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1. Introduction 

 

Normally, FGM was created in the 19th century by 

Japanese research laboratories. They are widely employed 

in energy sources, aerospace, automotive, nuclear reactor, 

mechanical, civil, electronic and shipbuilding industries 

(Kar and Panda 2015a, b, c, d, Kar et al. 2016, 2017, 

Hamed et al. 2016, Kar and Panda 2017, Eltaher et al. 

2018a, Soliman et al. 2018). The FGMs are renowned by 

the continuum and gradual distribution of his material 

particles through the thickness 

In recent decade, different types of FGP structures 

employed in engineering construction have prompted 

researchers to develop several plate theories to accurately 

predict the mechanical behaviours of FG plates (Jha et al. 

2013). The so-called simplest conventional plate theory 

(CPT) neglects the transverse shear deformation effect 

(Mahdavian 2009, Bilouei et al. 2016, Eltaher et al. 2018b, 

Avcar and Mohammed 2018) only gives suitable results for 

thin (flexible) FG-plates and overestimate the results for 

other thick FG- plates, the 1st shear deformation theory 

(FSDT) solve the limitation of the CPT and considers the 

shear deformation effect. For this advantage, several FSDT 

theories are proposed (Sina et al. 2009, Eltaher et al. 2014, 

Mantari and Granados 2015, Hadji et al. 2016, Zhao et al. 

2009a, b, Simsek 2010, Hosseini-Hashemi et al. 2011, 

Pradhan and Chakraverty 2014, Nguyen et al. 2017, Chen 
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and Chang 2018). 

In such a formulation, the displacements in the plane 

vary according to the linear function through the total 

thickness with constant transverse shear stresses. Therefore, 

it is necessary to introduce the “shear correction factor” to 

eliminate the unrealistic distribution of transverse shear at 

free surface of the plate. To avoid the use of shear 

correction factors, others plate theories are proposed such as 

higher-order shear deformation model (HSDTs) with 

nonlinear distribution of displacements (Pradyumna and 

Bandyopadhyay 2008, Matsunaga 2008, Talha and Singh 

2010, Shahrjerdi et al. 2011, Reddy 2011, Neves et al. 

2012a, b, Viswanathan et al. 2013, Mantari and Soares 

2013, Mehar and Panda 2018, Selmi and Bisharat 2018, 

Belkacem et al. 2018, Batou et al. 2019, Safa et al. 2019, 

Sahouane et al. 2019, Salah et al. 2019, Hadji et al. 2019), 

they can more accurately predict the behaviour of moderate 

and thick FG plates. Recently, the phenomenon of buckling 

and postbuckling of structures is more investigated by 

several authors with considering different types of materials 

(Emam and Eltaher 2016, Emam et al. 2018, Eltaher et al. 

2019a, b, Mohamed et al. 2019). 

This work aims to examine the influence of material 

composition on buckling behaviour of FG plates by 

employing a simple plate integral model based on HSDT. 

Adding the integral term to the kinematic reduces the 

number of variables and governance equations. The 

material characteristics are continuously varied across the 

plate thickness according to various power-law functions. 

The principle of virtual displacements is employed to 

determine the governing equations and Navier solutions for 
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Fig. 1 Typical FGM rectangular plate 

 

 

FG plates are compared with other existing solutions to 

check the validity of the present formulation. 

 

 

2. Fundamental formulations 
 

2.1 Material graduation 
 

Consider a rectangular FG plate (a × b) of uniform 

thickness h (see Fig. 1). The proposed FG plate is made 

from a mixture of metal and ceramic. The composition of 

the material varies smoothly in the thickness direction only. 

Thus, the modulus of elasticity 𝐸 can be expressed by 

 

𝐸(𝑧) = 𝐸𝑐𝑉𝑐 + 𝐸𝑚𝑉𝑚, 𝑧 ∈ [−
ℎ

2
,
ℎ

2
] (1) 

 

Where 𝐸𝑐 and 𝐸𝑚 are Young’s moduli of ceramic and 

metal, 𝑉𝑐 and 𝑉𝑚 are their volume fractions given by 

 

𝑉𝑐 + 𝑉𝑚 = 1 (2) 

 

The above equations provide an efficient and 

dimensionless Young’s modulus in an appropriate form 

 

𝐸(𝑧) = (
𝐸𝑐
𝐸𝑚

− 1)𝑉𝑐(𝑧) + 1 (3) 

 

Where 𝐸(𝑧) = 𝐸(𝑧)/𝐸𝑚. Here we suppose that 𝑉𝑐 is 

according the following different simple power laws 

(Pitakthapanaphong and Busso 2002, Sofiyev et al. 2006, 

Bouazza et al. 2018) 

 

𝑉𝑐 =

{
 
 
 
 

 
 
 
 
𝑧

ℎ
+
1

2
, linear,

(
𝑧

ℎ
+
1

2
)
2

, quadratic,

3 (
𝑧

ℎ
+
1

2
)
2

− 2(
𝑧

ℎ
+
1

2
)
3

, cubic,

1 − (
𝑧

ℎ
+
1

2
)
2

, inverse quadratic.

 (4) 

 

2.2 Kinematics 
 

On the basis of the thick plate integral model, the 

following displacement field of the plate can be used as 

 

𝑢(𝑥, 𝑦, 𝑧, 𝑡) = 𝑢0(𝑥, 𝑦, 𝑡) − 𝑧
𝜕𝑤0
𝜕𝑥

 

                          +𝑘1𝑓(𝑧)∫𝜃(𝑥, 𝑦, 𝑡) 𝑑𝑥 

(5a) 

 

𝑣(𝑥, 𝑦, 𝑧) = 𝑣0(𝑥, 𝑦, 𝑡) − 𝑧
𝜕𝑤0
𝜕𝑦

 

                      +𝑘2𝑓(𝑧)∫𝜃(𝑥, 𝑦, 𝑡) 𝑑𝑦 

(5b) 

 

𝑤(𝑥, 𝑦, 𝑧, 𝑡) = 𝑤0(𝑥, 𝑦, 𝑡) (5c) 

 

where 𝑢0,𝑣0,𝑤0 and 𝜃 are the 4-unknown displacement 

functions of median surface of the structure. Note that the 

integrals do not have limits. The constants 𝑘1  and 𝑘2 

depends on the geometry. In this study, the shear 
 

𝑓(𝑧) = 𝑧 − [
2𝑧 𝑠𝑖𝑛ℎ (

𝑧2

ℎ2
)

2 𝑠𝑖𝑛ℎ( 1/4) + 𝑐𝑜𝑠ℎ( 1/4)
] 

and   𝑔(𝑧) =
𝑑𝑓

𝑑𝑧
 

(6) 

 

On the basis of the assumptions in Eq. (5), and within 

the application of the linear theory of elasticity for small 

deformations, the general deformation-displacement 

relationships are expressed in 
 

{

휀𝑥
휀𝑦
𝛾𝑥𝑦
} = {

휀𝑥
0

휀𝑦
0

𝛾𝑥𝑦
0

} + 𝑧 {

𝑘𝑥
𝑏

𝑘𝑦
𝑏

𝑘𝑥𝑦
𝑏

} + 𝑓(𝑧) {

𝑘𝑥
𝑠

𝑘𝑦
𝑠

𝑘𝑥𝑦
𝑠
} , 

{
𝛾𝑦𝑧
𝛾𝑥𝑧
} = 𝑔(𝑧) {

𝛾𝑦𝑧
0

𝛾𝑥𝑧
0
} 

(7) 

 

where 
 

{

휀𝑥
0

휀𝑦
0

𝛾𝑥𝑦
0

} =

{
  
 

  
 

𝜕𝑢0
𝜕𝑥
𝜕𝑣0
𝜕𝑥

𝜕𝑢0
𝜕𝑦

+
𝜕𝑣0
𝜕𝑥 }
  
 

  
 

,     {

𝑘𝑥
𝑏

𝑘𝑦
𝑏

𝑘𝑥𝑦
𝑏

} =

{
  
 

  
 −

𝜕2𝑤0
𝜕𝑥2

−
𝜕2𝑤0
𝜕𝑦2

−2
𝜕2𝑤0
𝜕𝑥𝜕𝑦}

  
 

  
 

, 

{

𝑘𝑥
𝑠

𝑘𝑦
𝑠

𝑘𝑥𝑦
𝑠
} =

{
 

 
𝑘1𝜃
𝑘2𝜃

𝑘1
𝜕

𝜕𝑦
∫𝜃 𝑑𝑥 + 𝑘2

𝜕

𝜕𝑥
∫𝜃 𝑑𝑦

}
 

 
 

(8a) 

 

{
𝛾𝑦𝑧
0

𝛾𝑥𝑧
0
} =

{
 

 𝑘2∫𝜃 𝑑𝑦 +
𝜕𝜙𝑧
𝜕𝑦

𝑘1∫𝜃 𝑑𝑥 +
𝜕𝜙𝑧
𝜕𝑥 }

 

 

 (8b) 

 

and 
 

𝑔′(𝑧) =
𝑑𝑔(𝑧)

𝑑𝑧
 (8c) 

 

It can be observed from Eq. (7) that the transverse shear 

strains (𝛾𝑥𝑧,𝛾𝑦𝑧) become zero at the upper (𝑧 = ℎ/2) and 
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lower (𝑧 = −ℎ/2) faces of the structure. A shear correction 

coefficient is, thus, note needed the integrals employed in 

the above equations shall be resolved by a Navier type 

method and can be expressed as 
 

𝜕

𝜕𝑦
∫𝜃 𝑑𝑥 = 𝐴

′
𝜕2𝜃

𝜕𝑥𝜕𝑦 ,      
𝜕

𝜕𝑥
∫𝜃 𝑑𝑦 = 𝐵

′
𝜕2𝜃

𝜕𝑥𝜕𝑦, 

∫𝜃 𝑑𝑥 = 𝐴′
𝜕𝜃

𝜕𝑥
,     ∫ 𝜃 𝑑𝑦 = 𝐵′

𝜕𝜃

𝜕𝑦
 

(9) 

 

where coefficients 𝐴′ and 𝐵′ are considered according to 

the type of solution employed, in this case via Navier 

method. The re fore, 𝐴′, 𝐵′, 𝑘1 and 𝑘2 are given 
 

𝐴′ = −
1

𝛼2
,     𝐵′ = −

1

𝛽2
,     𝑘1 = 𝛼

2,     𝑘2 = 𝛽
2 (10) 

 

where 𝛼 and 𝛽 are defined in expression (23). 

The linear behavioral relationships of an FG plate as a 

function of 3D elasticity can be written as follows 
 

{
 
 

 
 
𝜎𝑥
𝜎𝑦
𝜏𝑥𝑦
𝜏𝑦𝑧
𝜏𝑥𝑧}
 
 

 
 

=

[
 
 
 
 
𝐶11 𝐶12 0 0 0
𝐶12 𝐶22 0 0 0
0 0 𝐶66 0 0
0 0 0 𝐶44 0
0 0 0 0 𝐶55]

 
 
 
 

{
 
 

 
 
휀𝑥
휀𝑦
𝛾𝑥𝑦
𝛾𝑦𝑧
𝛾𝑥𝑧}
 
 

 
 

 (11) 

 

The elastic constants (𝐶𝑖𝑗) are 

 

𝐶11 = 𝐶22 =
𝐸(𝑧)

(1 − 𝜈2)
, (12a) 

 

𝐶12 =
𝜈 𝐸(𝑧)

(1 − 𝜈2)
, (12b) 

 

𝐶44 = 𝐶55 =
𝐸(𝑧)

2(1 + 𝜈)
, (12c) 

 

2.3 Equations of equilibrium and stress 
components 

 

The principle of virtual displacements is considered here 

to determine the appropriate motion equations and the 

constitutive equations. The principle can be stated in 

analytical form in the form 
 

0 = ∫ (𝛿 𝑈 + 𝛿 𝑉𝑝) 𝑑𝑡
𝑡

0

 (13) 

 

where 𝛿 𝑈 is the variation of strain energy; 𝛿 𝑉𝑝 is the 

potential energy of applied distributed transverse load.The 

variation of strain energy of plate is given by 
 

𝛿 𝑈 = ∫[𝜎𝑥𝛿 휀𝑥 + 𝜎𝑦𝛿 휀𝑦 + 𝜏𝑥𝑦𝛿 𝛾𝑥𝑦
𝑉

 

                 +𝜏𝑦𝑧𝛿 𝛾𝑦𝑧 + 𝜏𝑥𝑧𝛿 𝛾𝑥𝑧]𝑑𝑉 

       = ∫[𝑁𝑥𝛿 휀𝑥
0 + 𝑁𝑦𝛿 휀𝑦

0 + 𝑁𝑥𝑦𝛿 𝛾𝑥𝑦
0 +𝑀𝑥

𝑏𝛿 𝑘𝑥
0

𝐴

 

(14) 

      +𝑀𝑦
𝑏𝛿 𝑘𝑦

0 +𝑀𝑥𝑦
𝑏 𝛿 𝑘𝑥𝑦

0 +𝑀𝑥𝑦
𝑠 𝛿 𝐿𝑥𝑦

0  

      +𝑆𝑦𝑧
𝑠 𝛿 𝛾𝑦𝑧

0 + 𝑆𝑥𝑧
𝑠 𝛿 𝛾𝑥𝑧

0 ] 𝑑𝐴 = 0 
(14) 

 

where 𝐴 is the top surface and the stress resultants 𝑁, 𝑀, 

𝑆, and 𝑅 area defined bay 
 

(𝑁𝑖 , 𝑀𝑖
𝑏, 𝑀𝑖

𝑠) = ∑∫ (1, 𝑧, 𝑓)𝜎𝑖𝑑𝑧
ℎ𝑛+1

ℎ𝑛

3

𝑛=1

, 

(𝑖 = 𝑥, 𝑦, 𝑥𝑦)   and 

(𝑆𝑥𝑧
𝑠 , 𝑆𝑦𝑧

𝑠 ) = ∑∫ 𝑔(𝜏𝑥𝑧, 𝜏𝑦𝑧)𝑑𝑧
ℎ𝑛+1

ℎ𝑛

3

𝑛=1

 

(15) 

 

Where ℎ𝑛+1  and ℎ𝑛  are the top and bottom z-

coordinates of the nth layer. 

The variation of the external work can be expressed as 

 

𝛿 𝑉 = −∫𝑁𝛿𝑤0𝑑𝐴
𝐴

 (16a) 

 

With 
 

𝑁 = [𝑁𝑥
0
𝜕2 𝑤0
𝜕𝑥2

+ 2𝑁𝑥𝑦
0
𝜕 2𝑤0
𝜕𝑥𝜕𝑦

+ 𝑁𝑦
0
𝜕 2𝑤0
𝜕𝑦2

] (16b) 

 

where (𝑁𝑥
0, 𝑁𝑦

0, 𝑁𝑥𝑦
0 ) are in-plane applied loads. 

By substituting Eqs. (14), (16) into Eq. (13), the 

following can be derived 

 

𝛿𝑢0 :   
𝜕𝑁𝑥
𝜕𝑥

+
𝜕𝑁𝑥𝑦
𝜕𝑦

= 0 

𝛿𝑣0 :   
𝜕𝑁𝑦
𝜕𝑦

+
𝜕𝑁𝑥𝑦
𝜕𝑥

= 0 

𝛿𝑤0 :   
𝜕2𝑀𝑥

𝑏

𝜕𝑥2
+
𝜕2𝑀𝑦

𝑏

𝜕𝑦2
+ 2

𝜕2𝑀𝑥𝑦
𝑏

𝜕𝑥𝜕𝑦
+ 𝑁 = 0 

𝛿𝜃:     − 𝑘1𝑀𝑥
𝑠 − 𝑘2𝑀𝑦

𝑠 − (𝑘1𝐴
′ + 𝑘2𝐵

′)
𝜕2𝑀𝑥𝑦

𝑠

𝜕𝑥𝜕𝑦
 

            +𝑘1𝐴
′
𝜕𝑆𝑥𝑧

𝑠

𝜕𝑥
+ 𝑘2𝐵

′
𝜕𝑆𝑦𝑧

𝑠

𝜕𝑦
+ 𝑁 = 0 

(17) 

 

The stress and moment resultants which appeared in Eq. 

(15) are given by 
 

{
 
 
 
 

 
 
 
 
𝑁𝑥
𝑁𝑦
𝑁𝑥𝑦

𝑀𝑥
𝑏

𝑀𝑦
𝑏

𝑀𝑥𝑦
𝑏

𝑀𝑥
𝑠

𝑀𝑥
𝑠

𝑀𝑥
𝑠 }
 
 
 
 

 
 
 
 

=

[
 
 
 
 
 
 
 
 
 
𝐴11 𝐴12 0 𝐵11 𝐵12 0 𝐵11

𝑠 𝐵12
𝑠 0

𝐴12 𝐴22 0 𝐵12 𝐵22 0 𝐵12
𝑠 𝐵22

𝑠 0
0 0 𝐴66 0 0 𝐵66 0 0 𝐵66

𝑠

𝐵11 𝐵12 0 𝐷11 𝐷12 0 𝐷11
𝑠 𝐷12

𝑠 0
𝐵12 𝐵22 0 𝐷12 𝐷22 0 𝐷12

𝑠 𝐷22
𝑠 0

0 0 𝐵66 0 0 𝐷66 0 0 𝐷66
𝑠

𝐵11
𝑠 𝐵12

𝑠 0 𝐷11
𝑠 𝐷12

𝑠 0 𝐻11
𝑠 𝐻12

𝑠 0
𝐵12
𝑠 𝐵22

𝑠 0 𝐷12
𝑠 𝐷22

𝑠 0 𝐻12
𝑠 𝐻22

𝑠 0
0 0 𝐵66

𝑠 0 0 𝐷66
𝑠 0 0 𝐻66

𝑠 ]
 
 
 
 
 
 
 
 
 

{
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
𝜕𝑢0
𝜕𝑥
𝜕𝑣0
𝜕𝑦
𝜕𝑢0
𝜕𝑦

+
𝜕𝑣0
𝜕𝑥

𝜕2𝑤0
𝜕𝑥2

𝜕2𝑤0
𝜕𝑦2

−2𝜕2𝑤0
𝜕𝑥𝜕𝑦
𝑘1𝜃
𝑘2𝜃

(𝑘1𝐴′+ 𝑘2𝐵′)
𝜕2𝜃

𝜕𝑦2}
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 

 (18a) 

 

{
𝑆𝑦𝑧
𝑠

𝑆𝑥𝑧
𝑠 } = [

𝐴44
𝑠 0

0 𝐴55
𝑠 ]

{
 

 𝑘2𝐵′
𝜕𝜃

𝜕𝑦

𝑘1𝐴′
𝜕𝜃

𝜕𝑥}
 

 
 (18b) 
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where the stiffness components and are given as 

 

(𝐴𝑖𝑗 , 𝐴𝑖𝑗
𝑠 , 𝐵𝑖𝑗 , 𝐷𝑖𝑗 , 𝐵𝑖𝑗

𝑠 , 𝐷𝑖𝑗
𝑠 , 𝐻𝑖𝑗

𝑠 ) 

= ∫ 𝑄𝑖𝑗 (

1, 𝑔2(𝑧), 𝑧, 𝑧2,
𝑓(𝑧),

𝑧 𝑓(𝑧), 𝑓2(𝑧)

)𝑑𝑧
ℎ/2

−ℎ/2

 
(19) 

 

Introducing Eqs. (18a), (18b) into Eq. (17), the 

equations of motion can be expressed in terms of 

displacements ( 𝑢0 , 𝑣0 , 𝑤0 , 𝜃 ) and the appropriate 

equations take the form 

 

𝐴11𝑑11𝑢0 + 𝐴66𝑑22𝑢0 + (𝐴12 + 𝐴66)𝑑12𝑣0 
−𝐵11𝑑111𝑤0 − (𝐵12 + 2𝐵66)𝑑122𝑤0 

+(𝐵66
𝑠 (𝑘1𝐴′+ 𝑘2𝐵′) + 𝐵12

𝑠 𝑘2𝐵′)𝑑122𝜃 
+𝐵11

𝑠 𝑘1𝐴′𝑑111𝜃 = 0, 

(20a) 

 

𝐴22𝑑22𝑣0 + 𝐴66𝑑11𝑣0 + (𝐴12 + 𝐴66)𝑑12𝑢0 

−𝐵22𝑑222𝑤0 − (𝐵12 + 2𝐵66)𝑑112𝑤0  

+(𝐵66
𝑠 (𝑘1𝐴′+ 𝑘2𝐵′) + 𝐵12

𝑠 𝑘1𝐴′)𝑑112𝜃 
+𝐵22

𝑠 𝑘2𝐵′𝑑222𝜃 = 0, 

(20b) 

 

𝐵11𝑑111𝑢0 + (𝐵12 + 2𝐵66)𝑑122𝑢0 
+(𝐵12 + 2𝐵66)𝑑112𝑣0 + 𝐵22𝑑222𝑣0 

−𝐷11𝑑1111𝑤0 − 2(𝐷12 + 2𝐷66)𝑑1122𝑤0 

−𝐷22𝑑2222𝑤0 + 𝐷11
𝑠 𝑘1𝐴

′𝑑1111𝜃  

+((𝐷12
𝑠 + 2𝐷66

𝑠 )(𝑘1𝐴′+ 𝑘2𝐵′))𝑑1122𝜃 

+𝐷22
𝑠 𝑘2𝐵′𝑑2222𝜃 + 𝑁𝑥

0𝑑11𝑤0 

+2𝑁𝑥𝑦
0 𝑑12𝑤0 +𝑁𝑦

0𝑑22𝑤0 = 0 

(20c) 

 

−𝑘1𝐴
′𝐵11
𝑠 𝑑111𝑢0 − (𝐵12

𝑠 𝑘2𝐵′+ 𝐵66
𝑠 (𝑘1𝐴′+ 𝑘2𝐵′))𝑑122𝑢0 

−(𝐵22
𝑠 𝑘1𝐴′+ 𝐵66

𝑠 (𝑘1𝐴′+ 𝑘2𝐵′))𝑑112𝑣0 

−𝐵22
𝑠 𝑘2𝐵

′𝑑222𝑣0 + 𝐷11
𝑠 𝑘1𝐴

′𝑑1111𝑤0 

+((𝐷12
𝑠 + 2𝐷66

𝑠 )(𝑘1𝐴′+ 𝑘2𝐵′))𝑑1122𝑤0 

+𝐷22
𝑠 𝑘2𝐵′𝑑2222𝑤0 − 𝐻11

𝑠 (𝑘1𝐴′)
2𝑑1111𝜃 

−𝐻22
𝑠 (𝑘2𝐵

′)2𝑑2222𝜃 − (2𝐻12
𝑠 𝑘1𝑘2𝐴′𝐵′ 

+(𝑘1𝐴′+ 𝑘2𝐵′)
2𝐻66

𝑠 )𝑑1122𝜃 

+𝐴44
𝑠 (𝑘1𝐴′)

2𝑑11𝜃 + 𝐴55
𝑠 (𝑘2𝐵′)

2𝑑22𝜃 = 0 

(20d) 

 

where 𝑑𝑖𝑗 , 𝑑𝑖𝑗𝑙  and 𝑑𝑖𝑗𝑙𝑚  are the following differential 

operators 

 

𝑑𝑖𝑗 =
𝜕2

𝜕𝑥𝑖𝜕𝑥𝑗
,                      𝑑𝑖𝑗𝑙 =

𝜕3

𝜕𝑥𝑖𝜕𝑥𝑗𝜕𝑥𝑙
, 

𝑑𝑖𝑗𝑙𝑚 =
𝜕4

𝜕𝑥𝑖𝜕𝑥𝑗𝜕𝑥𝑙𝜕𝑥𝑚
,   𝑑𝑖 =

𝜕

𝜕𝑥𝑖
, 

(𝑖, 𝑗, 𝑙, 𝑚 = 1,2). 

(21) 

 

2.4 Analytical solution for simply-supported FG 
plates 

 

The Navier solution procedure is utilized to deduce the 

analytical solutions for which the displacement variables 

are given as product of arbitrary parameters and 

knowntrigonometric functions to respect the equations of 

motion and boundary conditions. 

{

𝑢0
𝑣0
𝑤0
𝜃

} = ∑∑{

𝑈𝑚𝑛 𝑐𝑜𝑠( 𝛼 𝑥) 𝑠𝑖𝑛( 𝛽 𝑦)
𝑉𝑚𝑛 𝑠𝑖𝑛( 𝛼 𝑥) 𝑐𝑜𝑠( 𝛽 𝑦)
𝑊𝑚𝑛 𝑠𝑖𝑛( 𝛼 𝑥) 𝑠𝑖𝑛( 𝛽 𝑦)
𝑋𝑚𝑛 𝑠𝑖𝑛( 𝛼 𝑥) 𝑠𝑖𝑛( 𝛽 𝑦)

}

∞

𝑛=1

∞

𝑚=1

 (22) 

 

White 
 

𝛼 = 𝑚𝜋/𝑎     and     𝛽 = 𝑛𝜋/𝑏 (23) 
 

Considering that the plate is subjected to in-plane 

compressive loads of form: 𝑁𝑥
0 = −𝑁0 , 𝑁𝑦

0 =

−𝛾𝑁0,𝑁𝑥𝑦
0 = 0,𝛾 = 𝑁𝑦

0 𝑁𝑥
0⁄ , (here 𝛾 are non-dimensional 

load parameter). 

Substituting Eq. (22) into Eq. (20),the following 

problem is obtained 
 

([

𝑆11 𝑆12
𝑆12 𝑆22

    𝑆13     𝑆14
    𝑆23      𝑆24

𝑆13 𝑆23
𝑆14 𝑆24

𝑆33 + 𝑘 𝑆34
𝑆34 𝑆44

]){

𝑈𝑚𝑛
𝑉𝑚𝑛
𝑊𝑚𝑛
𝑋𝑚𝑛

} = {

0
0
0
0

} (24) 

 

Where 
 

𝑆11 = 𝐴11𝛼
2 + 𝐴66𝛽

2,     𝑆12 = 𝛼𝛽(𝐴12 + 𝐴66), 

𝑆13 = −𝛼(𝐵11𝛼
2 + (𝐵12 + 2𝐵66)𝛽

2), 

𝑆14 = 𝛼 (
(𝑘2𝐵′𝐵12

𝑠 + (𝑘1𝐴′ + 𝑘2𝐵′)𝐵66
𝑠 )𝛽2

+𝑘1𝐴′𝐵11
𝑠 𝛼2

) , 

𝑆22 = 𝐴66𝛼
2 + 𝐴22𝛽

2, 

𝑆23 = −𝛽(𝐵22𝛽
2 + (𝐵12 + 2𝐵66)𝛼

2), 

𝑺𝟐𝟒 = 𝜷(
(𝒌𝟏𝑨′𝑩𝟏𝟐

𝒔 + (𝒌𝟏𝑨′ + 𝒌𝟐𝑩′)𝑩𝟔𝟔
𝒔 )𝜶𝟐

+𝒌𝟐𝑩′𝑩𝟐𝟐
𝒔 𝜷𝟐

) , 

𝑺𝟑𝟑 = 𝑫𝟏𝟏𝜶
𝟒 + 𝟐(𝑫𝟏𝟐 + 𝟐𝑫𝟔𝟔)𝜶

𝟐𝜷𝟐 +𝑫𝟐𝟐𝜷
𝟒, 

𝑆34 = −𝑘1𝐴
′𝐷11
𝑠 𝛼4 − ((𝐷12

𝑠 + 2𝐷66
𝑠 )(𝑘1𝐴

′ + 𝑘2𝐵
′)) 

𝛼2𝛽2 − 𝑘2𝐵
′𝐷22
𝑠 𝛽4 , 

𝑆44 = (𝑘1𝐴
′)2𝐻11

𝑠 𝛼4 + (2𝑘1𝑘2𝐴
′𝐵′𝐻12

𝑠
 

           +(𝑘1𝐴
′ + 𝑘2𝐵

′)2𝐻66
𝑠
)𝛼2𝛽2 + (𝑘2𝐵

′)2𝐻22
𝑠 𝛽4 

           +(𝑘2𝐵′)
2𝐴55

𝑠 𝛽2 + (𝑘1𝐴′)
2𝐴44

𝑠 𝛼2, 

𝑘 = −𝑁0(𝛼
2 + 𝛾𝛽2) 

(25) 

 

 

3. Numerical results 
 

A simply supported FG rectangular plate is considered 

here as shown by Fig. 1. FG structures made of twomaterial 

combinations of metal and ceramic: Al/Al2O3 and Al/SiC 

are considered. Theirmaterial characteristics are presented 

in Table 1. For convenience, the following non-dimensional 

parameters are employed 
 

𝑁𝑐𝑟 =
𝑁𝑐𝑟𝑎

2

𝐸𝑚ℎ
3
,     �̂�𝑐𝑟 =

𝑁𝑐𝑟𝑎
2

𝐷11 − 𝐵11
2 /𝐴11

 (26) 

 

 

Table 1 Material properties of metal and ceramic 

Material Young’s modulus (GPa) Poisson’sratio 

Aluminum (Al) 70 0.3 

Alumina (Al2O3) 380 0.3 

Silicon carbide (SiC) 420 0.3 
 

450



 

Influence of material composition on buckling response of FG plates using a simple plate integral model 

 

 

 

Three types of in-plane loads are employed: uniaxial 

compression (𝛾 = 0), biaxial compressions (𝛾 = 1) and 

axial compression and tension (𝛾 = −1). The computed 

results are provided in Tables 2 and 3. It is clear that the 

obtained results agree well with other solutions (FSDT) 

Mohammadi et al. (2010), (HSDT) Bodaghi and Saidi 

(2010), Sekkal et al. (2017) and (HSDT) Nguyen (2015). 

Fig. 2 shows thecritical buckling loads of square plates 

withrespect to the geometric ratio (𝑎/ℎ) for different 

material distributions (𝑉𝑐). The two cases of isotropic 

 

 

 
 

alumina and aluminum correspond to the fully ceramic plate 

and fully metallic plate, respectively. However, the other 

cases of FG plates are defined as follows: linear, quadratic, 

cubic, and quadratic inverse. In Fig. 2, it is obvious that the 

variation of critical buckling load (𝑁𝑐𝑟) of FG plates is 

greater than that of the fully metal plate (Al) but smaller 

than that of the fully ceramic plate (Al2O3). It is observed 

that for uniaxial compression (𝛾 = 0), biaxial compressions 

(𝛾 = 1) and axial compression and tension (𝛾 = −1), the 

variation of the critical buckling load obtained from the 
 

 

 
 

Table 2 Comparison of the critical buckling load (�̂�𝑐𝑟) of Al/SiC square plates (a/h = 10) 

𝛾 Theory 
Power law index 

0 0.5 1 2 5 10 

0 

Mohammadi et al. (2010) 37.3708 – 37.7132 37.7089 – – 

Bodaghi and Saidi (2010) 37.3714 – 37.7172 37.5765 – – 

Nguyen (2015) 37.4215 37.6650 37.7560 37.6327 36.8862 36.5934 

Present 37.3721 37.6301 37.7143 37.6050 36.9227 36.5644 

1 

Mohammadi et al. (2010) 18.6854 – 18.8566 18.8545 – – 

Bodaghi and Saidi (2010) 18.6860 – 18.8571 18.8020 – – 

Nguyen (2015) 18.7107 18.8325 18.8780 18.8163 18.4431 18.2967 

Present 18.6860 18.8150 18.8571 18.8025 18.4613 18.2822 

-1 

Mohammadi et al. (2010) 72.0834 – 73.6307 73.6112 – – 

Bodaghi and Saidi (2010) 72.2275 – 73.6645 73.1587 – – 

Nguyen (2015) 72.3281 73.4526 73.8426 73.2827 69.9876 68.7244 

Present 72.0981 73.2593 73.6435 73.1471 70.1286 68.5990 
 

Table 3 Comparison of the critical buckling load (𝑁𝑐𝑟) of Al/Al2O3 plates 

𝜸 a/b a/h Theory 
Power law index 

0 0.5 1 2 5 10 

0 

0.5 

5 

Nguyen (2015) 6.7417 4.4343 3.4257 2.6503 2.1459 1.9260 

Sekkal et al. (2017) 6.7005 4.4728 3.4983 2.7347 2.2076 1.9459 

Present 6.7202 4.4234 3.4163 2.6452 2.1489 1.9215 

10 

Nguyen (2015) 7.4115 4.8225 3.7137 2.8911 2.4155 2.1911 

Sekkal et al. (2017) 7.4126 4.8904 3.8221 3.0168 2.5090 2.2374 

Present 7.4053 4.8206 3.7110 2.8897 2.4166 2.1896 

20 

Nguyen (2015) 7.6009 4.9307 3.7937 2.9585 2.4942 2.2695 

Sekkal et al. (2017) 7.6109 5.0028 3.9108 3.0968 2.5963 2.3230 

Present 7.5992 4.9314 3.7930 2.9581 2.4944 2.2690 

1 

5 

Nguyen (2015) 16.1003 10.6670 8.2597 6.3631 5.0459 4.4981 

Sekkal et al. (2017) 15.9193 10.7065 8.3828 6.5148 5.1526 4.5077 

Present 16.0209 10.6252 8.2244 6.3435 5.0547 4.4815 

10 

Nguyen (2015) 18.6030 12.1317 9.3496 7.2687 6.0316 5.4587 

Sekkal et al. (2017) 18.5846 12.2937 9.6083 7.5667 6.2535 5.5625 

Present 18.5785 12.1229 9.3391 7.2632 6.0359 5.4532 

20 

Nguyen (2015) 19.3593 12.5652 9.6702 7.5386 6.3437 5.7689 

Sekkal et al. (2017) 19.3809 12.7494 9.9658 7.8860 6.6008 5.9020 

Present 19.3527 12.5667 9.6674 7.5371 6.3449 5.7669 
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quadratic compositional profile, is lower than cubic, linear 

and inverse quadratic cases. 

Fig. 3 presents the critical buckling loads of plates 

withrespect to the geometric ratio (𝑎/𝑏) for different 

material distributions (𝑉𝑐). Again, it is obvious that the 

variation of critical buckling load (𝑁𝑐𝑟) of FG plates is 

greater than that of the fully metal plate (Al) but smaller 

than that of the fully ceramic plate (Al2O3). It is also 

observed that the variation of thecritical buckling load 

 

 

obtained from the quadratic distribution is lower than 

cubical, linear and inverse quadratic cases. Therefore, 

quadratic distribution makes the plate more flexible than 

other distributions. 

A comparison of critical buckling loads of the FG 

rectangular and square plate is presented in Figs. 4 and 5 for 

various moduli ratios (𝐸𝑚/𝐸𝑐). It is observed that with 

increasingof the modulus ratio 𝐸𝑚/𝐸𝑐 from 0.05 to 0.5, the 

critical buckling loads decrease steadily. However, it is 

Table 3 Continued 

𝜸 a/b a/h Theory 
Power law index 

0 0.5 1 2 5 10 

1 

0.5 

5 

Nguyen (2015) 5.3934 3.5475 2.7406 2.1202 1.7167 1.5408 

Sekkal et al. (2017) 5.3604 3.5783 2.7987 2.1878 1.7661 1.5568 

Present 5.3762 3.5387 2.7330 2.1161 1.7191 1.5372 

10 

Nguyen (2015) 5.9292 3.8580 2.9710 2.3129 1.9324 1.7529 

Sekkal et al. (2017) 5.9301 3.9123 3.0577 2.4134 2.0072 1.7899 

Present 5.9242 3.8565 2.9688 2.3117 1.9333 1.7517 

20 

Nguyen (2015) 6.0807 3.9445 3.0350 2.3668 1.9953 1.8156 

Sekkal et al. (2017) 6.0887 4.0022 3.1287 2.4774 2.0770 1.8584 

Present 6.0794 3.9451 3.0344 2.3665 1.9955 1.8152 

1 

5 

Nguyen (2015) 8.0501 5.3335 4.1299 3.1815 2.5230 2.2491 

Sekkal et al. (2017) 7.9597 5.3533 4.1914 3.2574 2.5763 2.2539 

Present 8.0104 5.3126 4.1122 3.1717 2.5273 2.2407 

10 

Nguyen (2015) 9.3015 6.0659 4.6748 3.6344 3.0158 2.7293 

Sekkal et al. (2017) 9.2923 6.14687 4.8042 3.7834 3.1268 2.78123 

Present 9.2892 6.0614 4.6695 3.6316 3.0179 2.7266 

20 

Nguyen (2015) 9.6796 6.2826 4.8351 3.7693 3.1718 2.8844 

Sekkal et al. (2017) 9.6904 6.3747 4.9829 3.9430 3.3004 2.9510 

Present 9.6763 6.2833 4.8337 3.7685 3.1724 2.8834 

-1 

0.5 

5 

Nguyen (2015) 8.9890 5.9124 4.5676 3.5337 2.8612 2.5679 

Sekkal et al. (2017) 8.9339 5.9637 4.6645 3.6463 2.9435 2.5946 

Present 8.9603 5.8979 4.5551 3.5269 2.8652 2.5620 

10 

Nguyen (2015) 9.8820 6.4299 4.9516 3.8548 3.2206 2.9214 

Sekkal et al. (2017) 9.8835 6.5206 5.0962 4.0224 3.3453 3.3453 

Present 9.8737 6.4275 4.9481 3.8529 3.2221 2.9195 

20 

Nguyen (2015) 10.1345 6.5742 5.0583 3.9447 3.3255 3.0260 

Sekkal et al. (2017) 10.1478 6.6704 5.2145 4.1291 3.4617 3.0974 

Present 10.1323 6.5752 5.0574 3.9442 3.3259 3.0253 

1 

5 

Nguyen (2015) 26.4999 17.9424 13.9872 10.6421 7.9571 6.9626 

Sekkal et al. (2017) 25.7567 17.6913 13.9068 10.6372 7.9346 6.8033 

Present 26.2039 17.7691 13.8477 10.5596 7.96344 6.8989 

10 

Nguyen (2015) 35.9559 23.6497 18.2704 14.1349 11.4447 10.2717 

Sekkal et al. (2017) 35.7357 23.8550 18.6579 14.5850 11.7741 10.3784 

Present 35.8415 23.5918 18.2205 14.1079 11.4610 10.2483 

20 

Nguyen (2015) 39.5280 25.7197 19.8065 15.4190 12.8824 11.6857 

Sekkal et al. (2017) 39.5339 26.0822 20.3846 16.0896 13.3813 11.9329 

Present 39.4951 25.7100 19.7925 15.4117 12.8886 11.6783 
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observed that critical buckling loads of the quadratic case 

are lower thanthose of cubic, linear, and inverse quadratic 

cases. 

 

 

4. Conclusions 
 

In this work, a higher-order hyperbolic shear 

deformation integral plate theory is presentedbeen proposed 

for analysing the effect of material composition on buckling 

response of FG plates. The gradation of material properties 
 
 

 
 

within thickness is considered to be of various power-law 

functions type (linear, quadratic, cubic, and inverse 

quadratic) and comparisons are carried out with 

homogeneous metal and ceramic plates. It is seen that the 

basic behaviour of FG plates that correspond to 

characteristics intermediate to that of metal and ceramic, is 

necessarily lain in between that of metal and ceramic. In 

conclusion, it can be observed that gradients in material 

properties play a considerable role in determining response 

of FG material plates, and the proposed higher-order 

hyperbolic shear deformation integral plate theory is simple 
 
 

 

  

(a) (b) 
 

 

(c) 

Fig. 2 Non-dimensional critical buckling load (𝑁𝑐𝑟) for metal, ceramic and FGM plates versus sides to thickness ratio 

(a/h) for differentcompositional profiles 

  

(a) (b) 

Fig. 3 Non-dimensional critical buckling load (𝑁𝑐𝑟) for metal, ceramic and FGM plates versus sides to geometric ratio 

(a/b) for different compositional profiles 
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and accurate in resolving buckling responses of FGM 

plates. 
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