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Abstract. This article deals with the flexural analysis of anti-symmetric cross-ply laminated plates under nonlinear thermal
loading using a refined plate theory with four variables. In this theory, the undetermined integral terms are used and the number of
variables is reduced to four, instead of five or more in other higher-order theories. The boundary conditions on the top and the
bottom surfaces of the plate are satisfied; hence the use of the transverse shear correction factors is avoided. The principle of virtual
work is used to obtain governing equations and boundary conditions. Navier solution for simply supported plates is used to derive
analytical solutions. For the validation of the present theory, numerical results for displacements and stresses are compared with
those of classical, first-order, higher-order and trigonometric shear theories reported in the literature.
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1. Introduction

Nowadays, fiber reinforced composites are widely used
in various domains for instance, the aerospace, automotive,
marine, civil and other fields owing to their excellent
mechanical and thermal properties such as high specific
strength , high stiffness, corrosion resistance, light damping,
temperature resistance and low thermal coefficient of
expansion. In order to study the behaviour of these
materials, various theories have been developed. To start
with the classical plate theory (CPT) which is based on
Kirchhoff assumptions that, the normal to the mid-plane
remains normal and straight after deformation and do not
undergo thickness stretching (Bilouei et al. 2016). The CPT
provides acceptable results for thin plates. Nevertheless, it
is inaccurate for thick plates since it neglects the effects of
transverse shear deformation. Then the first-order theory
has been proposed by Reissner (1945) and Mindlin (1951),
this theory considers the shear deformation effect. Thus, it
needs a shear correction factor to satisfy the stress free
boundary conditions (Civalek and Emsen 2009, Avcar 2015,
2019, Al-Basyouni et al. 2015, Kolahchi et al. 2016,
Madani et al. 2016, Bellifa et al. 2016, Arani and Kolahchi
2016, Zamanian et al. 2017, Amnieh et al. 2018, Youcef et
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al. 2018, Semmah et al. 2019). Further, higher-order
theories have been developed in order to overcome the
limitations of the previous theories (CPT and FSDT).
Several higher-order shear deformation theories (HSDTSs)
have been proposed for the investigation of the behaviour of
structures (Reddy 1984, Soldatos 1988, 1992, Touratier
1991, Kant and Swaminathan 2000, 2002, Akavci 2010,
Grover et al. 2013, Sahoo and Singh 2013, Sayyad and
Ghugal 2014, Meziane et al. 2014, Ahmed 2014, Yahia et
al. 2015, Zenkour 2015, Belkorissat et al. 2015, Bounouara
et al. 2016, Ahouel et al. 2016, Boukhari et al. 2016, Houari
et al. 2016, Draich et al. 2016, Kolahchi and Moniri Bidgoli
2016, Abdelhak 2016, Baseri et al. 2016, Kolahchi et al.
2017a, b, Benadouda et al. 2017, Hachemi et al. 2017,
Bellifa et al. 2017a, b, Kolahchi and Cheraghbak 2017,
Kolahchi 2017, Besseghier et al. 2017, Abdelaziz et al.
2017, Belalia 2017, Avcar and Mohammed 2018, Bouhadra
et al. 2018, Bouadi et al. 2018, Bakhadda et al. 2018,
Golabchi et al. 2018, Fourn et al. 2018, Younsi et al. 2018,
Belabed et al. 2018, Bourada et al. 2018, 2019, Adda Bedia
et al. 2019 and Berghouti et al. 2019).

The mentioned-above theories have been extended or
developed for the investigation of the thermal problem for
laminated plates. Boley and Weiner (1960), Reddy (1997),
Jones (1999), Wu and Tauchert (1980) used the CPT for the
thermal stress analysis of laminated plates under thermal
loading. The FSDT has been extended by Reddy (1997) in
order to analyze the thermal stresses in laminated plates.
Kheider and Reddy (1991) developed an exact analytical
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solution of refined plate theories, stresses and deflections of
laminated plate subjected to a single sinusoidal thermal
loading have been presented. The global-local higher theory
has been simply derived by Zhen and Chen (2006) in order
to obtain an efficient higher-order theory and finite element
for laminated plates under sinusoidal thermal loading.
Shinde et al. (2013) used the hyperbolic shear deformation
theory to investigate the thermal bending of isotropic plates
under uniformly distributed thermal loading. Thermal
flexural analysis of cross-ply laminated plates subjected to a
nonlinear sinusoidal thermal loading using trigonometric
shear deformation theory has been presented by Ghugal and
Kulkarni (2013a). Various plate theories have been used by
Sayyad et al. (2014) to carry out a thermo-elastic analysis
of cross-ply laminated plates under linear sinusoidal
thermal loading. Thermal displacements and stresses of
laminated plates subjected to a sinusoidally distributed
linear thermal loading using a four-variable plate theory
have been presented by Sayyad et al. (2015). In another
article Sayyad et al. (2016) presented a thermal stress
analysis of cross-ply laminated plate subjected to a linear
thermal loading using an exponential shear deformation
theory. Ghadhe et al. (2018) have recently presented three
variables trigonometric shear deformation theory to analyze
flexural behaviour of isotropic plates subjected to a single
sinusoidal thermal loading. Javed et al. (2018) studied the
free vibration of cross-ply laminated plates based on higher-
order shear deformation theory.

Further, various researches interested to the response of
laminated plate under combined thermo-mechanical
loading, hence refined theories have been proposed. (Fares
and Zankour 1999, and Fares et al. 2000) presented a mixed
variational formula for the analysis of generally layered
composite structures subjected to sinusoidal thermo-
mechanical single loading. Han et al. (2017) proposed an
enhanced first order shear deformation theory including the
transverse normal strain effect for the analysis of the
thermo-mechanical response of laminated composite and
sandwich plates. By the use of a unified shear deformation
plate theory, Zenkour (2004) investigated the static thermo-
elastic response of symmetric and anti-symmetric cross-ply
laminated plates under non-uniform sinusoidal mechanical
and/or thermal loading. An equivalent single layer shear
deformation theory has been presented by Ghugal and
Kulkarni (2012, 2013b, c) using a trigonometric shear
deformation theory in order to analyze displacements and
stresses of cross ply laminated plates under uniformly
distributed linear and nonlinear thermo-mechanical loading.
Based on the layer-wise displacement field of Reddy,
Cetkovic (2015) proposed a mathematical model using
small deflexion linear-elasticity theory for the analysis of
the thermo-mechanical bending of laminated composites
and sandwich plates subjected to a uniform or a single
sinusoidally distributed gradient temperature along with
sinusoidal mechanical loadings. Panda and Katariya (2015)
studied the stability and free vibration behaviour of
laminated composite panels under thermo-mechanical
loading. Zen and Xiaohui (2016) proposed a new modal to
analyze the thermo-mechanical behavior of multilayered
composite plates under thermo-mechanical combined

loading based on Reddy-type higher order theory. An
analytical model of laminated composite plates based on an
inverse hyperbolic shear deformation theory (IHSDT) has
been proposed by Joshan et al. (2017), the thermo-
mechanical response of cross-ply and angle-ply laminated
composite plates has been investigated. Also, Joshan et al.
(2018) presented an assessment of non-polynomial shear
deformation theories for thermo-mechanical analysis of
laminated  composite  plates.  Moreover,  several
investigations delved on the study of the thermal or thermo-
mechanical behaviour of functionally graded plates; various
refined theories have been presented by (Jabbari et al. 2002,
Zankour and Alghamdi 2008, Bouderba et al. 2013, Tounsi
et al. 2013, Zidi et al. 2014, Hamidi et al. 2015, Kar and
Panda 2015, Attia et al. 2015, 2018, Yaghoobi et al. 2015,
Beldjelili et al. 2016, Bousahla et al. 2016, Bouderba et al.
2016, Khetir et al. 2017, Chikh et al. 2017, Kolahchi et al.
2017b, Fahsi et al. 2017, Menasria et al. 2017,
Hajmohammad et al. 2017, 2018a, b, ¢, Zghal et al. 2017,
El-Haina et al. 2017, Fakhar and Kolahchi 2018, Hosseini
and Kolahchi 2018, Hussain and Naeem 2019).

The present research attempts to provide a refined plate
theory for the analysis of the thermal response of laminated
plates under nonlinear thermal loading. In this theory, the
unknown number is reduced to four instead of five or more
as suggested in the other theories. The obtained results are
discussed and compared with those for classical, first-order,
trigonometric and higher-order shear theories of published
results of open literature (Ghugal and Kulkarni 2013a).

2. Theoretical formulation

Consider a rectangular cross-ply laminated plate with
total thickness “h” composed of n orthotropic layers(see
Fig. 1), which are perfectly bonded together. The material
of each layer is assumed to posses on plane of elastic
symmetry parallel to x-y plane. The plate is subjected to a
thermal loading T(x, v, z).

Fig. 1 Plate geometry and coordinate system
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2.1 Kinematics

The displacement field of the conventional HSDT at a
point in the laminated plate is expressed as

aw,
u(x,y,z) =u0(x,y)—z Ox +f(Z)(px(x!y)
_ Iwo (1)
v(x,y,z) —Vo(x’J’)_Z ay +f(Z)(py(x!y)

w(x,y,2) = wo(x,)

Ug, Vo, Wy, @x and @, are the five unknown displace-
ments of a point on the mid-plane of the plate, supposing
that @y =[06(x,y)dx and ¢, =[0(xy)dy , the
displacement field mentioned above can be written in a
simple form as (Bourada et al. 2018 and Meksi et al. 2019)

aw,
uG,7.7) = U0 ) — 2 5+l f(2) [ 0Cx )
dwo @
V(3 7) = Vo) = 252+ kaf @) | 6 )dy

W(x,y,z) = WO(X,y)

The integrals terms defined in the above equations shall
be resolved by using Navier type method and the
displacement field can be written as follows

aw, a6
U(x,y,7) = (%)) = 2=+ kA f(2) o=

aw, a0 (3)
v(x,y,2) = vo(X,y) — arn + szlf(Z)@

w(x,y, Z) = WO(x!y)

Where
k=i k=R, A=—— Bi=—u (%)
1= M5 K = AT 1T T 1 12
and
_mn A_nr[ b
p=—=,  A=s (4b)

In the present formulation the shape function f(z) is
given as follows
h mZ
= —sin— 5
f(2) —sin— (%)

The normal and shear strains associated with the
displacement field (3) are as follows

&y &2 kP ks
& r={& r+ziky t+f(@{ky ¢; (6a)
Vxy Yoy k2, kzy
)= g 7} (6b)
Vxz Yxz

where

Jug el
0 dx b O0x?
& v, k’; 92w,
&y o= 2 O Vo =9z ¢ ©9
0 y kb y
o) ouy ave| K)o gz
9y | ox \"“ 3%y
(a2l )
s 1411 axz
Jex 920
ky ¢ = kZBla_yz ;
ey 226
(klAl + szl)m (6d)
k,B 96
{yysz}= { 2 1ayl
Yz 06
kklAl a}
and
df (z
o) = L2 (60

2.2 Constitutive equations

The stress-strain relationships, accounting for transverse
shear deformation and thermal effects for a layer can be
expressed as

Ox Q11 012 0 ex — axT
Oy ¢ = [012 Qp O l gy —ayT ¢; (73)
Txy 0 0 QGG Yxy — axyT

Tyz) _ [Qasa O ]{Vyz}

{TJCZ} - [ 0 QSS Vxz (7b)

where Q;; are the plane stress-reduced stiffnesses that are
expressed as follows

E; U1, E;
@ = 1- ?2”21 ' Gz = 1 =050,
p (8)
= ; = Gyp;
Q22 1= U100, Qs6 12
Qss = Gz3; Qss = Gy3

and E; are Young’s moduli, v;; are Poisson’s rations, G;;
are shear moduli, ay, a, and ay, are the thermal
expansion coefficients, and T=T(x,y,z) is the
temperature distribution.

In the present work, the thermal loading across the
thickness is supposed to be

ey @

Z
T(x,y,2z) =Ti(x,y) + ETz(x: y)+

The constitutive equations of each lamina are
transformed to the plate coordinates (x, y, z) and the stress-
strain relationships in the plate coordinate system for thek™
layer is expressed as
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Oy Q11 le Qlﬁ Ex — (le
O-y = Q12 Q22 026 Ey - ayTT ) (10a)
Txy ® Q16 Qze Q66 © Vxy — Axy 10
o - Ig‘” 245] ) (10b)
Txz) (1 Q45 st @ Yaz) gy

Where Qii are the transformed elastic coefficient given
by Reddy (1997).

2.3 Governing equations

The principle of virtual work is used in order to
determine the governing equations as follows (Cherif et al.
2018)

h
E b a

f_ﬁj; fo (o6& + 0,68y + 7030V, + Tz 0Vsz (11)
2

+Tyy0Vxy)dxdydz = 0

The resulting stresses and moments are obtained by
integrating Eq. (10) over the thickness, and are expressed as

N A B BS|(¢ NT
MPi=|B D Ds|kbi+{mpTE.S=4% (12
MS BS DS HSI\ES MST

Where
N = {N,, Ny, Ny},
MP = (M2, ME, M2}, (13a)
Ms = (M5, M$, M5}

NT = {NI,NJ,NLY,
MbT = {M}gT, M:", M}gyT}t, (13b)

MsT = {M;T,M;T,Mi;}t

e={el &8y},
kb = {k&, kb, kb,)", (13c)
ks = {kS, kS, kS, )

(A1 A1z Age] By, Biz Bis
A=Az Ay, Aypl|, B=|Biz B By,
[A1g Az Agel Bis Bas Bes
- - 13d
Diy Dy, Dig (13d)
D= D12 Dzz D26
D1 Dys  Degl
B, B, Bis] Di, Di; Dis
BS = sz Béqz st , D= DISZ Déqz Dzse ’
Bl Bl B Dic Dis Disl (1a
Hf;, Hi; Hie
H® = (H{; H3; H3e
H, B HE

S= {S;Z’ S;Z}t’ V= {Vyz' y}cz}tr

AS= AfH_ Azsts] (13f)
a5 Ass

Where the stiffness components are defined as

L Zk+1_(k) 5
(Aij;Bij;Dij) = ZJ- Q;; (1,z,2%)dz, (142)
k=1"%k
(l'] = 1P2I6)
(Bfj Dij, H
L Zk+1_(k)
= [T v e )
k=1"%k
(l’] = 1l2)6))
s Zk+1_(k) ) o
Ai}' = ZI Qij g° (2)dz, (i,j = 4,5). (14c)

k=1"%k

By substituting Egs. (6)-(10) into Eg. (11) and
integrating through the thickness, Eq. (11) can be expressed

as
bra, 98u, , 028w, 02660
f f (Nx - M + kA M3
0o Jo

0x 0x? 9x2
asv, 926w, L0286
Ny = = My =+ ke BaMy
d6u, 06v 026w,
N, (a—y°+ 0 2my, e
s 0260 ; 006
+(k1A1 + szl)Mxym + klAI xzﬁ

_ 268
+k,B, S5, W) dxdy = 0

With the integration by parts of Eq. (15) alongside
collecting the coefficient of 8ug, dvy, Swy, 66 we can
obtain the following governing equations

duy: aalix + ag’;y =0
Svg: 66% + % =0
b b
Swy: aazii}g a;yj +2 6;;;’; =0 (16)
560: k, A, f%fz + kB, aai}y? — kA, %
—k,B; % — (kA1 + kyBy) aaz‘;[% =0

By substituting Eg. (12) into Eq. (16), the governing
equations can be written in terms of displacements
(ug, vg, Wy, 0) as follows

2u, 0%u, 2%u 0%v,
A EP%) +2A166 ay+A66 32 + A6 o2
2 62170 63 o (173)



Thermal flexural analysis of anti-symmetric cross-ply laminated plates using a four variable refined theory 413

3wq 3w, 3wy
—By6 e 33166 — (B12 +2366)a 3y?

s 036 s 639 s 39
+k,A1B}; ﬁ + k,B;B5, W + k,B1B3, W

036
+Q2k1A1 + kBBl 55— 9x29y

% NI ONI,
+(k1A1+kZBl)B666 ayZ  ox  dy =

a Uy 62 2

Ay > 922 + A5 3y? +(A12+ 66)6 ay

+4 9%vy +24 0%, 04+ 4 o Yo_p 0wy
22 a 2 260 a 66 2 16 9x3

63W0 63W0 63W0
~B2 ay3 ~ B ax2dy 3826 9xdy?

036
+k1A1BYy —— 722 + (k1A + 2k231)326a 357

230 aNT aNT
+(k1A1 + k3B1)Bs = 9x29y -

dy 0x =0

63u0 aSUO 63u0 63u0
Biv gy + Bao g3+ 3Bogan + Bragg
+2B 0%y +B 2°vy °+B 63v°+B 0°vy
66 dx 6 2 16 9x3 22 a 3 12 axzay
3 3y, 64

Wy *wq

d°v, 0
+3sta a 2+ZB666 26 _D11 ax4 D22 a 2

2D 64W° 4D 64W° 4D 9" wy
12 9x29y? 16 9x3ay 26 9xdy3
4 4 4
Wy 7]
29y7 + k14,D3; P k,B,D3, oyt
4 04
+ (k1A + kyB1)Dig —— ax33y

4 4
0
+(k1A; + 3k,B) D3 ——= xdy° + k1A D}y —=— %20y

4D == Ep”

d
+k231D126 25,72

2% 9zMb"

+2(k1Ay + kzB)Dgs 5 Tay7 " At
T T
M2 M2,

T oy “oxdy =0

23u, 23uq 23uq
—k1A,B{y —— EPE —k;B1B3g—— 33 — kBB 12a 2

aSuO

—(2k1A; + k3B1)Bie 57— ax%dy
. 0%u, s 0%y,
—(k1A; + kyB;)Bé axdy? k,A,Bi¢ e
3y 23v,
—kyB1B3 —— oy 3 — k144B 126 23y

s 63170
—(kyA; + 2k;B1)B3g W

30,
Zay

a5, ZW0 4 kg ps T 0 4 k,A,D5 0*wq
141 P o 212264 126263/2

0
—(k1A; + k3B1)Big ——5-— ax

4 4

0*wy a
+kyB1Dir == 9x20y? + (Bk1Ay + kyB)Dig 55— ax

Wo
3ay

0*w,
+(k1Aqy + 3sz1)D§6WyO3

*wy

Zay
0o 00
—(k1A1)*Hy Frvi (k2B;)*H3, ay*
(17a) 2 2

0“6 0“6
Ak 5z + (kB a5

+2ky Ak, By AS 0% 2k AykyByHE —0
4 3xay 2Bili2 55,2
49 (17d)
30y

. 0%e
—2k; B, (k14 + szl)HZGW

+2(k1A; + k3B D 57— ox

d
=21 A1 (ki Ay + kB HS g 5—5— ax

940 a2ms"
x20y2 +kidy dx?

— (k1A + kyB1)?Hg 3

28T 28T

17b 0°My 0°Mzy _
(17b) HyBy = ot (s + kaBy) 5 52 =0

3. Analytical solutions for anti-symmetric cross-
ply laminated plates

By using Navier approach, the closed form solution of
Eq. (17) is determined for simply-supported rectangular
plates.

For anti-symmetric cross-ply laminates, the following
stiffnesses are equal to zero

A1e = Az6 = D1g = Dy = Dig
=Dj¢=Hjs =H3 =0
By, = B1s = Byg = Beg = B12
=Bis = B3 = Bgs =0

(18)

(17¢)
and for anti-symmetric plates, the thermal expansion
coefficient equals zero, ay, = 0.
The boundary condition for simply-supported edges
could be expressed as
a0
vozwoza—yszsz:M,fzo at x =0,a (19a)
a0 b
u‘OZWO:&:Ny:M}I: ;:0 at x:O’b(lgb)
We assume that the thermal loadings are expanded in
double Fourier series as
{Tz} = Z Z Ty t SiRUX SINAY (20)
m=1n=1 T3mn
(17d) -
Where the coefficients T;mn, Tomn Tsmn are expressed
as follows
Timn 4 e rb Ty
Tomnt = _bj J T, ¢ sinpx sin A ydxdy (21)
T3mn a 0 7o T3

The coefficients Tymn, Tomn, Tsmn CaN be evaluated by
integrating Eq. (21) as:
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Timn Tomn Tamn = To for m = n =1, and for a single
sinusoidal thermal loading, and Tymn, Tomns Tamn =11126:1‘;
for m, n odd, in case of uniformly distributed thermal
loading, where T, represents the intensity of thermal
loading.

The solution form for (ug, vy, Wy, 0) to solve the
problem is adopted as follows (Sekkal et al. 2017a)

o w (Umncos(px)sin(Ay)

_ Z z Viun Sin(ux) cos(Ay) (22)
Wi sin( ux) cos(y)
m= O Sin(ux) cos(Ay)

n=1

Where Upn, Vinny Wmnn, Omn @re arbitrary parameters to
be determined, substituting Egs. (20)-(22) into governing
Eqg. (17), we obtain the following operator equation

[K1{6} = {F} (23)

Where {6} = {Upnn, Vior» Winn, Omn} and [K] is the
symmetric matrix given by

K=Ky Koy Ky K @9
Kia Koy Kzq Ky
In which
K1 = _1‘111/12 - A66M2’
K1z = —(Aq; + Age) A
Kz = B11/13'
Ky, = _Bf1/13k1A1
Ky, = _1‘122112 - A66/12,
Ky3 = Bzzli3,
K4 = —B3,k,Byu® (25)
K33 = —D;1A* — 2(D15 + 2Dg) A*u* — Dypu*

Ksy = D ki A1A* + D3k, Byu*
+D3, A% pu? (kyAy + kyB1)
+2D3 A% u? (ki Ay + kyB;)

Kyy = _H1S1(k1A1)214 - 2Hf2k1A1sz1/12#2
—H3,(kyB1)?u* — Hgg(ky Ay + kyBy)A%u?
—S35k1 A1 A% — Sisko B p?

and {F} = {F,,F,,F5,F,} is the generalized force given by

- A[(Lll + L21)T1mn + (Pll + P21)T2mn

+(R11 + R21)T3mn]

Fy = u[(L1z + Ly2)Tymn + (P + P2)Tomn
+(R11 + Ry2)Tsmal

F3 = =22[(S11 + S20)Timn + (Fi1 + F21)Tomn
+Ui1 + Uz)Tamn] = #2[(S11 + S22)Timn
+(Fi1 + F22)Tomn + (U1 + Uz2) Tamn]

Fy = =k A1 22[(Vi1 + Vo) Timn + Wig + Woi)Topmn
+(X11 + X31)Tamn] — ko Bip?[(Vag 4 Vo) Ty
Wiy + Wo)Tomn + (X11 + X22) Tamn

(26)

Where

n
_ Zh+1 (k)—( ) z f(2)
(Ll]' ijr l] = a; L] h’ n )

iz (27a)
(i,j=12)
C 27 (k) 2% f(2)z
(ST, Z [ k =5 ()
ij=12
Ve, Wiy, Xij) f 0 f@ (7, 2 [¢ ; ), 270)
Q=12

4. Numerical results and discussion

To verify the accuracy of the present theory, simply-
supported two-layered (0°/90°) anti-symmetric laminated
plate under nonlinear thermal loading is to be considered. In
all cases, the lamina properties are assumed to be

E
—_ = 25, GlZ = 0,5E2, G13 = GIZJ
E,
aq
G23 = 0,2E2, Hi2 = 0,25, —_— = 3
az

Dimensionless displacements (4, v, w) and stresses
(Ox, Oy, Txy, Txz Tyz) Utilized for two-layer (0990°) anti-
symmetric plate expressed as

<0b h) 1
W2 T 2) T
(ao h) 1
2% T 2) a Ta?

_ ab 10h
W:W(— 2 o)—

|
I

|
Il

2°2"7 ) ayTya?’
- (a b h) 1
% =% \3' 2 T 2) Bya, Toa?’

_ (a b +h) 1
= \2' 2 " 2) ByayToa?

_ 1
Ty = Tay (0,0, - 5) —,

E2a1T0a2
- (O b 0) 1
Pz = Tz \ O3V 4, Toa?
- a 1
B =52 (709 e

It is to be noticed that transverse shear stresses are
obtained by using three dimensional stress equilibrium
equations of elasticity.

Numerical results for two-layered (0°/90°) anti-
symmetric plate predicted in this work are discussed and
compared with those of the classical (CPT), first-order
(FSDT), higher-order (HSDT) and trigonometric (TSDT)
theories obtained by Ghugal and Kulkarni (2013a).
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Table 1 Normalized displacements and in-plan stresses for square two-layer (0°/90°) anti-symmetric
laminated plate subjected to nonlinear thermal loading for aspect ratios 4 and 10 (T1=0)

a/h Theory U v w Oy Oy Ty
Present 0.2914 0.3321 1.9460 -2.0811 2.0811 0.9794
TSDT* 0.2914 0.3321 1.9460 -2.0811 2.0811 0.9794
4 HSDT 0.2916 0.3322 1.9501 -2.0955 2.0955 0.9798
FSDT* 0.2926 0.3325 1.9899 -2.1765 2.1765 0.9820
CPT* 0.2926 0.3325 1.9899 -2.1765 2.1765 0.9820
Present 0.2924 0.3325 1.9827 -2.1609 2.1609 0.9816
TSDT* 0.2924 0.3325 1.9827 -2.1609 2.1609 0.9816
10 HSDT 0.2924 0.3325 1.9834 -2.1633 2.1633 0.9816
FSDT* 0.2926 0.3325 1.9899 -2.1765 2.1765 0.9820
CPT* 0.2926 0.3325 1.9899 -2.1765 2.1765 0.9820

*Ghugal and Kulkarni (2013a)

The results of in-plan displacements (4, V),
transversenormal displacements (W), in-plan normal
stresses (0y,0y) and in-plan shear stresses (T,y) of a two-
layer (0°/90°) anti-symmetric laminated plate subjected to a
nonlinear thermal loading for aspect ratios 4 and 10 are
shown in Table 1, whereas those of transverse shear stresses
(Txz:Tyz) are reported in Table 2.

The examination of Table 1 reveals that in-plane
displacements (u, v) obtained using the present theory for
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Fig. 2 Normalized in-plane displacement (%) through the
thickness for a two-layered (0°/90°) anti-symmetric
laminated plate for aspect ratio 4
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Fig. 3 Normalized in-plane displacement (%) through the
thickness for a two-layered (0°/90°) anti-symmetric
laminated plate for aspect ratio 10

°¥

two-layered anti-symmetric plate are in good agreement
with those provided by TSDT, HSDT, FSDT and CPT for
both aspect ratios 4 and 10. Figs. 2 and 3 display,
respectively, the variation of in-plan displacement ()
through the thickness for aspect ratio 4 and the variation of
in-plane displacement (¥) through the thickness for aspect
ratio 10. Transverse normal displacements (w) predicted
by the present formulation are similar to those given by
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Fig. 4 Normalized in-plan normal stress () through the
thickness of a two-layer (0°/90°) anti-symmetric
laminated plate for aspect ratio 4

\\’/n

® 0,50
» < —m— Present
N —e—TSDT
=—HSDT
B 08 —e—FSDT
\ A—CPT
G).
: 0.00 —
2 \ 2
>
/
-0,25 /
i
o
a/-o.so-

Fig. 5 Normalized in-plane normal stress (o) through the
thickness of a two-layered (0°/90°) anti-symmetric
laminated plate for aspect ratio 10
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Fig. 6 Normalized in plane shear stress (Ty) through the
thickness of a two-layered (0°/90°) anti-symmetric

Nasrine Belbachir et al.

laminated plate for aspect ratio 4
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\ 025 FSDT
\ A—CPT
T
","" T Y
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-0,25 4
\\.
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Table 2 Normalized transverse shear stresses for square
two-layered (0°/90°) anti-symmetric laminated
plate subjected to nonlinear thermal loading for
aspect ratios 4 and 10 (T1 = 0)

alh Theory TEE ThE
Present -0.1246 -0.1246
TSDT* -0.1246 -0.1246
4 HSDT -0.1250 -0.1250
FSDT* -0.1262 -0.1262
CPT* -0.1262 -0.1262
Present -0.0504 -0.0504
TSDT* -0.0504 -0.0504
10 HSDT -0.0504 -0.0504
FSDT* -0.0505 -0.0505
CPT* -0.0505 -0.0505

*Ghugal and Kulkarni (2013a)

TSDT, and are close to those provided by HSDT, whereas
the values given by FSDT and CPT are over-predicted for
the aspect ratio 4. For aspect ratio 10, the results of (w)
estimated using the present theory, TSDT, HSDT, FSDT and
CPT are in close agreement with each other.

The results of in-plan normal and shear stresses (G, Gy,
Tyy) Predicted by the present model are identical to those of
TSDT, and are in good agreement with those of HSDT,
whereas FSDT andCPT overestimate the in-plan stresses for
both aspect ratios 4 and 10.The variation of in-plane normal
stresses (a,) through-the-thickness for aspect ratios 4 and
10 is shown in Figs. 4 and 5 respectively, whereas the
variation of in-plane stresses (T,,) through the thickness
for aspect ratio 4 is shown in Fig. 6.

From Table 2 it is observed that for aspect ratio 4,
transverse shear stresses (T,,Ty,) estimated results using
the present model are in close agreements with those given
by TSDT and HSDT, while the values given by FSDT and
CPT are overestimated. For aspect ratio 10, the results
provided by the five theories presented in this paper; the
present theory, TSDT, HSDT, FSDT and CPT are similar.
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Fig. 7 Normalized transverse shear stress (T,,) through
the thickness of a two-layer (0°/90°) anti-symmetric
laminated plate for aspect ratio 4
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Fig. 8 Normalized transverse shear stress (T,,) through
the thickness of a two-layered (0°/90°) anti-
symmetric laminated plate for aspect ratio 10

Figs. 7 and 8 display, respectively, the variation of
normalized transverse shear stresses (T,,) for aspect ratio4
and (Ty,) for aspect ratio 10 through the thickness of a
two-layer anti-symmetric laminated plate.

5. Conclusions

In the present study, a refined four variables plate theory
has been presented for the analysis of the response of
simply supported two-layered (0°/90°) anti-symmetric
laminated plates under non-linear thermal loading across
the thickness of the plate. The present theory is
characterized by avoiding the use of a shear correction
factor and reducing the number of variables and the
governing equations to four instead of five or more in the
other theories. The present results are compared with those
provided by the classical, first order, higher order and
trigonometric theories reported in the literature. The
numerical results predicted using the present formulation
are found to converge extremely well with those of the
trigonometric and the higher order shear deformation
theories. An improvement of the present study will be
considered in the future work to consider the thickness
stretching effect by using quasi-3D shear deformation
models (Bessaim et al. 2013, Belabed et al. 2014, Hebali et
al. 2014, Bousahla et al. 2014, Bourada et al. 2015, Larbi
Chaht et al. 2015, Hamidi et al. 2015, Bennoun et al. 2016,
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Draiche et al. 2016, Ait Atmane et al. 2017, Bouafia et al.
2017, Mahmoudi et al. 2017, Sekkal et al. 2017b,
Benahmed et al. 2017, Abualnour et al. 2018, Karami et al.
2018a, b, Benchohra et al. 2018, Younsi et al. 2018,
Bendaho et al. 2019, Boutaleb et al. 2019, Boukhlif et al.
2019, Boulefrakh et al. 2019, Zarga et al. 2019, Zaoui et al.
2019, Bouanati et al. 2019, Khiloun et al. 2019) and other
types of materials (Mahi et al. 2015, Zemri et al. 2015,
Karami et al. 2017, Yeghnem et al. 2017, Mouffoki et al.
2017, Zidi et al. 2017, Klouche et al. 2017, Kaci et al.
2018, Mokhtar et al. 2018, Zine et al. 2018, Behera and
Kumari 2018, Karami et al. 2018c, d, e, 20193, b, c, Ayat et
al. 2018, Yazid et al. 2018, Kadari et al. 2018, Draoui et al.
2019, Bensattalah et al. 2019, Mekerbi et al. 2019, Hellal et
al. 2019, Tounsi et al. 2019).
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