  h’ (42)
R1(1+R1)
B 1 v Z
B = —Za—COS T, (4b)
R2(1+E) B
2 w nZ
=—-¥ —-¥sin— 4c
E, h‘lfo h‘lfsm W (4c)

The nonlocal constitutive relations for elastic nano core
are expressed as (Arefi and Zenkour 2017a ,b)

Ci:i¢ CL,° 0 0 0
(o) [o G 000 e

op Cio°  C°

(1-(@®¥){d:b=| 0 0 Cus 0 0[{751, (5)
Oaz 0 0 0 Css° 0 H’azJ
Oap 0 0 0 0 CGGC Yap

in which eqa is nonlocal parameter, C;;“ stiffness
coefficients of core and ;& are stress and strain
components (superscript ¢ indicates that this property is
related to core). In addition, the nonlocal stress-strain
relations based on nonlocal piezo-elasticity relations for
doubly curved piezoelectric layers are expressed as
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In which e;; are piezoelectric coefficients, and E; +f o [1 +— { [1 + ] z} dz
electric field components (superscript p indicates that this
property is related to face-sheets). The electric displacement + / 2ty » z z
relations for piezoelectric layers are expressed as + Y % [1 + _] { [1 + R_z] 'Z} dz.
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In which k;; are dielectric coefficients. In addition, E;
is electric field components derived using divergence of
electric potential. {Nez Naz}

The principle of virtual work is used to derive governing -/, 7 7
equations of stability problem. Strain energy U is defined as = fh [1 + —]{ [1 + R ]}d
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The work done by external forces including uniform
transverse loads and reaction of Pasternak's foundation is
calculated as

OWexer = f{ [1 HETN Hl +2R2
1

+R, [1 2R1] [1—%]}R1R25wdﬁda -

in which the reaction of the Pasternak’s foundation is
defined as R = Kyw — K,V?w. The work done by in-
plane external forces is calculated as
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In  which (Noa,Noﬁ) and (NEa,NEﬁ) are pre-
mechanical and pre-electrical loads. Substitution of strain
energy and work due to external forces into principle of

virtual work 8U — §Wg,; =0 yields the stability
governing equations as follows
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In which the resultant components are defined in
Appendix A.

Substitution of resultant components from Appendix A
into governing equations leads to final governing equations
in terms of primary displacement field as follows
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In which the integration constants A; and other

undefined variables are expressed in Appendix B.

3. Solution procedure

Solution procedure is illustrated in this section based on
double trigonometric solution for the simply supported
boundary conditions. The four boundary conditions are
assumed simply-supported. In addition, the homogeneous
boundary conditions are assumed for electric potentials.

Based on this procedure the solution is expressed as
follows

u UcosA,asinu,
oy &, cosAasinu, S
_ Vsindacosu, B (15)
b, ®,sind,acosu,f
Wsind,, asiny, B

k4 J Wsind,asiny,

In which the {X} = {U, ®,,V, ®,, W, ¥}T are unknown

amplitudes and A, = 28, ,un=nL—Rz. Substitution of
2

Ly
proposed solution from Eqg. (15) into governing equations
leads to following well-known format as follows

[K]{X} = {F} (16)

Elements of stiffness matrix [K] and force matrix {F}
are defined in Appendix C.

4. Numerical results and discussion

The material properties of piezoelectric doubly curved
nano shell are presented for the core and piezoelectric
layers as

Core:
E =169GPa,v = 0.3

Piezoelectric:

C,,¥ = 138.499GPa,
C,," = 138.499GPa,
C33" = 114.745GPa
C,,~ =77.371GPa,
Ci3" = 73.643GPa,
C,s" = 73.643GPa
C,.,~ = 25.6GPa,
Css” = 25.6GPa,
Css’ = 30.6GPa

e;3 =e3; = —5.2 C/m2
€23 = €33 = —5.2 C/mz )
es3 =158¢/ ,

es =12.72¢/ ,

€y = 12.72 C/mz,

ki =1.306 x 1078 F/,,

ky, = 1.306 x 1078 F /.|
ks = 1.151 x 108 F/,,

In addition, the dimensions of doubly curved
piezoelectric nano shell for Figs. 2-17 are summarized as
follows

Ly =L, =20nm,
Ry =R, =20 nm,
h, =1nm, hp =0.1nm

4.1 Critical applied electrical loads

In this section, the distribution of critical applied
electrical loads W, ., is presented in term of two principle
angles of doubly curved shells 8,, 8,. One can see that the
trend of critical applied electrical loads W, is not
uniform for all values of two principle angles 6,,6,. For
example; for 6, = 0.5, the critical applied electrical loads
W, is decreased with increase of 6;, while they are
increased for 8, = 1. Shown in Fig. 3 is distribution of
critical applied electrical loads W, in terms of first angle
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Fig. 2 Distribution of critical applied electrical loads W .-
in term of two principle angles of doubly curved
shells 64,6,
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Fig. 3 Distribution of critical applied electrical loads ¥, .,
in term of first angle of shells 8;and small scale
parameter eya

of shells 6, and small scale parameter e,a. One can
observe that with increase of nonlocal parameter, the critical
applied electrical loads W, ., are increased significantly. In
addition the increase behavior can be observed for variation
of critical applied electrical loads W, in terms of
variation of first angle of shells 6;.

Fig. 4 shows variation of critical applied electrical loads
W, in terms of second angle of shells 6, and small scale
parameter eqa . It is concluded that critical applied
electrical loads W, are increased significantly with
increase of both parameters (second angle of shells 8, and
small scale parameter eya).

Shown in Fig. 5 is the effect of winker parameter of
foundation K; and small scale parameter eya on the
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1.2%10" e
1.x 1077 A

Fig. 4 Distribution of critical applied electrical loads ¥ .,
in term of second angle of shells 8, and small scale
parameter ey,a

Fig. 5 Distribution of critical applied electrical loads Wy
in term of winker parameter of foundation K;and
small scale parameter eqa

critical applied electrical loads ¥, .. The numerical results
indicate that with increase of both Winkler parameter of
foundation and nonlocal parameter, the critical applied
electrical loads W, ., are decreased significantly.

Shown in Fig. 6 is the effect of shear parameter of
foundation and small scale parameter e,a on the critical
applied electrical loads W, ... One can conclude that with
increase of both shear parameter of foundation and nonlocal
parameter, the critical applied electrical loads W, .. are
decreased significantly.

The effect of two principle angles of doubly curved shell
on the mechanical buckling loads of doubly curved nano
shell is presented in Fig. 7. One can see that with increase
of first angle of shells 6; and decrease of second angle of
shells 6,, the mechanical buckling loads Ny, are
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1.x10°%
12x10°°

Fig. 6 Distribution of critical applied electrical loads ¥, .,
in term of shear parameter of foundation K, and
small scale parameter eya

1.5

v

=]

Fig. 7 Distribution of mechanical buckling loads Ny, in
term of two principle angles of doubly curved shell
91, 92

increased significantly.

Fig. 8 depicts variation of mechanical buckling loads in
terms of direct and shear parameters of Pasternak’s
foundation K; K,. One can conclude that with increase of
direct and shear parameters of foundation, the stiffness of
structure is increased and consequently the mechanical
buckling loads are increased.

Shown in Figs. 9, 10 are the effect of two parameters of
foundation (K4, K,) and small scale parameter e,a on the
mechanical buckling loads Ng... The numerical results
indicate that with increase of Winkler parameter of
foundation, the mechanical buckling loads are increased
while with increase of nonlocal parameter they are
decreased significantly. It is concluded that increase of
nonlocal parameter leads to significant decrease of stiffness

11 x 1077
1.08 x 1077
1.06 x 1077

1.04 1077

1.02 x 10

. K,

Fig. 8 Distribution of mechanical buckling loads Ny, in
term of two parameters of Pasternak foundation
Kl’ Kz.

Fig. 9 Distribution of mechanical buckling loads Ny, in
term of direct parameter of foundation K; and
small scale parameter eya

of nano shell and consequently decrease of its mechanical
buckling load.

5. Conclusions

Stability analysis of shear deformable doubly curved
nano shell including a nano core and two piezoelectric
nanoshells was studied in this paper based on size
dependent constitutive relations and first order shear
deformation theory. Principle of virtual work was used in
this work to derive governing equations of stability
analysis. The piezoelectric layers have been subjected to
initial electric potential. The governing equations of
stability have been solved based on double trigonometric
functions for simply supported boundary conditions. The
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Fig. 10 Distribution of mechanical buckling loads Ng . in
term of shear parameter of foundation K, and and
small scale parameter eqa

critical applied electric potentials and critical mechanical
loads were evaluated in terms of significant inputs of the
problem such as nonlocal parameter, two parameters of
Pasternak's foundation and two principle angles of doubly
curved nano shell. The main significant conclusions of this
work are classified as follows:

The critical applied electrical loads ¥, ., were evaluated
in terms of significant parameters of the problem. One can
conclude that these outputs are increased with increase of
small scale parameter. In addition, investigation on the
effect of two principle angles of doubly curved nano shell
indicates that for 6, = 0.5, the critical applied electrical
loads W, is decreased with increase of 6, while they
are increased for 8, = 1. It is confirmed that changes of
critical applied electrical loads W,. are strongly
depending on the two two principle angles and
consequently a quantitative presentation is not possible.
Furthermore, it is concluded that increase of two parameters
of Pasternak’s foundation leads to decrease of critical
applied electrical loads.

The mechanical buckling loads have been evaluated in
terms of important parameters of the problem. This
investigation indicates that the mechanical buckling loads
are decreased with increase of nonlocal parameter. In
addition, it is concluded that increase of direct and shear
parameters of foundation leads to increase of mechanical
buckling loads. In addition, one can see that with increase
of first angle of shells 6,and decrease of second angle of
shells 6,, the critical applied electrical loads W, .. are
increased significantly.
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