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1. Introduction 

 

Analysis of structures in very small scale (micro or nano 

scales) has enforced researchers to find new non-classical 

theories to cover prediction of behavior of those in various 

environments. These theories were presented to account 

size-dependency in the constitutive relations. Advances in 

development of non-classical theories leads to various 

theories in micro and nano scales for better prediction of 

behavior of small scale structures. Eringen nonlocal 

elasticity theory, modified couple stress theory, strain 

gradient theory and nonlocal strain gradient theory have 

been proposed for analysis of structures in nano and micro 

scales. Although application of above mentioned theories to 

the custom structures such as rods, beams and plates has 

been presented by various researchers, analysis of non-flat 

structures such as curved beam and doubly curved shell has 

not been performed comprehensively. Literature review on 

the subject of paper is presented to justify the novelties and 

necessities of this study. 

Kapania and Yang (1986) studied post-buckling analysis 

of an imperfect doubly curved shell. The influence of 

various aspect ratio and imperfections was studied on the 

results. Fan and Zhang (1992) used curvilinear coordinate 

system to study static and dynamic analysis of the simply 

supported orthotropic doubly curved shells based on a 

unified analytical solution for thin, moderately thick, and 

thick laminated shells. Vibration analysis of geometrically 

imperfect single and multilayered composite double-curved 

shallow panels subjected to transverse loads and various in- 
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lane boundary conditions was studied by Librescu and 

Chang (1993). They studied influence of transverse shear 

deformations, lamination and various in-plane boundary 

conditions on the responses of doubly curved shell. Wu and 

Liu (2007) presented three dimensional piezo-elasticity 

formulations of simply-supported doubly curved 

functionally graded elastic and piezoelectric shells based on 

state space approach. Using successive approximation 

method, the shell was divided into a multilayered shell with 

small thickness. Chandrashekhar (1989) presented free 

vibration analysis of laminated composite doubly curved 

shells. First order shear deformation theory was used for 

description of displacement field. Influence of in-plane and 

rotary inertia was accounted in the elements of mass matrix. 

The influence of shell geometry, orientation of layers, 

material parameters, and boundary conditions was studied 

on the free vibration responses of doubly curved shells. 

Arefi and Zenkour (2019b) studied the influence of thermo-

magneto-electro-mechanical loads on the static analysis of a 

three-layered nanoplate. Sinusoidal shear-deformation plate 

theory was used for formulation of the problem and 

principle of virtual displacement was employed for 

derivation of the governing equations. 

Qatu and Asadi (2012) presented free vibration analysis 

of a thin shallow shell with various boundary conditions 

based on Ritz method. The influence of various parameters 

such as different boundary conditions and radii of curvature 

was studied on the responses. Size-dependent free vibration 

analysis of orthotropic doubly-curved shallow shells with 

simply-supported boundary conditions was studied by 

Ghavanloo and Fazelzadeh (2013) based on strain gradient 

theory and Novozhilov’s linear shallow shell theory. The 

various length scale parameters were employed based on 

strain gradient theory for better prediction of behavior of 

small scale structure. Shooshtari and Razavi (2015) studied 
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nonlinear and linear free vibration analyses of laminated 

magneto-electro-elastic doubly-curved thin shell with 

simply supported curved edges resting on an elastic 

foundation based on Donnell’s shell theory. The numerical 

results were calculated based on Lindstedt-Poincare 

perturbation method. The influence of parameters of 

foundation, geometrical characteristics and electric and 

magnetic potentials was studied on the linear and nonlinear 

behavior of these smart shells. Nonlinear vibrations of 

doubly curved cross-ply shells with simply supported 

boundary conditions were studied by Yazdi (2013) based on 

von-Karman geometric nonlinear theory using Donnell's 

shell equations. The nonlinear governing equations of 

motion were reduced to a second order nonlinear ordinary 

differential equation using Galerkin approach and then 

solved using homotopy perturbation method. Zhang et al. 

(2001) studied the influence of impact load on the dynamic 

stability (buckling and post-buckling) of thin-walled doubly 

curved shells. 

First order shear deformation theory was used by 

Sharma et al. (2013) to present governing equations of 

laminated composite doubly curved panels subjected to 

uniformly transverse loads. The effect of panel thickness, 

curvature, boundary conditions, lamination scheme and 

material property was studied on the static response of 

panel. Shen (2002) and Chen et al. (2017a) focused on the 

vibration and buckling analysis of composite structures in 

thermal environment with considering nonlinear strains. 

Thakur et al. (2017) studied analysis of a doubly curved 

composite shells based on higher order shear deformation 

theory. Pouresmaeeli and Fazelzadeh (2016) studied 

vibration analysis of doubly curved FG composite panels 

reinforced by carbon nanotube based on first-order shear 

deformation theory and Galerkin’s method. The vibration 

responses were calculated in terms of important parameters 

such as volume fraction of carbon nanotubes, thickness 

ratio, aspect ratio, curvature ratio and shallowness ratio. 

Veysi et al. (2017) studied the nonlinear size dependent 

analysis of doubly curved micro shell based on modified 

couple stress theory, von-Karman geometric nonlinear 

relations and first-order shear deformation theory. They 

employed multiple scales method to solve governing 

equations of motion. Influence of various micro length scale 

parameters was studied on the responses. They mentioned 

that the effect of shell dimensions on the vibration 

characteristics of micro shell is strongly depending on the 

type of shell (this is important for spherical shell and not 

important for hyperbolic paraboloidal shells). Arefi and 

Zenkour (2019a) used sinusoidal shear deformation theory 

for thermo-magneto-electro-elastic analysis of a three 

layered curved nanobeam. Nonlocal elasticity relations and 

Hamilton's principle was employed for derivation of the 

governing equations of motion. They mentioned that 

applied electric and magnetic potential leads to important 

changes of responses. The sandwich structure was made 

from a nano core and two piezomagnetic face-sheets. 

Influence of nonlocal parameter, applied electric and 

magnetic potentials and two parameters of Pasternak’s 

foundation was studied on the responses of the system. The 

numerical results indicate that increase of nonlocal 

parameters leads to decrease of stiffness of structure. Some 

important works on the stability analysis of structures are 

observed in Reference (Chen et al. 2017b). Hamdia et al. 

(2018) provided a sensitivity analysis for identification of 

key input parameters affecting energy conversion factor of 

flexoelectric materials. The numerical results indicated that 

the flexoelectric constants are the most dominant factors 

influencing the uncertainties in the energy conversion 

factor. Some related works to optimization and 

computational methods of flexoelectric and piezoelectric 

structures were studied by various researchers (Yeh 2014, 

Zehetner and Irschik 2008, Karami and Shahsavari 2019). 

Some important numerical methods have been 

developed by researchers to cover wide range of 

engineering problems. Rabczuk et al. (2019) studied 

application of a novel nonlocal operator theory for solution 

of partial differential equations based on variational 

principle. The proposed formulation had capability to solve 

the differential electromagnetic vector wave equations 

based on electric fields. Guo et al. (2019) proposed a deep 

collocation method for thin plate bending problems. A loss 

function was built with the aim that the governing partial 

differential equations of Kirchhoff plate bending problems, 

and the boundary/initial conditions were minimized at those 

collocation points. Anitescu et al. (2019) presented 

application of artificial neural networks and an adaptive 

collocation strategy for solving partial differential 

equations. They showed capability of their solution method 

in classical problems such as Poisson and Helmholtz 

equations. 

A comprehensive literature review on the various types 

of shells especially doubly curved shells and various size 

dependent theories has been completed in Introduction. 

Based on the best author’s knowledge and complete review 

on the previous related works, it is confirmed that there is 

no published works on the calculation of mechanical and 

electrical buckling loads of doubly curved piezoelectric 

nano shells. The novelties of the present paper are 

application of nonlocal piezoelasticity relations and shear 

deformation theory to mechanical and electrical buckling 

loads of doubly curved piezoelectric nano shells. The 

principle of virtual work is applied to derive governing 

equations for a doubly curved piezoelectric nano shell. The 

mechanical and electrical buckling loads are calculated in 

terms of significant parameters of the problem such as 

nonlocal parameter, two angles of doubly curved nano shell 

and two parameters of Pasternak’s foundation. 

 

 

2. Stability formulation of piezoelectric doubly 
curved nano shells 
 

The stability formulation of shear deformable doubly 

curved shell made of piezoelectric materials based on 

piezoelasticity relations, nonlocal elasticity theory and 

curvilinear coordinate system is derived in this section. The 

three-layered doubly curved nanoshell is composed of an 

elastic core and two piezoelectric nanoshell. Shown in Fig. 

1 is a doubly curved piezoelectric nanoshell subjected to 

electrical loads. In this figure, 𝛼, 𝛽, 𝑧 are employed 
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Fig. 1 The schematic of a doubly curved piezoelectric shell 

 

 

coordinates along two planar and thickness directions. In 

addition, two principle radii of curvature are depicted with 

𝑅1, 𝑅2 and the lengths of middle surfaces are defined with 

𝐿1, 𝐿2. 

First order shear deformation theory is developed for 

kinematic relations of deformations. Based on this theory 

the deformation at a point is linear function of z coordinate. 

The strain components based on first order shear 

deformation theory are defined as follows 

 

𝜀𝛼 = 𝜀1
0 + 𝑧𝑘1, (1a) 

 

𝜀𝛽 = 𝜀2
0 + 𝑧𝑘2, (1b) 

 

𝛾𝛽𝑧 = 𝜀4
0, (1c) 

 

𝛾𝛼𝑧 = 𝜀5
0, (1d) 

 

𝛾𝛼𝛽 = 𝜀6
0 + 𝑧𝑘6, (1e) 

 

in which the defined variables in Eq. (1) are expressed as 

(Arefi 2018a, b) 

 

𝜀1
0 =

1

𝑅1 (1 +
𝑧

𝑅1
)

𝜕𝑢

𝜕𝛼
+
𝑤

𝑅1
, (2a) 

 

𝜀2
0 =

1

𝑅2 (1 +
𝑧

𝑅2
)

𝜕𝑣

𝜕𝛽
+
𝑤

𝑅2
, (2b) 

 

𝜀6
0 =

1

𝑅1 (1 +
𝑧

𝑅1
)

𝜕𝑣

𝜕𝛼
+

1

𝑅2 (1 +
𝑧

𝑅2
)

𝜕𝑢

𝜕𝛽
, (2c) 

 

𝜀4
0 = 𝜙2 +

1

𝑅2 (1 +
𝑧

𝑅2
)

𝜕𝑤

𝜕𝛽
−
𝑣

𝑅2
, (2d) 

 

𝜀5
0 = 𝜙1 +

1

𝑅1 (1 +
𝑧

𝑅1
)

𝜕𝑤

𝜕𝛼
−
𝑢

𝑅1
, (2e) 

 

𝑘1 =
1

𝑅1 (1 +
𝑧

𝑅1
)

𝜕𝜙1
𝜕𝛼

 (2f) 

 

𝑘2 =
1

𝑅2 (1 +
𝑧

𝑅2
)

𝜕𝜙2
𝜕𝛽

 (2g) 

 

𝑘6 =
1

𝑅1 (1 +
𝑧

𝑅1
)

𝜕𝜙2
𝜕𝛼

+
1

𝑅2 (1 +
𝑧

𝑅2
)

𝜕𝜙1
𝜕𝛽

 

          +
1

2
(
1

𝑅1
−
1

𝑅2
) (

1

𝑅1 (1 +
𝑧

𝑅1
)

𝜕𝑣

𝜕𝛼
−

1

𝑅2 (1 +
𝑧

𝑅2
)

𝜕𝑢

𝜕𝛽
), 

(2h) 

 

in which 𝑢, 𝑣, 𝑤 are displacements of middle surface of 

piezoelectric doubly curved nano shell and 𝜙1, 𝜙2  are 

rotation functions about 𝛽, 𝛼 directions, respectively. 

Based on the assumed strain field (Eq. (1)), the 

displacement field is continuous and no discontinuity is 

occurred between core and integrated layers. 

The piezoelectric layers are subjected to applied electric 

potential. Electric potential distribution is assumed as 

follows (Arefi et al. 2018, Arefi and Zenkour 2017a-c) 
 

𝛹̌ =
2𝑧

ℎ
𝛹0 −𝛹(𝛼, 𝛽)𝑐𝑜𝑠

𝜋𝑧

ℎ
, (3) 

 

In which Ψ0 is applied electric potential and Ψ(α, β) 
is two-dimensional distribution of electric potential along 

α, β  directions. Based on Eq. (3), the first term is 

represented the applied electric potential and the second 

term applies for homogeneous conditions at four boundaries 

and also top and bottom. Electric field components are 

derived using electric potential distribution as follows 
 

Eα =
1

𝑅1 (1 +
𝑧

𝑅1
)

𝜕Ψ

𝜕𝛼
cos

𝜋𝑧

ℎ
, (4a) 

 

Eβ =
1

𝑅2 (1 +
𝑧

𝑅2
)

𝜕Ψ

𝜕𝛽
cos

𝜋𝑧

ℎ
, (4b) 

 

Ez = −
2

ℎ
𝛹0 −

𝜋

ℎ
𝛹𝑠𝑖𝑛

𝜋𝑧

ℎ
, (4c) 

 

The nonlocal constitutive relations for elastic nano core 

are expressed as (Arefi and Zenkour 2017a ,b) 
 

(1 − (e0a)
2∇2)

{
 
 

 
 
𝜎𝛼
𝜎𝛽
𝜎𝛽𝑧
𝜎𝛼𝑧
𝜎𝛼𝛽}

 
 

 
 

=

[
 
 
 
 
 
𝐶11

𝑐 𝐶12
𝑐 0 0 0

𝐶12
𝑐 𝐶22

𝑐 0 0 0

0
0
0

0
0
0

𝐶44
𝑐 0 0

0 𝐶55
𝑐 0

0 0 𝐶66
𝑐]
 
 
 
 
 

{
 
 

 
 
𝜀𝛼
𝜀𝛽
𝛾𝛽𝑧
𝛾𝛼𝑧
𝛾𝛼𝛽}

 
 

 
 

, (5) 

 

in which 𝑒0𝑎  is nonlocal parameter, 𝐶𝑖𝑗
𝑐  stiffness 

coefficients of core and 𝜎𝑖 , 𝜀𝑖  are stress and strain 

components (superscript c indicates that this property is 

related to core). In addition, the nonlocal stress-strain 

relations based on nonlocal piezo-elasticity relations for 

doubly curved piezoelectric layers are expressed as 
 

(1 − (e0a)
2∇2)

{
 
 

 
 
𝜎𝛼
𝜎𝛽
𝜎𝛽𝑧
𝜎𝛼𝑧
𝜎𝛼𝛽}

 
 

 
 

=

[
 
 
 
 
 
𝐶11

𝑝 𝐶12
𝑝 0 0 0

𝐶12
𝑝 𝐶22

𝑝 0 0 0

0
0
0

0
0
0

𝐶44
𝑝 0 0

0 𝐶55
𝑝 0

0 0 𝐶66
𝑝]
 
 
 
 
 

{
 
 

 
 
𝜀𝛼
𝜀𝛽
𝛾𝛽𝑧
𝛾𝛼𝑧
𝛾𝛼𝛽}

 
 

 
 

 (6) 
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−

[
 
 
 
 
0 0 𝑒13
0 0 𝑒23
0
𝑒51
0

𝑒42
0
0

0
0
0 ]
 
 
 
 

{

𝐸𝛼
𝐸𝛽
𝐸𝑧

} (6) 

 

In which 𝑒𝑖𝑗  are piezoelectric coefficients, and 𝐸𝑖 

electric field components (superscript p indicates that this 

property is related to face-sheets). The electric displacement 

relations for piezoelectric layers are expressed as 
 

{

𝐷𝛼
𝐷𝛽
𝐷𝑧

} = [
0 0 0 𝑒51 0

0 0 𝑒42 0 0
𝑒13 𝑒23 0 0 0

]

{
 
 

 
 
𝜀𝛼
𝜀𝛽
𝛾𝛽𝑧
𝛾𝛼𝑧
𝛾𝛼𝛽}

 
 

 
 

+[

𝑘11 0 0
0 𝑘22 0
0 0 𝑘33

] {

𝐸𝛼
𝐸𝛽
𝐸𝑧

}

, (7) 

 

In which 𝑘𝑖𝑗 are dielectric coefficients. In addition, 𝐸𝑖 

is electric field components derived using divergence of 

electric potential. 

The principle of virtual work is used to derive governing 

equations of stability problem. Strain energy U is defined as 

follows 
 

𝑈 =
1

2
∫ ∫ ∫

[𝜎𝛼𝜀𝛼 + 𝜎𝛽𝜀𝛽 + 𝜎𝑦𝑧𝛾𝑦𝑧 + 𝜎𝑥𝑧𝛾𝑥𝑧
+𝜎𝑥𝑦𝛾𝑥𝑦 − 𝐷𝛼𝐸𝛼 − 𝐷𝛽𝐸𝛽 − 𝐷𝑧𝐸𝑧]

𝑧𝛽𝛼

𝑑𝑉 (8) 

 

Substitution of strain and electric displacement in 

variation form yields variation of strain energy as follows 
 

𝛿𝑈 = ∫ ∫

[{𝑁𝛼
1

𝑅1

𝜕𝛿𝑢

𝜕𝛼
+ 𝑁𝛼

1
𝛿𝑤

𝑅1
+𝑀𝛼

1

𝑅1

𝜕𝛿𝜙1
𝜕𝛼

}

+{𝑁𝛽
1

𝑅2

𝜕𝛿𝑣

𝜕𝛽
+ 𝑁𝛽

1 𝛿𝑤

𝑅2
+𝑀𝛽

1

𝑅2

𝜕𝛿𝜙2
𝜕𝛽

}

+ {𝑁𝛽𝑧
1 𝛿𝜙2 +𝑁𝛽𝑧

1

𝑅2

𝜕𝛿𝑤

𝜕𝛽
− 𝑁𝛽𝑧

1 𝛿𝑣

𝑅2
}

+ {𝑁𝛼𝑧
1 𝛿𝜙1 +𝑁𝛼𝑧

1

𝑅1

𝜕𝛿𝑤

𝜕𝛼
− 𝑁𝛼𝑧

1
𝛿𝑢

𝑅1
}

+𝑁𝛼𝛽
1

𝑅1

𝜕𝛿𝑣

𝜕𝛼
+ 𝑁𝛽𝛼

1

𝑅2

𝜕𝛿𝑢

𝜕𝛽

+𝑀𝛼𝛽

1

𝑅1

𝜕𝛿𝜙2
𝜕𝛼

+𝑀𝛽𝛼
1

𝑅2

𝜕𝛿𝜙1
𝜕𝛽

+
1

2
(
1

𝑅1
−
1

𝑅2
) (

1

𝑅1
𝑀𝛼𝛽

𝜕𝛿𝑣

𝜕𝛼
−
1

𝑅2
𝑀𝛽𝛼

𝜕𝛿𝑢

𝜕𝛽
)

−𝐷̅𝛼
1

𝑅1

𝜕𝛿Ψ

𝜕𝛼
− 𝐷̅𝛽

1

𝑅2

𝜕𝛿Ψ

𝜕𝛽
+ 𝐷̅𝑧𝛿Ψ]

𝛽𝛼

𝑑𝛽𝑑𝛼. (9) 

 

in which the resultant components are defined as 
 

{𝑁𝛼 , 𝑁𝛼
1, 𝑀𝛼} 

= ∫ 𝜎𝛼
𝑝 [1 +

𝑧

𝑅2
]

−ℎ 2⁄

−ℎ 2⁄ −ℎ𝑝

{1, [1 +
𝑧

𝑅1
] , 𝑧} 𝑑𝑧 

    +∫ 𝜎𝛼 [1 +
𝑧

𝑅2
]

+ℎ 2⁄

−ℎ 2⁄

{1, [1 +
𝑧

𝑅1
] , 𝑧} 𝑑𝑧 

    +∫ 𝜎𝛼
𝑝 [1 +

𝑧

𝑅2
]

+ℎ 2⁄ +ℎ𝑝

+ℎ 2⁄

{1, [1 +
𝑧

𝑅1
] , 𝑧} 𝑑𝑧. 

(10a) 

 

{𝑁𝛽 , 𝑁𝛽
1, 𝑀𝛽} 

= ∫ 𝜎𝛽
𝑝 [1 +

𝑧

𝑅1
]

−ℎ 2⁄

−ℎ 2⁄ −ℎ𝑝

{1, [1 +
𝑧

𝑅2
] , 𝑧} 𝑑𝑧 

+∫ 𝜎𝛽 [1 +
𝑧

𝑅1
]

+ℎ 2⁄

−ℎ 2⁄

{1, [1 +
𝑧

𝑅2
] , 𝑧} 𝑑𝑧 

+∫ 𝜎𝛽
𝑝 [1 +

𝑧

𝑅1
]

+ℎ 2⁄ +ℎ𝑝

+ℎ 2⁄

{1, [1 +
𝑧

𝑅2
] , 𝑧} 𝑑𝑧. 

(10b) 

 

{𝑁𝛽𝑧, 𝑁𝛽𝑧
1 } 

= ∫ 𝜏𝛽𝑧
𝑝 [1 +

𝑧

𝑅1
]

−ℎ 2⁄

−ℎ 2⁄ −ℎ𝑝

{1, [1 +
𝑧

𝑅2
]} 𝑑𝑧 

+∫ 𝜏𝛽𝑧 [1 +
𝑧

𝑅1
]

+ℎ 2⁄

−ℎ 2⁄

{1, [1 +
𝑧

𝑅2
]} 𝑑𝑧 

+∫ 𝜏𝛽𝑧
𝑝 [1 +

𝑧

𝑅1
]

+ℎ 2⁄ +ℎ𝑝

+ℎ 2⁄

{1, [1 +
𝑧

𝑅2
]} 𝑑𝑧. 

(10c) 

 
{𝑁𝛼𝑧, 𝑁𝛼𝑧

1 } 

= ∫ 𝜏𝛼𝑧
𝑝 [1 +

𝑧

𝑅2
]

−ℎ 2⁄

−ℎ 2⁄ −ℎ𝑝

{1, [1 +
𝑧

𝑅1
]} 𝑑𝑧 

+∫ 𝜏𝛼𝑧 [1 +
𝑧

𝑅2
]

+ℎ 2⁄

−ℎ 2⁄

{1, [1 +
𝑧

𝑅1
]} 𝑑𝑧 

+∫ 𝜏𝛼𝑧
𝑝 [1 +

𝑧

𝑅2
]

+ℎ 2⁄ +ℎ𝑝

+ℎ 2⁄

{1, [1 +
𝑧

𝑅1
]} 𝑑𝑧. 

(10d) 

 

{𝑁𝛼𝛽 , 𝑀𝛼𝛽} 

= ∫ 𝜏𝛼𝛽
𝑝 [1 +

𝑧

𝑅2
]

−ℎ 2⁄

−ℎ 2⁄ −ℎ𝑝

{1, 𝑧}𝑑𝑧 

+∫ 𝜏𝛼𝛽 [1 +
𝑧

𝑅2
]

+ℎ 2⁄

−ℎ 2⁄

{1, 𝑧}𝑑𝑧 

+∫ 𝜏𝛼𝛽
𝑝 [1 +

𝑧

𝑅2
]

+ℎ 2⁄ +ℎ𝑝

+ℎ 2⁄

{1, 𝑧}𝑑𝑧. 

(10e) 

 

{𝑁𝛽𝛼 , 𝑀𝛽𝛼} 

= ∫ 𝜏𝛼𝛽
𝑝 [1 +

𝑧

𝑅1
]

−ℎ 2⁄

−ℎ 2⁄ −ℎ𝑝

{1, 𝑧}𝑑𝑧 

+∫ 𝜏𝛼𝛽 [1 +
𝑧

𝑅1
]

+ℎ 2⁄

−ℎ 2⁄

{1, 𝑧}𝑑𝑧 

+∫ 𝜏𝛼𝛽
𝑝 [1 +

𝑧

𝑅1
]

+ℎ 2⁄ +ℎ𝑝

+ℎ 2⁄

{1, 𝑧}𝑑𝑧. 

(10f) 

 

{𝐷̅𝛼, 𝐷̅𝛽} 

= ∫ {𝐷𝛼 [1 +
𝑧

𝑅2
] , 𝐷𝛽 [1 +

𝑧

𝑅1
]} cos

𝜋𝑧

ℎ

−ℎ 2⁄

−ℎ 2⁄ −ℎ𝑝

𝑑𝑧 

+∫ {𝐷𝛼 [1 +
𝑧

𝑅2
] , 𝐷𝛽 [1 +

𝑧

𝑅1
]} cos

𝜋𝑧

ℎ

+ℎ 2⁄ +ℎ𝑝

+ℎ 2⁄

𝑑𝑧. 

(10g) 
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𝐷̅𝑧 = ∫
𝜋

ℎ
𝑠𝑖𝑛

𝜋𝑧

ℎ
𝐷𝑧[1 +

𝑧

𝑅1
][1 +

𝑧

𝑅2
]

−ℎ 2⁄

−ℎ 2⁄ −ℎ𝑝

𝑑𝑧 

          +∫
𝜋

ℎ
𝑠𝑖𝑛

𝜋𝑧

ℎ
𝐷𝑧[1 +

𝑧

𝑅1
][1 +

𝑧

𝑅2
]

+ℎ 2⁄ +ℎ𝑝

+ℎ 2⁄

𝑑𝑧 

(10h) 

 

The work done by external forces including uniform 

transverse loads and reaction of Pasternak's foundation is 

calculated as 
 

𝛿𝑊𝐸𝑥𝑡1 = ∫{−𝑞 [1 +
ℎ

2𝑅1
] [1 +

ℎ

2𝑅2
] 

                   +𝑅𝑓 [1 −
ℎ

2𝑅1
] [1 −

ℎ

2𝑅2
]} 𝑅1𝑅2𝛿𝑤𝑑𝛽𝑑𝛼 

(11) 

 

in which the reaction of the Pasternak’s foundation is 

defined as 𝑅𝑓 = 𝐾1𝑤 − 𝐾2𝛻
2𝑤 . The work done by in-

plane external forces is calculated as 
 

𝛿𝑊𝐸𝑥𝑡2 = −∫ ∫ [(𝑁0𝛼 +𝑁𝐸𝛼)
1

𝑅1
2

𝜕2𝑤

𝜕𝛼2
𝛼𝛽

 

                   + (𝑁0𝛽 +𝑁𝐸𝛽)
1

𝑅2
2

𝜕2𝑤

𝜕𝛽2
] 𝑅1𝑅2𝛿𝑤𝑑𝛼𝑑𝛽 

(12) 

 

In which (𝑁0𝛼 , 𝑁0𝛽)  and (𝑁𝐸𝛼 , 𝑁𝐸𝛽)  are pre-

mechanical and pre-electrical loads. Substitution of strain 

energy and work due to external forces into principle of 

virtual work 𝛿𝑈 − 𝛿𝑊𝐸𝑥𝑡 = 0  yields the stability 

governing equations as follows 

 

𝛿𝑢:     
𝜕

𝜕𝛼
(
𝑁𝛼
𝑅1
) +

𝜕

𝜕𝛽
(
𝑁𝛽𝛼

𝑅2
) +

𝑁𝛼𝑧
1

𝑅1
 

            −
1

2
(
1

𝑅1
−
1

𝑅2
)
𝜕

𝜕𝛽
(
𝑀𝛽𝛼

𝑅2
) = 0,          

(13a) 

 

𝛿𝜙1 :     
𝜕

𝜕𝛼
(
𝑀𝛼

𝑅1
) − 𝑁𝛼𝑧

1 +
𝜕

𝜕𝛽
(
𝑀𝛽𝛼

𝑅2
) = 0,  (13b) 

 

𝛿𝑣:     +
𝜕

𝜕𝛽
(
𝑁𝛽

𝑅2
) +

𝜕

𝜕𝛼
(
𝑁𝛼𝛽

𝑅1
) 

            +
𝑁𝛽𝑧
1

𝑅2
+
1

2
(
1

𝑅1
−
1

𝑅2
)
𝜕

𝜕𝛼
(
𝑀𝛼𝛽

𝑅1
) = 0, 

(13c) 

 

𝛿𝜙2 :     
𝜕

𝜕𝛽
(
𝑀𝛽

𝑅2
) − 𝑁𝛽𝑧

1 +
𝜕

𝜕𝛼
(
𝑀𝛼𝛽

𝑅1
) = 0,    (13d) 

 

𝛿𝑤:     −
𝑁𝛼
1

𝑅1
−
𝑁𝛽
1

𝑅2
+
𝜕

𝜕𝛽
(
𝑁𝛽𝑧

𝑅2
) +

𝜕

𝜕𝛼
(
𝑁𝛼𝑧
𝑅1
) 

             +(𝑁0𝛼 + 𝑁𝐸𝛼 + 𝑁𝑀𝛼)
1

𝑅1
2

𝜕2𝑤

𝜕𝛼2
 

             + (𝑁0𝛽 + 𝑁𝐸𝛽 +𝑁𝑀𝛽)
1

𝑅2
2

𝜕2𝑤

𝜕𝛽2
 

         = 𝑞 [1 +
ℎ

2𝑅1
] [1 +

ℎ

2𝑅2
] 

             −𝑅𝑓 [1 −
ℎ

2𝑅1
] [1 −

ℎ

2𝑅2
], 

(13e) 

 

𝛿Ψ:     +
𝜕

𝜕𝛼
(
𝐷̅𝛼
𝑅1
) +

𝜕

𝜕𝛽
(
𝐷̅𝛽

𝑅2
) + 𝐷̅𝑧 = 0, (13f) 

 

In which the resultant components are defined in 

Appendix A. 

Substitution of resultant components from Appendix A 

into governing equations leads to final governing equations 

in terms of primary displacement field as follows 

 

𝛿𝑢:     
𝐴1
𝑅1

𝜕2𝑢

𝜕𝛼2
+ (

χ[𝐴70 − 𝐴66] + 𝐴54 − 𝐴58
𝑅2

)
𝜕2𝑢

𝜕𝛽2
 

            −
𝐴45
𝑅1

𝑢 +
𝐴3
𝑅1

𝜕2𝜙1
𝜕𝛼2

+ (
𝐴56 − χ𝐴68

𝑅2
)
𝜕2𝜙1
𝜕𝛽2

 

            +
𝐴43
𝑅1

𝜙1 +
𝐴4
𝑅1

𝜕2𝑣

𝜕𝛼𝜕𝛽
 

            +(
𝐴57 + 𝐴53 − χ[𝐴65 + 𝐴69]

𝑅2
)
𝜕2𝑣

𝜕𝛼𝜕𝛽
 

            + (
𝐴6
𝑅1
+
𝐴55 − χ𝐴67

𝑅2
)
𝜕2𝜙2
𝜕𝛼𝜕𝛽

 

            + (
𝐴5 + 𝐴2 + 𝐴44

𝑅1
)
𝜕𝑤

𝜕𝛼
+ (

𝐴7 − 𝐴46
𝑅1

)
𝜕Ψ

𝜕𝛼
 

       = −
𝜕

𝜕𝛼
(
𝑁𝛼

Ψ

𝑅1
) 

𝛿𝜙1 :     
𝐴15
𝑅1

𝜕2𝑢

𝜕𝛼2
+
(𝐴66 − 𝐴70)

𝑅2

𝜕2𝑢

𝜕𝛽2
+
𝐴17
𝑅1

𝜕2𝜙1
𝜕𝛼2

 

            +
𝐴68
𝑅2

𝜕2𝜙1
𝜕𝛽2

− 𝐴43𝜙1 

            + (
𝐴65 + 𝐴69

𝑅2
+
𝐴18
𝑅1
)
𝜕2𝑣

𝜕𝛼𝜕𝛽
+ 𝐴45𝑢 

            + (
𝐴20
𝑅1

+
𝐴67
𝑅2
)
𝜕𝜙2
𝜕𝛼𝜕𝛽

+ (
𝐴19 + 𝐴16

𝑅1
− 𝐴44)

𝜕𝑤

𝜕𝛼
 

            + (
𝐴21
𝑅1

+ 𝐴46)
𝜕Ψ

𝜕𝛼
= −

𝜕

𝜕𝛼
(
𝑀𝛼

Ψ

𝑅1
) 

𝛿𝑣:     (
𝐴4
𝑅2
+
χ[𝐴60 − 𝐴64] + 𝐴48 − 𝐴52

𝑅1
)
𝜕2𝑢

𝜕𝛼𝜕𝛽
 

            + (
𝐴50 + χ𝐴62

𝑅1
+
𝐴6
𝑅2
)
𝜕2𝜙1
𝜕𝛼𝜕𝛽

 

            +(
𝐴47 + 𝐴51 + χ[𝐴59 + 𝐴63]

𝑅1
)
𝜕2𝑣

𝜕𝛼2
+
𝐴22
𝑅2

𝜕2𝑣

𝜕𝛽2
 

            −
𝐴41
𝑅2

𝑣 + (
𝐴49 + χ𝐴61

𝑅1
)
𝜕2𝜙2
𝜕𝛼2

+
𝐴24
𝑅2

𝜕2𝜙2
𝜕𝛽2

 

            +
𝐴39
𝑅2

𝜙2 + (
𝐴40 + 𝐴5 + 𝐴23

𝑅2
)
𝜕𝑤

𝜕𝛽
 

            + (
𝐴7 − 𝐴42
𝑅2

)
𝜕Ψ

𝜕𝛽
= −

𝜕

𝜕𝛽
(
𝑁𝛽

Ψ

𝑅2
)      

𝛿𝜙2 :     (
𝐴18
𝑅2

+
𝐴60 − 𝐴64

𝑅1
)
𝜕2𝑢

𝜕𝛼𝜕𝛽
+ 𝐴41𝑣 

            + (
𝐴62
𝑅1

+
𝐴20
𝑅2
)
𝜕2𝜙1
𝜕𝛼𝜕𝛽

+ (
𝐴59 + 𝐴63

𝑅1
)
𝜕2𝑣

𝜕𝛼2
 

𝛿𝜙2 :     (
𝐴18
𝑅2

+
𝐴60 − 𝐴64

𝑅1
)
𝜕2𝑢

𝜕𝛼𝜕𝛽
+ 𝐴41𝑣 

            + (
𝐴62
𝑅1

+
𝐴20
𝑅2
)
𝜕2𝜙1
𝜕𝛼𝜕𝛽

+ (
𝐴59 + 𝐴63

𝑅1
)
𝜕2𝑣

𝜕𝛼2
 

(14) 
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            +
𝐴28
𝑅2

𝜕2𝑣

𝜕𝛽2
+ (

𝐴30
𝑅2

+
𝐴61
𝑅1
)
𝜕2𝜙2
𝜕𝛼2

− 𝐴39𝜙2 

            + (
𝐴29 + 𝐴19

𝑅2
− 𝐴40)

𝜕𝑤

𝜕𝛽
+ (

𝐴21
𝑅2

+ 𝐴42)
𝜕Ψ

𝜕𝛽
 

       = −
𝜕

𝜕𝛽
(
𝑀𝛼

Ψ

𝑅2
) 

𝛿𝑤:     (−
𝐴11
𝑅2

−
𝐴8 + 𝐴37
𝑅1

)
𝜕𝑢

𝜕𝛼
 

            + (
𝐴35 − 𝐴10

𝑅1
−
𝐴13
𝑅2
)
𝜕𝜙1
𝜕𝛼

 

            + (−
𝐴33 + 𝐴25

𝑅2
−
𝐴11
𝑅1
)
𝜕𝑣

𝜕𝛽
−
𝐴27
𝑅2

𝜕𝜙2
𝜕𝛽

 

            + (−
𝐴9 + 𝐴12
𝑅1

−
𝐴12 + 𝐴26

𝑅2
)𝑤 

            + (−
𝐴13
𝑅1

−
𝐴31
𝑅2
)
𝜕𝜙2
𝜕𝛽

+
𝐴36
𝑅1

𝜕2𝑤

𝜕𝛼2
 

            + (
𝐴32 − 𝐴34

𝑅2
)
𝜕2Ψ

𝜕𝛽2
−
𝐴38
𝑅1

𝜕2Ψ

𝜕𝛼2
 

            + (−
𝐴14
𝑅2

−
𝐴14
𝑅1
)Ψ + (𝑁0𝛼 +𝑁𝐸𝛼)

1

𝑅1
2

𝜕2𝑤

𝜕𝛼2
 

            + (𝑁0𝛽 + 𝑁𝐸𝛽)
1

𝑅2
2

𝜕2𝑤

𝜕𝛽2
 

       = +
𝑁𝛼

1Ψ

𝑅1
+
𝑁𝛽

1Ψ

𝑅2
 

            +(1 − (𝑒0𝑎)
2∇2)

{
 

 𝑞 [1 +
ℎ

2𝑅1
] [1 +

ℎ

2𝑅2
]

−𝑅𝑓 [1 −
ℎ

2𝑅1
] [1 −

ℎ

2𝑅2
]
}
 

 

 

𝛿Ψ:     (−
𝐴73
𝑅1

+ 𝐴79)
𝜕𝑢

𝜕𝛼
+ (

𝐴71
𝑅1

+ 𝐴81)
𝜕𝜙1
𝜕𝛼

 

            + (𝐴82 −
𝐴77
𝑅2
)
𝜕𝑣

𝜕𝛽
+ (

𝐴75
𝑅2

+ 𝐴84)
𝜕𝜙2
𝜕𝛽

 

            +
𝐴72
𝑅1

𝜕2𝑤

𝜕𝛼2
+
𝐴76
𝑅2

𝜕2𝑤

𝜕𝛽2
+ (𝐴80 + 𝐴83)𝑤 

            −
𝐴78
𝑅2

𝜕2Ψ

𝜕𝛽2
−
𝐴74
𝑅1

𝜕2Ψ

𝜕𝛼2
+ 𝐴85Ψ = −𝐷𝑧

Ψ 

(14) 

 

In which the integration constants 𝐴𝑖  and other 

undefined variables are expressed in Appendix B. 
 

 

3. Solution procedure 
 

Solution procedure is illustrated in this section based on 

double trigonometric solution for the simply supported 

boundary conditions. The four boundary conditions are 

assumed simply-supported. In addition, the homogeneous 

boundary conditions are assumed for electric potentials. 

Based on this procedure the solution is expressed as 

follows 
 

{
 
 

 
 
𝑢
𝜙1
𝑣
𝜙2
𝑤
Ψ}
 
 

 
 

=

{
 
 

 
 
𝑈𝑐𝑜𝑠𝜆𝑚𝛼𝑠𝑖𝑛𝜇𝑛𝛽
Φ1𝑐𝑜𝑠𝜆𝑚𝛼𝑠𝑖𝑛𝜇𝑛𝛽
𝑉𝑠𝑖𝑛𝜆𝑚𝛼𝑐𝑜𝑠𝜇𝑛𝛽
Φ2𝑠𝑖𝑛𝜆𝑚𝛼𝑐𝑜𝑠𝜇𝑛𝛽
𝑊𝑠𝑖𝑛𝜆𝑚𝛼𝑠𝑖𝑛𝜇𝑛𝛽
Ψ𝑠𝑖𝑛𝜆𝑚𝛼𝑠𝑖𝑛𝜇𝑛𝛽 }

 
 

 
 

 (15) 

In which the {𝑋} = {𝑈,Φ1, 𝑉, Φ2,𝑊,Ψ}
𝑇 are unknown 

amplitudes and 𝜆𝑚 =
𝑚𝑅1

𝐿1
, 𝜇𝑛 =

𝑛𝑅2

𝐿2
. Substitution of 

proposed solution from Eq. (15) into governing equations 

leads to following well-known format as follows 

 
[𝐾]{𝑋} = {𝐹} (16) 

 

Elements of stiffness matrix [𝐾] and force matrix {𝐹} 
are defined in Appendix C. 

 

 

4. Numerical results and discussion 
 

The material properties of piezoelectric doubly curved 

nano shell are presented for the core and piezoelectric 

layers as 
 

Core: 

𝐸 = 169𝐺𝑃𝑎, 𝑣 = 0.3 
 

Piezoelectric: 
 

𝐶11
𝑃 = 138.499𝐺𝑃𝑎, 

𝐶22
𝑃 = 138.499𝐺𝑃𝑎, 

𝐶33
𝑃 = 114.745𝐺𝑃𝑎 

𝐶12
𝑃 = 77.371𝐺𝑃𝑎, 

𝐶13
𝑃 = 73.643𝐺𝑃𝑎, 

𝐶23
𝑃 = 73.643𝐺𝑃𝑎 

𝐶44
𝑃 = 25.6𝐺𝑃𝑎, 

𝐶55
𝑃 = 25.6𝐺𝑃𝑎, 

𝐶66
𝑃 = 30.6𝐺𝑃𝑎 

𝑒13 = 𝑒31 = −5.2
𝐶
𝑚2⁄ , 

 𝑒23 = 𝑒32 = −5.2
𝐶
𝑚2⁄ , 

𝑒33 = 15.8
𝐶
𝑚2⁄ , 

𝑒15 = 12.72
𝐶
𝑚2⁄ , 

𝑒24 = 12.72
𝐶
𝑚2⁄ , 

𝑘11 = 1.306 × 10
−8 𝐹

𝑚⁄ , 

𝑘22 = 1.306 × 10
−8 𝐹

𝑚⁄ , 

𝑘33 = 1.151 × 10
−8 𝐹

𝑚⁄  
 

In addition, the dimensions of doubly curved 

piezoelectric nano shell for Figs. 2-17 are summarized as 

follows 

𝐿1 = 𝐿2 = 20 𝑛𝑚, 
𝑅1 = 𝑅2 = 20 𝑛𝑚, 
ℎ𝑒 = 1 𝑛𝑚,          ℎ𝑝 = 0.1 𝑛𝑚 

 

4.1 Critical applied electrical loads 
 

In this section, the distribution of critical applied 

electrical loads Ψ0,𝑐𝑟 is presented in term of two principle 

angles of doubly curved shells 𝜃1, 𝜃2. One can see that the 

trend of critical applied electrical loads Ψ0,𝑐𝑟  is not 

uniform for all values of two principle angles  𝜃1, 𝜃2. For 

example; for 𝜃2 = 0.5, the critical applied electrical loads 

Ψ0,𝑐𝑟 is decreased with increase of 𝜃1, while they are 

increased for 𝜃2 = 1. Shown in Fig. 3 is distribution of 

critical applied electrical loads Ψ0,𝑐𝑟 in terms of first angle 
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Fig. 2 Distribution of critical applied electrical loads Ψ0,𝑐𝑟 
in term of two principle angles of doubly curved 

shells 𝜃1, 𝜃2 
 

 

 

Fig. 3 Distribution of critical applied electrical loads Ψ0,𝑐𝑟 
in term of first angle of shells 𝜃1and small scale 

parameter e0𝑎 
 

 

of shells 𝜃1  and small scale parameter e0𝑎 . One can 

observe that with increase of nonlocal parameter, the critical 

applied electrical loads Ψ0,𝑐𝑟 are increased significantly. In 

addition the increase behavior can be observed for variation 

of critical applied electrical loads Ψ0,𝑐𝑟  in terms of 

variation of first angle of shells 𝜃1. 

Fig. 4 shows variation of critical applied electrical loads 

Ψ0,𝑐𝑟 in terms of second angle of shells 𝜃2 and small scale 

parameter e0𝑎 . It is concluded that critical applied 

electrical loads Ψ0,𝑐𝑟  are increased significantly with 

increase of both parameters (second angle of shells 𝜃2 and 

small scale parameter e0𝑎). 

Shown in Fig. 5 is the effect of winker parameter of 

foundation K1 and small scale parameter e0𝑎 on the 

 

Fig. 4 Distribution of critical applied electrical loads Ψ0,𝑐𝑟 
in term of second angle of shells 𝜃2 and small scale 

parameter e0𝑎 
 

 

 

Fig. 5 Distribution of critical applied electrical loads Ψ0,𝑐𝑟 
in term of winker parameter of foundation K1and 

small scale parameter e0𝑎 
 

 

critical applied electrical loads Ψ0,𝑐𝑟. The numerical results 

indicate that with increase of both Winkler parameter of 

foundation and nonlocal parameter, the critical applied 

electrical loads Ψ0,𝑐𝑟 are decreased significantly. 

Shown in Fig. 6 is the effect of shear parameter of 

foundation and small scale parameter e0𝑎 on the critical 

applied electrical loads Ψ0,𝑐𝑟. One can conclude that with 

increase of both shear parameter of foundation and nonlocal 

parameter, the critical applied electrical loads Ψ0,𝑐𝑟  are 

decreased significantly. 

The effect of two principle angles of doubly curved shell 

on the mechanical buckling loads of doubly curved nano 

shell is presented in Fig. 7. One can see that with increase 

of first angle of shells 𝜃1 and decrease of second angle of 

shells 𝜃2 , the mechanical buckling loads N0,𝑐𝑟  are 
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Fig. 6 Distribution of critical applied electrical loads Ψ0,𝑐𝑟 

in term of shear parameter of foundation K2 and 

small scale parameter e0𝑎 
 

 

 

Fig. 7 Distribution of mechanical buckling loads N0,𝑐𝑟 in 

term of two principle angles of doubly curved shell 

𝜃1, 𝜃2 

 

 

increased significantly. 

Fig. 8 depicts variation of mechanical buckling loads in 

terms of direct and shear parameters of Pasternak’s 

foundation 𝐾1, 𝐾2. One can conclude that with increase of 

direct and shear parameters of foundation, the stiffness of 

structure is increased and consequently the mechanical 

buckling loads are increased. 

Shown in Figs. 9, 10 are the effect of two parameters of 

foundation (K1, K2) and small scale parameter e0𝑎 on the 

mechanical buckling loads N0,𝑐𝑟. The numerical results 

indicate that with increase of Winkler parameter of 

foundation, the mechanical buckling loads are increased 

while with increase of nonlocal parameter they are 

decreased significantly. It is concluded that increase of 

nonlocal parameter leads to significant decrease of stiffness 

 

Fig. 8 Distribution of mechanical buckling loads N0,𝑐𝑟 in 

term of two parameters of Pasternak foundation 

𝐾1, 𝐾2. 

 

 

 

Fig. 9 Distribution of mechanical buckling loads N0,𝑐𝑟 in 

term of direct parameter of foundation 𝐾1 and 

small scale parameter e0𝑎 
 

 

of nano shell and consequently decrease of its mechanical 

buckling load. 
 

 

5. Conclusions 
 

Stability analysis of shear deformable doubly curved 

nano shell including a nano core and two piezoelectric 

nanoshells was studied in this paper based on size 

dependent constitutive relations and first order shear 

deformation theory. Principle of virtual work was used in 

this work to derive governing equations of stability 

analysis. The piezoelectric layers have been subjected to 

initial electric potential. The governing equations of 

stability have been solved based on double trigonometric 

functions for simply supported boundary conditions. The 
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Fig. 10 Distribution of mechanical buckling loads N0,𝑐𝑟 in 

term of shear parameter of foundation 𝐾2 and and 

small scale parameter e0𝑎 

 

 

critical applied electric potentials and critical mechanical 

loads were evaluated in terms of significant inputs of the 

problem such as nonlocal parameter, two parameters of 

Pasternak's foundation and two principle angles of doubly 

curved nano shell. The main significant conclusions of this 

work are classified as follows: 

The critical applied electrical loads Ψ0,𝑐𝑟 were evaluated 

in terms of significant parameters of the problem. One can 

conclude that these outputs are increased with increase of 

small scale parameter. In addition, investigation on the 

effect of two principle angles of doubly curved nano shell 

indicates that for 𝜃2 = 0.5, the critical applied electrical 

loads Ψ0,𝑐𝑟 is decreased with increase of 𝜃1, while they 

are increased for 𝜃2 = 1. It is confirmed that changes of 

critical applied electrical loads Ψ0,𝑐𝑟  are strongly 

depending on the two two principle angles and 

consequently a quantitative presentation is not possible. 

Furthermore, it is concluded that increase of two parameters 

of Pasternak’s foundation leads to decrease of critical 

applied electrical loads. 

The mechanical buckling loads have been evaluated in 

terms of important parameters of the problem. This 

investigation indicates that the mechanical buckling loads 

are decreased with increase of nonlocal parameter. In 

addition, it is concluded that increase of direct and shear 

parameters of foundation leads to increase of mechanical 

buckling loads. In addition, one can see that with increase 

of first angle of shells 𝜃1and decrease of second angle of 

shells 𝜃2 , the critical applied electrical loads Ψ0,𝑐𝑟  are 

increased significantly. 
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𝑧

𝑅2
] 𝑒13

𝜋

ℎ
𝑠𝑖𝑛

𝜋𝑧

ℎ

+ℎ 2⁄ +ℎ𝑝

+ℎ 2⁄

𝑑𝑧, 

 

𝑁𝛼
Ψ = ∫ [1 +

𝑧

𝑅2
]
2

ℎ
Ψ0𝑒13

−ℎ 2⁄

−ℎ 2⁄ −ℎ𝑝

𝑑𝑧 

             +∫ [1 +
𝑧

𝑅2
]
2

ℎ
Ψ0𝑒13

+ℎ 2⁄ +ℎ𝑝

+ℎ 2⁄

𝑑𝑧 

 

{𝐴8, 𝐴9, 𝐴10} = ∫ [1 +
𝑧

𝑅2
] [1 +

𝑧

𝑅1
] 𝐶11

𝑝
−ℎ 2⁄

−ℎ 2⁄ −ℎ𝑝

 

                             {
1

𝑅1 (1 +
𝑧

𝑅1
)
,
1

𝑅1
,

𝑧

𝑅1 (1 +
𝑧

𝑅1
)
}𝑑𝑧 
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                             +∫ [1 +
𝑧

𝑅2
] [1 +

𝑧

𝑅1
] 𝐶11

𝑐
+ℎ 2⁄

−ℎ 2⁄

 

                              {
1

𝑅1 (1 +
𝑧

𝑅1
)
,
1

𝑅1
,

𝑧

𝑅1 (1 +
𝑧

𝑅1
)
}𝑑𝑧                           

                              +∫ [1 +
𝑧

𝑅2
] [1 +

𝑧

𝑅1
] 𝐶11

𝑝
+ℎ 2⁄ +ℎ𝑝

+ℎ 2⁄

 

                              {
1

𝑅1 (1 +
𝑧

𝑅1
)
,
1

𝑅1
,

𝑧

𝑅1 (1 +
𝑧

𝑅1
)
}𝑑𝑧 

 

{𝐴11, 𝐴12, 𝐴13} = ∫ [1 +
𝑧

𝑅2
] [1 +

𝑧

𝑅1
] 𝐶12

𝑝
−ℎ 2⁄

−ℎ 2⁄ −ℎ𝑝

 

                                {
1

𝑅2 (1 +
𝑧

𝑅2
)
,
1

𝑅2
,

𝑧

𝑅2 (1 +
𝑧

𝑅2
)
}𝑑𝑧 

                               +∫ [1 +
𝑧

𝑅2
] [1 +

𝑧

𝑅1
] 𝐶12

𝑐
+ℎ 2⁄

−ℎ 2⁄

 

                               {
1

𝑅2 (1 +
𝑧

𝑅2
)
,
1

𝑅2
,

𝑧

𝑅2 (1 +
𝑧

𝑅2
)
}𝑑𝑧 

                               +∫ [1 +
𝑧

𝑅2
] [1 +

𝑧

𝑅1
] 𝐶12

𝑝
+ℎ 2⁄ +ℎ𝑝

+ℎ 2⁄

 

                               {
1

𝑅2 (1 +
𝑧

𝑅2
)
,
1

𝑅2
,

𝑧

𝑅2 (1 +
𝑧

𝑅2
)
}𝑑𝑧 

 

{𝐴14} = ∫ [1 +
𝑧

𝑅2
] [1 +

𝑧

𝑅1
] 𝑒13

𝜋

ℎ
𝑠𝑖𝑛

𝜋𝑧

ℎ

−ℎ 2⁄

−ℎ 2⁄ −ℎ𝑝

𝑑𝑧 

               +∫ [1 +
𝑧

𝑅2
] [1 +

𝑧

𝑅1
] 𝑒13

𝜋

ℎ
𝑠𝑖𝑛

𝜋𝑧

ℎ

+ℎ 2⁄ +ℎ𝑝

+ℎ 2⁄

𝑑𝑧, 

 

 𝑁𝛽
Ψ = ∫ [1 +

𝑧

𝑅1
]
2

ℎ
Ψ0𝑒13

−ℎ 2⁄

−ℎ 2⁄ −ℎ𝑝

𝑑𝑧 

               +∫ [1 +
𝑧

𝑅1
]
2

ℎ
Ψ0𝑒13

+ℎ 2⁄ +ℎ𝑝

+ℎ 2⁄

𝑑𝑧 

 

𝑁𝛼
1Ψ = 𝑁𝛽

1Ψ = ∫ [1 +
𝑧

𝑅2
] [1 +

𝑧

𝑅1
]
2

ℎ
Ψ0𝑒13

−ℎ 2⁄

−ℎ 2⁄ −ℎ𝑝

𝑑𝑧 

                               +∫ [1 +
𝑧

𝑅2
] [1 +

𝑧

𝑅1
]
2

ℎ
Ψ0𝑒13

+ℎ 2⁄ +ℎ𝑝

+ℎ 2⁄

𝑑𝑧 

 

{𝐴15, 𝐴16, 𝐴17} = ∫ [1 +
𝑧

𝑅2
] 𝑧𝐶11

𝑝
−ℎ 2⁄

−ℎ 2⁄ −ℎ𝑝

 

                               {
1

𝑅2 (1 +
𝑧

𝑅2
)
,
1

𝑅2
,

𝑧

𝑅2 (1 +
𝑧

𝑅2
)
}𝑑𝑧 

                               +∫ [1 +
𝑧

𝑅2
] 𝑧𝐶11

𝑐
+ℎ 2⁄

−ℎ 2⁄

 

                               {
1

𝑅2 (1 +
𝑧

𝑅2
)
,
1

𝑅2
,

𝑧

𝑅2 (1 +
𝑧

𝑅2
)
}𝑑𝑧 

                               +∫ [1 +
𝑧

𝑅2
] 𝑧𝐶11

𝑝
+ℎ 2⁄ +ℎ𝑝

+ℎ 2⁄

 

                               {
1

𝑅2 (1 +
𝑧

𝑅2
)
,
1

𝑅2
,

𝑧

𝑅2 (1 +
𝑧

𝑅2
)
}𝑑𝑧 

 

{𝐴18, 𝐴19, 𝐴20} = ∫ [1 +
𝑧

𝑅2
] 𝑧𝐶12

𝑝
−ℎ 2⁄

−ℎ 2⁄ −ℎ𝑝

 

                               {
1

𝑅2 (1 +
𝑧

𝑅2
)
,
1

𝑅2
,

𝑧

𝑅2 (1 +
𝑧

𝑅2
)
}𝑑𝑧 

                               +∫ [1 +
𝑧

𝑅2
] 𝑧𝐶12

𝑐
+ℎ 2⁄

−ℎ 2⁄

 

                               {
1

𝑅2 (1 +
𝑧

𝑅2
)
,
1

𝑅2
,

𝑧

𝑅2 (1 +
𝑧

𝑅2
)
}𝑑𝑧 

                               +∫ [1 +
𝑧

𝑅2
] 𝑧𝐶12

𝑝
+ℎ 2⁄ +ℎ𝑝

+ℎ 2⁄

 

                               {
1

𝑅2 (1 +
𝑧

𝑅2
)
,
1

𝑅2
,

𝑧

𝑅2 (1 +
𝑧

𝑅2
)
}𝑑𝑧 

 

{𝐴21} = ∫ [1 +
𝑧

𝑅2
] 𝑧𝑒13

𝜋

ℎ
𝑠𝑖𝑛

𝜋𝑧

ℎ

−ℎ 2⁄

−ℎ 2⁄ −ℎ𝑝

𝑑𝑧 

                +∫ [1 +
𝑧

𝑅2
] 𝑧𝑒13

𝜋

ℎ
𝑠𝑖𝑛

𝜋𝑧

ℎ

+ℎ 2⁄ +ℎ𝑝

+ℎ 2⁄

𝑑𝑧 

 

𝑀𝛼
Ψ = ∫ [1 +

𝑧

𝑅2
]
2

ℎ
𝑧Ψ0𝑒13

−ℎ 2⁄

−ℎ 2⁄ −ℎ𝑝

𝑑𝑧 

                +∫ [1 +
𝑧

𝑅2
]
2

ℎ
𝑧Ψ0𝑒13

+ℎ 2⁄ +ℎ𝑝

+ℎ 2⁄

𝑑𝑧 

 

{𝐴22, 𝐴23, 𝐴24} = ∫ [1 +
𝑧

𝑅2
] 𝐶22

𝑝
−ℎ 2⁄

−ℎ 2⁄ −ℎ𝑝

 

                                {
1

𝑅1 (1 +
𝑧

𝑅1
)
,
1

𝑅1
,

𝑧

𝑅1 (1 +
𝑧

𝑅1
)
}𝑑𝑧 

                                +∫ [1 +
𝑧

𝑅2
] 𝐶22

𝑐
+ℎ 2⁄

−ℎ 2⁄

 

                                {
1

𝑅1 (1 +
𝑧

𝑅1
)
,
1

𝑅1
,

𝑧

𝑅1 (1 +
𝑧

𝑅1
)
}𝑑𝑧 

                                +∫ [1 +
𝑧

𝑅2
] 𝐶22

𝑝
+ℎ 2⁄ +ℎ𝑝

+ℎ 2⁄

 

                                {
1

𝑅1 (1 +
𝑧

𝑅1
)
,
1

𝑅1
,

𝑧

𝑅1 (1 +
𝑧

𝑅1
)
}𝑑𝑧 
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{𝐴25, 𝐴26, 𝐴27} = ∫ [1 +
𝑧

𝑅2
] [1 +

𝑧

𝑅1
] 𝐶22

𝑝
−ℎ 2⁄

−ℎ 2⁄ −ℎ𝑝

 

                               {
1

𝑅1 (1 +
𝑧

𝑅1
)
,
1

𝑅1
,

𝑧

𝑅1 (1 +
𝑧

𝑅1
)
}𝑑𝑧 

                               +∫ [1 +
𝑧

𝑅2
] [1 +

𝑧

𝑅1
] 𝐶22

𝑐
+ℎ 2⁄

−ℎ 2⁄

 

                               {
1

𝑅1 (1 +
𝑧

𝑅1
)
,
1

𝑅1
,

𝑧

𝑅1 (1 +
𝑧

𝑅1
)
}𝑑𝑧 

                               +∫ [1 +
𝑧

𝑅2
] [1 +

𝑧

𝑅1
] 𝐶22

𝑝+ℎ 2⁄ +ℎ𝑝

+ℎ 2⁄

 

                               {
1

𝑅1 (1 +
𝑧

𝑅1
)
,
1

𝑅1
,

𝑧

𝑅1 (1 +
𝑧

𝑅1
)
}𝑑𝑧 

 

{𝐴28, 𝐴29, 𝐴30} 

= ∫ [1 +
𝑧

𝑅2
] 𝑧𝐶22

𝑝
−ℎ 2⁄

−ℎ 2⁄ −ℎ𝑝

{
1

𝑅1 (1 +
𝑧

𝑅1
)
,
1

𝑅1
,

𝑧

𝑅1 (1 +
𝑧

𝑅1
)
}𝑑𝑧 

    +∫ [1 +
𝑧

𝑅2
] 𝑧𝐶22

𝑐
+ℎ 2⁄

−ℎ 2⁄

{
1

𝑅1 (1 +
𝑧

𝑅1
)
,
1

𝑅1
,

𝑧

𝑅1 (1 +
𝑧

𝑅1
)
}𝑑𝑧 

    +∫ [1 +
𝑧

𝑅2
] 𝑧𝐶22

𝑝
+ℎ 2⁄ +ℎ𝑝

+ℎ 2⁄

{
1

𝑅1 (1 +
𝑧

𝑅1
)
,
1

𝑅1
,

𝑧

𝑅1 (1 +
𝑧

𝑅1
)
}𝑑𝑧 

 

{𝐴31, 𝐴32, 𝐴33} 

= ∫ [1 +
𝑧

𝑅1
] 𝐶44

𝑝
−ℎ 2⁄

−ℎ 2⁄ −ℎ𝑝

{1,
1

𝑅2 (1 +
𝑧

𝑅2
)
,
1

𝑅1
}𝑑𝑧 

   +∫ [1 +
𝑧

𝑅1
] 𝐶44

𝑐
+ℎ 2⁄

−ℎ 2⁄

{1,
1

𝑅2 (1 +
𝑧

𝑅2
)
,
1

𝑅1
}𝑑𝑧 

   +∫ [1 +
𝑧

𝑅1
] 𝐶44

𝑝
+ℎ 2⁄ +ℎ𝑝

+ℎ 2⁄

 {1,
1

𝑅2 (1 +
𝑧

𝑅2
)
,
1

𝑅1
}𝑑𝑧 

 

𝐴34 = ∫ [1 +
𝑧

𝑅1
] 𝑒42

1

𝑅2 (1 +
𝑧

𝑅2
)
cos

𝜋𝑧

ℎ

−ℎ 2⁄

−ℎ 2⁄ −ℎ𝑝

𝑑𝑧 

           +∫ [1 +
𝑧

𝑅1
] 𝑒42

1

𝑅2 (1 +
𝑧

𝑅2
)
cos

𝜋𝑧

ℎ

+ℎ 2⁄ +ℎ𝑝

+ℎ 2⁄

𝑑𝑧 

 

{𝐴35, 𝐴36, 𝐴37} 

= ∫ [1 +
𝑧

𝑅1
] 𝐶55

𝑝
−ℎ 2⁄

−ℎ 2⁄ −ℎ𝑝

{1,
1

𝑅1 (1 +
𝑧

𝑅1
)
,
1

𝑅2
}𝑑𝑧 

   +∫ [1 +
𝑧

𝑅1
] 𝐶55

𝑐
+ℎ 2⁄

−ℎ 2⁄

{1,
1

𝑅1 (1 +
𝑧

𝑅1
)
,
1

𝑅2
}𝑑𝑧 

   +∫ [1 +
𝑧

𝑅1
] 𝐶55

𝑝
+ℎ 2⁄ +ℎ𝑝

+ℎ 2⁄

{1,
1

𝑅1 (1 +
𝑧

𝑅1
)
,
1

𝑅2
}𝑑𝑧 

𝐴38 = ∫ [1 +
𝑧

𝑅1
] 𝑒51

1

𝑅1 (1 +
𝑧

𝑅1
)
𝑐𝑜𝑠

𝜋𝑧

ℎ

−ℎ 2⁄

−ℎ 2⁄ −ℎ𝑝

𝑑𝑧 

           +∫ [1 +
𝑧

𝑅1
] 𝑒51

1

𝑅1 (1 +
𝑧

𝑅1
)
𝑐𝑜𝑠

𝜋𝑧

ℎ

+ℎ 2⁄ +ℎ𝑝

+ℎ 2⁄

𝑑𝑧 

 

{𝐴39, 𝐴40, 𝐴41} 

= ∫ [1 +
𝑧

𝑅1
] [1 +

𝑧

𝑅2
] 𝐶44

𝑝
−ℎ 2⁄

−ℎ 2⁄ −ℎ𝑝

{1,
1

𝑅2 (1 +
𝑧

𝑅2
)
,
1

𝑅1
}𝑑𝑧 

+∫ [1 +
𝑧

𝑅1
] [1 +

𝑧

𝑅2
] 𝐶44

𝑐
+ℎ 2⁄

−ℎ 2⁄

{1,
1

𝑅2 (1 +
𝑧

𝑅2
)
,
1

𝑅1
}𝑑𝑧 

+∫ [1 +
𝑧

𝑅1
] [1 +

𝑧

𝑅2
] 𝐶44

𝑝
+ℎ 2⁄ +ℎ𝑝

+ℎ 2⁄

{1,
1

𝑅2 (1 +
𝑧

𝑅2
)
,
1

𝑅1
}𝑑𝑧 

 

𝐴42 

= ∫ [1 +
𝑧

𝑅1
] [1 +

𝑧

𝑅2
] 𝑒42

1

𝑅2 (1 +
𝑧

𝑅2
)
cos

𝜋𝑧

ℎ

−ℎ 2⁄

−ℎ 2⁄ −ℎ𝑝

𝑑𝑧 

+∫ [1 +
𝑧

𝑅1
] [1 +

𝑧

𝑅2
] 𝑒42

1

𝑅2 (1 +
𝑧

𝑅2
)
cos

𝜋𝑧

ℎ

+ℎ 2⁄ +ℎ𝑝

+ℎ 2⁄

𝑑𝑧 

 

{𝐴43, 𝐴44, 𝐴45} 

= ∫ [1 +
𝑧

𝑅1
] [1 +

𝑧

𝑅2
] 𝐶55

𝑝
−ℎ 2⁄

−ℎ 2⁄ −ℎ𝑝

{1,
1

𝑅1 (1 +
𝑧

𝑅1
)
,
1

𝑅2
}𝑑𝑧 

+∫ [1 +
𝑧

𝑅1
] [1 +

𝑧

𝑅2
] 𝐶55

𝑐
+ℎ 2⁄

−ℎ 2⁄

{1,
1

𝑅1 (1 +
𝑧

𝑅1
)
,
1

𝑅2
}𝑑𝑧 

+∫ [1 +
𝑧

𝑅1
] [1 +

𝑧

𝑅2
] 𝐶55

𝑝
+ℎ 2⁄ +ℎ𝑝

+ℎ 2⁄

{1,
1

𝑅1 (1 +
𝑧

𝑅1
)
,
1

𝑅2
}𝑑𝑧 

 

𝐴46 

= ∫ [1 +
𝑧

𝑅1
] [1 +

𝑧

𝑅2
] 𝑒51

1

𝑅1 (1 +
𝑧

𝑅1
)
𝑐𝑜𝑠

𝜋𝑧

ℎ

−ℎ 2⁄

−ℎ 2⁄ −ℎ𝑝

𝑑𝑧 

+∫ [1 +
𝑧

𝑅1
] [1 +

𝑧

𝑅2
] 𝑒51

1

𝑅1 (1 +
𝑧

𝑅1
)
𝑐𝑜𝑠

𝜋𝑧

ℎ

+ℎ 2⁄ +ℎ𝑝

+ℎ 2⁄

𝑑𝑧 

 

{𝐴47, 𝐴48, 𝐴49, 𝐴50, 𝐴51, 𝐴52} 

= ∫ [1 +
𝑧

𝑅2
] 𝐶66

𝑝
−ℎ 2⁄

−ℎ 2⁄ −ℎ𝑝

 

    

{
 
 
 
 

 
 
 
 

1

𝑅1 (1 +
𝑧

𝑅1
)
,

1

𝑅2 (1 +
𝑧

𝑅2
)
, 𝑧

1

𝑅1 (1 +
𝑧

𝑅1
)
,

𝑧
1

𝑅2 (1 +
𝑧

𝑅2
)
, 𝑧
1

2
(
1

𝑅1
−
1

𝑅2
) (

1

𝑅1 (1 +
𝑧

𝑅1
)
,

𝑧
1

2
(
1

𝑅1
−
1

𝑅2
)

1

𝑅2 (1 +
𝑧

𝑅2
) }

 
 
 
 

 
 
 
 

𝑑𝑧 

+∫ [1 +
𝑧

𝑅2
] 𝐶66

𝑐
+ℎ 2⁄

−ℎ 2⁄
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{
 
 
 
 

 
 
 
 

1

𝑅1 (1 +
𝑧

𝑅1
)
,

1

𝑅2 (1 +
𝑧

𝑅2
)
, 𝑧

1

𝑅1 (1 +
𝑧

𝑅1
)
,

𝑧
1

𝑅2 (1 +
𝑧

𝑅2
)
, 𝑧
1

2
(
1

𝑅1
−
1

𝑅2
)(

1

𝑅1 (1 +
𝑧

𝑅1
)
) ,

𝑧
1

2
(
1

𝑅1
−
1

𝑅2
)

1

𝑅2 (1 +
𝑧

𝑅2
) }

 
 
 
 

 
 
 
 

𝑑𝑧 

+∫ [1 +
𝑧

𝑅2
] 𝐶66

𝑝
+ℎ 2⁄ +ℎ𝑝

+ℎ 2⁄

 

{
 
 
 
 

 
 
 
 

1

𝑅1 (1 +
𝑧

𝑅1
)
,

1

𝑅2 (1 +
𝑧

𝑅2
)
, 𝑧

1

𝑅1 (1 +
𝑧

𝑅1
)
,

𝑧
1

𝑅2 (1 +
𝑧

𝑅2
)
, 𝑧
1

2
(
1

𝑅1
−
1

𝑅2
)(

1

𝑅1 (1 +
𝑧

𝑅1
)
) ,

𝑧
1

2
(
1

𝑅1
−
1

𝑅2
)

1

𝑅2 (1 +
𝑧

𝑅2
) }

 
 
 
 

 
 
 
 

𝑑𝑧 

 

{𝐴53, 𝐴54, 𝐴55, 𝐴56, 𝐴57, 𝐴58} 

= ∫ [1 +
𝑧

𝑅1
] 𝐶66

𝑝
−ℎ 2⁄

−ℎ 2⁄ −ℎ𝑝

 

     

{
 
 
 
 

 
 
 
 

1

𝑅1 (1 +
𝑧

𝑅1
)
,

1

𝑅2 (1 +
𝑧

𝑅2
)
, 𝑧

1

𝑅1 (1 +
𝑧

𝑅1
)
,

𝑧
1

𝑅2 (1 +
𝑧

𝑅2
)
, 𝑧
1

2
(
1

𝑅1
−
1

𝑅2
)(

1

𝑅1 (1 +
𝑧

𝑅1
)
) ,

𝑧
1

2
(
1

𝑅1
−
1

𝑅2
)

1

𝑅2 (1 +
𝑧

𝑅2
) }

 
 
 
 

 
 
 
 

𝑑𝑧 

+∫ [1 +
𝑧

𝑅1
] 𝐶66

𝑐
+ℎ 2⁄

−ℎ 2⁄

 

    

{
 
 
 
 

 
 
 
 

1

𝑅1 (1 +
𝑧

𝑅1
)
,

1

𝑅2 (1 +
𝑧

𝑅2
)
, 𝑧

1

𝑅1 (1 +
𝑧

𝑅1
)
,

𝑧
1

𝑅2 (1 +
𝑧

𝑅2
)
, 𝑧
1

2
(
1

𝑅1
−
1

𝑅2
)(

1

𝑅1 (1 +
𝑧

𝑅1
)
) ,

𝑧
1

2
(
1

𝑅1
−
1

𝑅2
)

1

𝑅2 (1 +
𝑧

𝑅2
) }

 
 
 
 

 
 
 
 

𝑑𝑧 

+∫ [1 +
𝑧

𝑅1
] 𝐶66

𝑝
+ℎ 2⁄ +ℎ𝑝

+ℎ 2⁄

 

    

{
 
 
 
 

 
 
 
 

1

𝑅1 (1 +
𝑧

𝑅1
)
,

1

𝑅2 (1 +
𝑧

𝑅2
)
, 𝑧

1

𝑅1 (1 +
𝑧

𝑅1
)
,

𝑧
1

𝑅2 (1 +
𝑧

𝑅2
)
, 𝑧
1

2
(
1

𝑅1
−
1

𝑅2
)(

1

𝑅1 (1 +
𝑧

𝑅1
)
) ,

𝑧
1

2
(
1

𝑅1
−
1

𝑅2
)

1

𝑅2 (1 +
𝑧

𝑅2
) }

 
 
 
 

 
 
 
 

𝑑𝑧 

 

 

{𝐴59, 𝐴60, 𝐴61, 𝐴62, 𝐴63, 𝐴64} 

= ∫ [1 +
𝑧

𝑅2
] 𝑧𝐶66

𝑝
−ℎ 2⁄

−ℎ 2⁄ −ℎ𝑝

 

    

{
 
 
 
 

 
 
 
 

1

𝑅1 (1 +
𝑧

𝑅1
)
,

1

𝑅2 (1 +
𝑧

𝑅2
)
, 𝑧

1

𝑅1 (1 +
𝑧

𝑅1
)
,

𝑧
1

𝑅2 (1 +
𝑧

𝑅2
)
, 𝑧
1

2
(
1

𝑅1
−
1

𝑅2
)(

1

𝑅1 (1 +
𝑧

𝑅1
)
) ,

𝑧
1

2
(
1

𝑅1
−
1

𝑅2
)

1

𝑅2 (1 +
𝑧

𝑅2
) }

 
 
 
 

 
 
 
 

𝑑𝑧 

+∫ [1 +
𝑧

𝑅2
] 𝑧𝐶66

𝑐
+ℎ 2⁄

−ℎ 2⁄

 

    

{
 
 
 
 

 
 
 
 

1

𝑅1 (1 +
𝑧

𝑅1
)
,

1

𝑅2 (1 +
𝑧

𝑅2
)
, 𝑧

1

𝑅1 (1 +
𝑧

𝑅1
)
,

𝑧
1

𝑅2 (1 +
𝑧

𝑅2
)
, 𝑧
1

2
(
1

𝑅1
−
1

𝑅2
)(

1

𝑅1 (1 +
𝑧

𝑅1
)
) ,

𝑧
1

2
(
1

𝑅1
−
1

𝑅2
)

1

𝑅2 (1 +
𝑧

𝑅2
) }

 
 
 
 

 
 
 
 

𝑑𝑧 

+∫ [1 +
𝑧

𝑅2
] 𝑧𝐶66

𝑝
+ℎ 2⁄ +ℎ𝑝

+ℎ 2⁄

 

    

{
 
 
 
 

 
 
 
 

1

𝑅1 (1 +
𝑧

𝑅1
)
,

1

𝑅2 (1 +
𝑧

𝑅2
)
, 𝑧

1

𝑅1 (1 +
𝑧

𝑅1
)
,

𝑧
1

𝑅2 (1 +
𝑧

𝑅2
)
, 𝑧
1

2
(
1

𝑅1
−
1

𝑅2
)(

1

𝑅1 (1 +
𝑧

𝑅1
)
) ,

𝑧
1

2
(
1

𝑅1
−
1

𝑅2
)

1

𝑅2 (1 +
𝑧

𝑅2
) }

 
 
 
 

 
 
 
 

𝑑𝑧 

 

{𝐴65, 𝐴66, 𝐴67, 𝐴68, 𝐴69, 𝐴70} 

= ∫ [1 +
𝑧

𝑅1
] 𝑧𝐶66

𝑝
−ℎ 2⁄

−ℎ 2⁄ −ℎ𝑝

 

    

{
 
 
 
 

 
 
 
 

1

𝑅1 (1 +
𝑧

𝑅1
)
,

1

𝑅2 (1 +
𝑧

𝑅2
)
, 𝑧

1

𝑅1 (1 +
𝑧

𝑅1
)
,

𝑧
1

𝑅2 (1 +
𝑧

𝑅2
)
, 𝑧
1

2
(
1

𝑅1
−
1

𝑅2
)(

1

𝑅1 (1 +
𝑧

𝑅1
)
) ,

𝑧
1

2
(
1

𝑅1
−
1

𝑅2
)

1

𝑅2 (1 +
𝑧

𝑅2
) }

 
 
 
 

 
 
 
 

𝑑𝑧 

+∫ [1 +
𝑧

𝑅1
] 𝑧𝐶66

𝑐
+ℎ 2⁄

−ℎ 2⁄
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{
 
 
 
 

 
 
 
 

1

𝑅1 (1 +
𝑧

𝑅1
)
,

1

𝑅2 (1 +
𝑧

𝑅2
)
, 𝑧

1

𝑅1 (1 +
𝑧

𝑅1
)
,

𝑧
1

𝑅2 (1 +
𝑧

𝑅2
)
, 𝑧
1

2
(
1

𝑅1
−
1

𝑅2
)(

1

𝑅1 (1 +
𝑧

𝑅1
)
) ,

𝑧
1

2
(
1

𝑅1
−
1

𝑅2
)

1

𝑅2 (1 +
𝑧

𝑅2
) }

 
 
 
 

 
 
 
 

𝑑𝑧 

+∫ [1 +
𝑧

𝑅1
] 𝑧𝐶66

𝑝
+ℎ 2⁄ +ℎ𝑝

+ℎ 2⁄

 

    

{
 
 
 
 

 
 
 
 

1

𝑅1 (1 +
𝑧

𝑅1
)
,

1

𝑅2 (1 +
𝑧

𝑅2
)
, 𝑧

1

𝑅1 (1 +
𝑧

𝑅1
)
,

𝑧
1

𝑅2 (1 +
𝑧

𝑅2
)
, 𝑧
1

2
(
1

𝑅1
−
1

𝑅2
)(

1

𝑅1 (1 +
𝑧

𝑅1
)
)

, 𝑧
1

2
(
1

𝑅1
−
1

𝑅2
)

1

𝑅2 (1 +
𝑧

𝑅2
) }

 
 
 
 

 
 
 
 

𝑑𝑧 

 

{𝐴71, 𝐴72, 𝐴73} 

= ∫ [1 +
𝑧

𝑅2
] 𝑒15

−ℎ 2⁄

−ℎ 2⁄ −ℎ𝑝

{1,
1

𝑅1 (1 +
𝑧

𝑅1
)
,
1

𝑅2
} cos

𝜋𝑧

ℎ
 𝑑𝑧 

    +∫ [1 +
𝑧

𝑅2
] 𝑒15

+ℎ 2⁄ +ℎ𝑝

+ℎ 2⁄

{1,
1

𝑅1 (1 +
𝑧

𝑅1
)
,
1

𝑅2
} cos

𝜋𝑧

ℎ
 𝑑𝑧 

 

{𝐴74} 

= ∫ [1 +
𝑧

𝑅2
] 𝑘11

1

𝑅1 (1 +
𝑧

𝑅1
)

𝜕Ψ

𝜕𝛼
cos2

𝜋𝑧

ℎ

−ℎ 2⁄

−ℎ 2⁄ −ℎ𝑝

𝑑𝑧 

    +∫ [1 +
𝑧

𝑅2
] 𝑘11

1

𝑅1 (1 +
𝑧

𝑅1
)

𝜕Ψ

𝜕𝛼
cos2

𝜋𝑧

ℎ

+ℎ 2⁄ +ℎ𝑝

+ℎ 2⁄

𝑑𝑧 

 

{𝐴75, 𝐴76, 𝐴77} 

= ∫ [1 +
𝑧

𝑅1
] 𝑒24

−ℎ 2⁄

−ℎ 2⁄ −ℎ𝑝

{1,
1

𝑅2 (1 +
𝑧

𝑅2
)
,
1

𝑅1
} cos

𝜋𝑧

ℎ
 𝑑𝑧 

     +∫ [1 +
𝑧

𝑅1
] 𝑒24 {1,

1

𝑅2 (1 +
𝑧

𝑅2
)
,
1

𝑅1
} cos

𝜋𝑧

ℎ

+ℎ 2⁄ +ℎ𝑝

+ℎ 2⁄

 𝑑𝑧 

 

{𝐴78} 

= ∫ [1 +
𝑧

𝑅1
] 𝑘22

1

𝑅2 (1 +
𝑧

𝑅2
)

𝜕Ψ

𝜕𝛼
cos2

𝜋𝑧

ℎ

−ℎ 2⁄

−ℎ 2⁄ −ℎ𝑝

 𝑑𝑧 

     +∫ [1 +
𝑧

𝑅1
] 𝑘22

1

𝑅2 (1 +
𝑧

𝑅2
)

𝜕Ψ

𝜕𝛼
cos2

𝜋𝑧

ℎ

+ℎ 2⁄ +ℎ𝑝

+ℎ 2⁄

 𝑑𝑧 

 

{𝐴79, 𝐴80, 𝐴81, 𝐴82, 𝐴83, 𝐴84} 

= ∫
𝜋

ℎ
𝑠𝑖𝑛

𝜋𝑧

ℎ
[1 +

𝑧

𝑅1
] [1 +

𝑧

𝑅2
] 𝑒31

+ℎ 2⁄

−ℎ 2⁄

 

     {
1

𝑅1 (1 +
𝑧

𝑅1
)
,
1

𝑅1
, 𝑧

1

𝑅1 (1 +
𝑧

𝑅1
)
,

1

𝑅2 (1 +
𝑧

𝑅2
)
, 

       
1

𝑅2
, 𝑧

1

𝑅2 (1 +
𝑧

𝑅2
)
}0𝑑𝑧 

 

𝐴85 = ∫ (
𝜋

ℎ
𝑠𝑖𝑛

𝜋𝑧

ℎ
)2 [1 +

𝑧

𝑅1
] [1 +

𝑧

𝑅2
] 𝑘33

−ℎ 2⁄

−ℎ 2⁄ −ℎ𝑝

𝑑𝑧 

            +∫ (
𝜋

ℎ
𝑠𝑖𝑛

𝜋𝑧

ℎ
)2 [1 +

𝑧

𝑅1
] [1 +

𝑧

𝑅2
] 𝑘33

+ℎ 2⁄ +ℎ𝑝

+ℎ 2⁄

𝑑𝑧 

 

𝐷𝑧
Ψ = ∫

𝜋

ℎ
𝑠𝑖𝑛

𝜋𝑧

ℎ
[1 +

𝑧

𝑅1
] [1 +

𝑧

𝑅2
]
2

ℎ
Ψ0𝑘33

−ℎ 2⁄

−ℎ 2⁄ −ℎ𝑝

𝑑𝑧 

            +∫
𝜋

ℎ
𝑠𝑖𝑛

𝜋𝑧

ℎ
[1 +

𝑧

𝑅1
] [1 +

𝑧

𝑅2
]
2

ℎ
Ψ0𝑘33

+ℎ 2⁄ +ℎ𝑝

+ℎ 2⁄

𝑑𝑧 
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Appendix C 
 

𝐾11 = −
𝐴1
𝑅1
𝜆𝑚

2 −
χ[𝐴70 − 𝐴66] + 𝐴54 − 𝐴58

𝑅2
𝜇𝑛

2 −
𝐴45
𝑅1

, 

𝐾12 = −
𝐴3
𝑅1
𝜆𝑚

2 − (
𝐴56 − χ𝐴68

𝑅2
) 𝜇𝑛

2 +
𝐴43
𝑅1

 

𝐾13 = −(
𝐴4
𝑅1
+
𝐴57 + 𝐴53 − χ[𝐴65 + 𝐴69]

𝑅2
)𝜆𝑚𝜇𝑛, 

𝐾14 = −(
𝐴6
𝑅1
+
𝐴55 − χ𝐴67

𝑅2
) 𝜆𝑚𝜇𝑛, 

𝐾15 = (
𝐴5 + 𝐴2 + 𝐴44

𝑅1
) 𝜆𝑚, 

𝐾16 = (
𝐴7 − 𝐴46
𝑅1

) 𝜆𝑚, 

𝐹1 = −
𝜕

𝜕𝛼
(
𝑁𝛼

Ψ

𝑅1
) 

𝐾21 = −
𝐴15
𝑅1

𝜆𝑚
2 − (

𝐴66 − 𝐴70
𝑅2

) 𝜇𝑛
2 + 𝐴45, 

𝐾22 = −
𝐴17
𝑅1

𝜆𝑚
2 −

𝐴68
𝑅2

𝜇𝑛
2 − 𝐴43, 

𝐾23 = −(
𝐴65 + 𝐴69

𝑅2
+
𝐴18
𝑅1
) 𝜆𝑚𝜇𝑛, 

𝐾24 = −(
𝐴20
𝑅1

+
𝐴67
𝑅2
) 𝜆𝑚𝜇𝑛, 

𝐾25 = +(
𝐴19 + 𝐴16

𝑅1
− 𝐴44) 𝜆𝑚 

𝐾26 = (
𝐴21
𝑅1

+ 𝐴46) 𝜆𝑚, 

 𝐹2 = −
𝜕

𝜕𝛼
(
𝑀𝛼

Ψ

𝑅1
) 

𝐾31 = −(
𝐴4
𝑅2
+
χ[𝐴60 − 𝐴64] + 𝐴48 − 𝐴52

𝑅1
) 𝜆𝑚𝜇𝑛, 

 𝐾23 = −(
𝐴50 + χ𝐴62

𝑅1
+
𝐴6
𝑅2
) 𝜆𝑚𝜇𝑛, 

𝐾33 = −(
𝐴47 + 𝐴51 + χ[𝐴59 + 𝐴63]

𝑅1
)𝜆𝑚

2 

            −
𝐴22
𝑅2

𝜇𝑛
2 −

𝐴41
𝑅2

, 

𝐾34 = −(
𝐴49 + χ𝐴61

𝑅1
) 𝜆𝑚

2 −
𝐴24
𝑅2

𝜇𝑛
2 +

𝐴39
𝑅1

 

𝐾35 = +(
𝐴5 + 𝐴23 + 𝐴40

𝑅2
) 𝜇𝑛, 

𝐾36 = +(
𝐴7 − 𝐴42
𝑅2

) 𝜇𝑛, 

 𝐹3= −
𝜕

𝜕𝛽
(
𝑁𝛽

Ψ

𝑅2
) 

 𝐾41 = −(
𝐴18
𝑅2

+
𝐴60 − 𝐴64

𝑅1
) 𝜆𝑚𝜇𝑛, 

𝐾42 = −(
𝐴62
𝑅1

+
𝐴20
𝑅2
) 𝜆𝑚𝜇𝑛 

𝐾43 = −(
𝐴59 + 𝐴63

𝑅1
) 𝜆𝑚

2 −
𝐴28
𝑅2

𝜇𝑛
2 + 𝐴41, 

𝐾44 = −
𝐴61
𝑅1

𝜆𝑚
2 −

𝐴30
𝑅2

𝜇𝑛
2 − 𝐴39 

𝐾45 = (
𝐴29 + 𝐴19

𝑅2
− 𝐴40) 𝜇𝑛, 

𝐾46 = (
𝐴21
𝑅2

+ 𝐴42) 𝜇𝑛, 

 𝐹4 = −
𝜕

𝜕𝛽
(
𝑀𝛼

Ψ

𝑅2
) 

𝐾51 = (
𝐴11
𝑅2

+
𝐴8 + 𝐴37
𝑅1

) 𝜆𝑚, 

𝐾52 = −(
𝐴35 − 𝐴10

𝑅1
−
𝐴13
𝑅2
) 𝜆𝑚, 

𝐾53 = (
𝐴33 + 𝐴25

𝑅2
+
𝐴11
𝑅1
) 𝜇𝑛, 

𝐾54 = (
𝐴27 − 𝐴31

𝑅2
+
𝐴13
𝑅1
) 𝜇𝑛 

𝐾55 = −
𝐴36
𝑅1

𝜆𝑚
2 −

𝐴32
𝑅2

𝜇𝑛
2 − (

𝐴9 + 𝐴12
𝑅1

+
𝐴12 + 𝐴26

𝑅2
) 

             −(𝑁0𝛼 + 𝑁𝐸𝛼 + 𝑁𝑀𝛼)
1

𝑅1
2 𝜆𝑚

2 

             − (𝑁0𝛽 + 𝑁𝐸𝛽 +𝑁𝑀𝛽)
1

𝑅2
2 𝜇𝑛

2 

             +(1 + (𝑒0𝑎)
2{𝜆𝑚

2 + 𝜇𝑛
2}) [1 −

ℎ

2𝑅1
] [1 −

ℎ

2𝑅2
] 

                 {𝐾𝑤 + 𝐾𝐺 (
𝜆𝑚

2

(𝑅1 −
ℎ

2
)
2 +

𝜇𝑛
2

(𝑅2 −
ℎ

2
)
2)} , 

𝐾56 =
𝐴38
𝑅1

𝜆𝑚
2 +

𝐴34
𝑅2

𝜇𝑛
2 − (

𝐴14
𝑅2

+
𝐴14
𝑅1
) , 

 𝐹5 = +
𝑁𝛼

1Ψ

𝑅1
+
𝑁𝛽

1Ψ

𝑅2
 

           +(1 + (𝑒0𝑎)
2{𝜆𝑚

2 + 𝜇𝑛
2})𝑞 [1 +

ℎ

2𝑅1
] [1 +

ℎ

2𝑅2
] 

𝐾61 = (
𝐴73
𝑅1

− 𝐴79) 𝜆𝑚, 

𝐾62 = −(
𝐴71
𝑅1

+ 𝐴81) 𝜆𝑚, 

𝐾63 = (
𝐴77
𝑅2

− 𝐴82) 𝜇𝑛, 

𝐾64 = −(
𝐴75
𝑅2

+ 𝐴84) 𝜇𝑛, 

𝐾65 = −
𝐴72
𝑅1

𝜆𝑚
2 −

𝐴76
𝑅2

𝜇𝑛
2 + (𝐴80 + 𝐴83) 

𝐾65 = +
𝐴78
𝑅2

𝜇𝑛
2 +

𝐴74
𝑅1

𝜆𝑚
2 + 𝐴85 

𝐹6 = −𝐷𝑧
Ψ 
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