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1. Introduction 

 

Lately, fuzzy logic control (FLC) has been utilized in 

numerous fruitful useful control applications (Ying et al. 

2019, Jeong et al. 2019, Battista and Varela 2019), “In spite 

of these achievements, it is obvious that several 

fundamental issues remain. In this study, a powerful Takagi-

Sugeno (T-S) (1985) model is made by the application of 

these rules, to yield relations frameworks. This straight-

forward and generally demonstratable technique endeavors 

to express each rule by a direct framework display which 

enables us to utilize straight criticism control strategies for 

input adjustment. The idea of parallel distributed 

compensation (PDC), as presented in Wang et al. (1996), is 

used to structure a controller to balance the model. The idea 

is to structure a compensator for each standard in the model. 

Each control rule is independently planned based on the 

comparison principle of the T-S model, so that the direct 

control structure strategies can be utilized to plan the PDC 

controller. A large controller, which is commonly nonlinear, 

is subsequently a mixing together all the individual direct 

controllers for each standard offered by equivalent settings 

in the model in the starting parts. 

It has for some time been realized that the infusion of a 

high recurrence flag, known as a dither, into a nonlinear 

framework may enhance its execution. Better execution is 

seen as less bending in the framework yield, increased 

steadiness, and the extinguishing of limit cycles. A thorough 

investigation of steadiness in a general nonlinear framework 
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with a dither control was given in Steinberg and Kadushin 

(1973), “Utilizing the causal technique, a casual model 

might be settled by suitably controlling the parameters of 

dither. In this way, dither of adequately high recurrence may 

result in yields of the casual model as close as wanted to 

that of the dithered framework (Mossaheb 1983), “It was 

demonstrated that the direction of a dithered framework can 

be anticipated by setting up that of its related model, the 

casual model (which relies upon the parameters of dither), 

given that the dither has a sufficiently high recurrence. 

Additional insight can be obtained from well-known 

fields, which have received a lot of scientific consideration. 

Numerous algorithms have been derived from the tiny 

knowledge of the world of animals, which are incorporated 

into this field. When all is said in done, the swarm strategy 

requires transformative computational intelligence and is 

modeled on the specific practices or the ingrained instincts 

of animals. For example, cat swarm optimization (CSO) 

was propose based on demonstrated feline behaviors framed 

in mathematical terms (Chu et al. 2006); the improved 

artificial bee colony (IABC) algorithm was based on 

recreating the conduct of honey bees accumulating nectar 

(Tsai et al. 2009); and the evolved bat algorithm (EBA) was 

proposed dependent on the prey discovering procedure of 

bats (Tsai et al. 2012). These types of algorithms have been 

connected to tackle numerous issues in various fields. 

 

 

2. Literature review 
 

A few strategies for assessing solidness plans have been 

effectively connected, see Loria and Nesic (2003), Panteley 

and Loria (1998), Sontag and Wang (1995), and Sontag 

(1988). Computational insight methodologies, for example, 

neural systems and frameworks have additionally been 
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utilized to show dynamics and applications in various 

regions. These apparatuses have turned out to be amazing 

and compelling. A few of the later works utilizing these 

methodologies can likewise be seen. Then again, swarm 

algorithms are likewise broadly used to build models of a 

framework or to find ideal solutions to issues in assembly, 

booking, and business coordination, background, and 

design. Panda et al. (2011) used CSO (see Chu and Tsai 

(2007)) to build a number of populace based learning rules 

for an interactive information retrieval (IIR) framework; 

Pardhan and Panda (2012) also used CSO to tackle 

numerous goal issues. In addition, Wang et al. (2012) 

utilized CSO to enhance data concealing outcomes. The 

IABC, which was proposed by Tsai et al. (2009), was 

effectively used to enhance the acknowledgment rate of the 

persistent confirmation framework (see Tsai et al. 2012) and 

to estimate the patterns outside the conversion scale (see 

Chang et al. 2014a); and EBA has been employed to 

provide the optimal recommended stock portfolio (see 

Chang et al. 2014b). 

Although there have been many successful applications 

of intelligent algorithms, there are still some drawbacks to 

using them in any control scheme. A fuzzy Lyapunov 

method as well as an NN-fuzzy models have been used for 

dealing with the tension leg platform (TLP) stability 

problem; see Lam (2009), Lee et al. (2001), Liu and Zhang 

(2003), Park et al. (2003), Tanaka et al. (1996), Tanaka and 

Sano (1994), and Wang et al. (1996), “From this we study 

suitable mathematical modeling for the TLP system and 

discuss the interaction between a deformable floating 

structure and the surface wave motion by virtue of a partial 

differential equation as well as fuzzy logic theory. 

Egresits et al. (1998) maintained that knowledge is 

firmly associated with picking up adjusting capacities, thus 

such abilities are considered as crucial to smart assembly 

frameworks. Various methodologies have been adapted to 

produce diverse machine learning strategies for assembly 

issues, beginning with standard enlistment in representative 

examples and area acknowledgment procedures in 

numerical, sub emblematic spaces. Artificial neural network 

(ANN) based learning strategies are currently the prevailing 

machine learning strategies utilized in assembly. They 

cannot exclusively be utilized for characterization and 

estimation, but can also be utilized for dependability 

investigation. For instance, the nonlinear Markov jump 

standard genetic regulatory network model can be built 

utilizing repetitive neural systems (see Zhu et al. 2013), “Be 

that as it may, essentially these arrangements have 

constrained modern acknowledgment on account of the 

‘discovery’ idea of ANNs. The incorporation of neural and 

methods has been dealt with and previous arrangements 

investigated by Egresits et al. (1998). Narendra et al. (1998) 

depicted a clever current controller for the quick and 

adaptable control utilizing ANN and the logic worldview. 

Two strategies for altering the learning parameters are 

exhibited: a heuristic way to deal with and assess the 

learning rate as a polynomial of a vitality work is 

considered and learning parameters are examined. Fuzzy 

logic, genetic algorithms and neural systems are three 

prevalent man-made reasoning methods which are generally 

utilized (see Lian et al. 1998), “Due to their particular 

properties and favorable circumstances, they are being 

explored and coordinated to shape new models and 

methodologies in the regions of framework control right 

now. 

Linear regression models provide an effective and 

attractively simple framework for understanding how each 

input variable relates with the observed target variables. 

However, they fail to capture non-linear dependencies 

between inputs and target variables, which are recurrent in 

the real-world. On the other hand, flexible models such as 

neural networks or Gaussian processes (GPs) lay on the 

opposite side of the spectrum, where the target variables are 

modeled as complex non-linear functions of all input 

variables simultaneously. Unfortunately, due to their black-

box nature, the interpretativeness and the ability to 

understand how each input is contributing to the observed 

target are typically lost. Additive models (Ravikumar et al. 

2009) contrast with these by specifying the target variable 

to be the result of a linear combination of non-linear 

functions of the individual inputs. Due to this structured 

form, additive models provide an interesting tradeoff 

between interpretability and flexibility. 

 

 

3. Problem formulation 
 

We consider models of the regression form as follows. 
 

𝑦 =  𝑓𝑟(𝑥𝑟) + ∑ 𝑓𝑒(𝑥𝑒𝑖)+ ∈,

𝐸

𝑖=1

 (1) 

 

where ∈  ~ N (0, v) is the observation noise and E denotes 

the number of events that can affect the observed arrivals y. 

Hence, the number of events, E, varies between 

observations. However, if we assume the functions 

𝑓𝑟(𝑥𝑟) and 𝑓𝑒(𝑥𝑒𝑖) to be linear functions of their inputs, 

parameterized by a vector of coefficients 𝒘𝑟  and 𝒘𝑒 

respectively, then we can write (1) as 
 

𝑦 = (𝑤𝑟)𝑇𝑥𝑟 + (𝑤𝑒)𝑇 (∑ 𝑥𝑒𝑖

𝐸

𝑖=1

) + ∈ =  𝑤𝑇𝑥+ ∈, (2) 

 

where we defined 𝒘 ≜ [𝒘𝑟;  𝒘𝑒] and  𝒙 ≜ [𝒙𝑟;  ∑ 𝑥𝑒𝑖𝐸
𝑖=1 ]. 

As we can see, in the case of linear functions, the feature 

vectors of all events can be aggregated by summation, 

which reduces the problem to a simple linear regression. 

However, that does not allow us to properly explore our 

domain knowledge. 
 

 

4. Intelligent control based theory 
 
4.1 Model description 
 

The proposed Bayesian additive model builds on the 

assumption that there is a base routine component 𝑦𝑟 = 

𝑓𝑟(𝑥𝑟) and a variable number of event components 𝑦𝑒𝑖  = 

𝑓𝑒(𝑥𝑒𝑖), whose contributions are summed up to obtain the 
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total observed arrivals y in a given area. Since we wish to 

constrain the values of the individual components, 𝑦𝑟 and 

{𝑦𝑒𝑖  }𝑖=1
𝐸 , to be non-negative, we define the latter to be 

oneside truncated Gaussians, which we denote as 

 

𝑦𝑟  ~ 𝕝 (𝑦𝑟  > 0) 𝒩 (𝑦𝑟| 𝑓𝑟(𝑥𝑟),  𝛽𝑟), (3) 

 

𝑦𝑒𝑖  ~ 𝕝 (𝑦𝑒𝑖  > 0) 𝒩 (𝑦𝑒𝑖| 𝑓𝑒(𝑥𝑒𝑖) 𝛽𝑒), (4) 

 

where 𝕝 (a > 0) is an indicator function that takes the value 

1 if and only if a > 0, 𝛽𝑟 and  𝛽𝑒 are the variances of 

routine and events components, respectively. Alternatively, 

we also consider a variant of the model that assumes the 

component values to be Poisson distributed with an 

exponential link function, such that 

 

𝑦𝑟  ~ 𝑃𝑜𝑖𝑠𝑠𝑜𝑛( 𝑦𝑟| ℯ𝑓𝑟(𝑥𝑟)), (5) 

 

𝑦𝑒𝑖  ~ 𝑃𝑜𝑖𝑠𝑠𝑜𝑛( 𝑦𝑒𝑖| ℯ𝑓𝑒(𝑥𝑒𝑖)), (6) 

 

In either case, the observed totals y are then defined as 

the sum of all components 

 

y = 𝑦𝑟 + ∑ 𝑦𝑒𝑖 +  𝜖

𝐸

𝑖=1

,           𝜖 ~  𝒩 (0, 𝑣). (7) 

 

Having specified the additive structure of the model, the 

next step is to specify how to model the functions 𝑓𝑟 and 

𝑓𝑒 .  Perhaps the simplest approach would be to assume 

𝑓𝑟(𝑥𝑟) and 𝑓𝑒(𝑥𝑒𝑖) to be linear functions of their inputs as 

in (2), “Although in this paper we focus on controlled 

systems, it is important to note that the intelligent algorithm 

described above is general enough to allow a large variety 

of models to be applied. 

Letting the vectors 𝐟𝑟  and 𝐟𝑒  denote the 

functions  𝑓𝑟(𝑥𝑟)  and 𝑓𝑒(𝑥𝑒𝑖)  evaluated for all feature 

vectors 𝐱𝑟 and 𝐱𝑒𝑖  respectively, Gaussian process 

modeling proceeds by placing a GP prior on 𝐟𝑟and 𝐟𝑒 , 

such that 𝐟𝑟  ~ 𝒢𝒫 (𝑚𝑟(𝐱𝑟)  ≡ 0, 𝑘𝑟(𝐱𝑟, 𝐱𝑟′
))  and 

𝐟𝑒 ~ 𝒢𝒫 (𝑚𝑒(𝐱𝑒)  ≡ 0, 𝑘𝑒(𝐱𝑒 , 𝐱𝑒′
)), where for the sake of 

simplicity (and without loss of generality, having our data 

centered) we assumed the GPs to have zero mean so that the 

GPs are completely defined in terms of the covariance 

functions 𝑘𝑟 and 𝑘𝑒. 

Fig. 1 shows a factor graph representation of the 

proposed model, which will be particularly useful in the 

following section for deriving a message passing algorithm 

to perform approximate Bayesian inference using 

expectation propagation (EP). 

 

4.2 System analysis within structures 
 

According to the factor graph in Fig. 1, the joint 

distribution of the proposed model with truncated Gaussian 

components is given by 

 

 

Fig. 1 Factor graph of the proposed Bayesian additive 

model with Gaussian process components. The blue 

arrows represent he message-passing algorithm for 

performing approximate Bayesian inference. The 

second flow of messages starting from the GP factor 

for the events component that goes in the opposite 

direction is not shown 

 

 
𝓅(𝒇𝑒 , 𝒚𝑟 , 𝒀𝑒 , 𝑦|{𝒙𝑛

𝑟 , 𝑿𝑛
𝑒 }𝑛=1

𝑁 ) 

= 𝒩(𝒇𝑟|0, 𝑲𝑟)𝒩(𝒇𝑒|0, 𝑲𝑒) ∏ 𝕝(𝑦𝑛
𝑟 > 0)𝒩(𝑦𝑛

𝑟|𝑓𝑛
𝑟 , 𝛽𝑟)

𝑁

𝑛=1

 

× (∏ 𝕝(𝑦𝑛
𝑒𝑖 > 0)𝒩(𝑦𝑛

𝑒𝑖|𝑓𝑛
𝑒𝑖 , 𝛽𝑒)

𝐸𝑛

𝑛=1

) 𝒩(𝑦𝑛|𝑦𝑛
𝑟 +  ∑ 𝑦𝑛

𝑒𝑖 , 𝑣
𝐸𝑛

𝑖=1 ) 

(8) 

 

where we defined 𝒚 ≜ {𝑦𝑛}𝑛=1
𝑁 , 𝒚𝑟 ≜ {𝑦𝑛

𝑟}𝑛=1
𝑁 , and 𝒀𝑒 ≜

{𝑦𝑛
𝑒}𝑛=1

𝑁 , with 𝒚𝑛
𝑒 ≜ {𝑦𝑛

𝑒𝑖}
𝑖=1

𝐸𝑛
. The covariance matrices 

𝑲𝑟 and 𝑲𝑒  are obtained by evaluating the covariance 

functions 𝑘𝑟(𝒙𝑟 , 𝒙𝑟′
) and 𝑘𝑟(𝒙𝑒 , 𝒙𝑒′

) respectively between 

every pair of inputs. 

The EP algorithm provides us with approximate 

posterior distributions for 𝒇𝑟 and 𝒇𝑒  given by 𝑞(𝒇𝑟) =
 𝒩(𝒇𝑟|𝜇𝑟 , Σ𝑟) and 𝑞(𝒇𝑒) =  𝒩(𝒇𝑒|𝜇𝑒 , Σ𝑒) . These 

estimates can be used to compute the predictive mean and 

variance of 𝑓∗
𝑟 and {𝑓𝑛

𝑒𝑖}
𝑖=1

𝐸𝑛
, as in standard Gaussian 

process regression and classification. The predictive mean 

and variance for 𝑓∗
𝑟 are then given by 

 

𝔼𝑞[𝑓∗
𝑟|𝒇𝑟 , 𝑥∗

𝑟 , {𝒙𝑛
𝑟 }𝑛=1

𝑁 ] = (𝑲∗
𝑟)𝑇(𝑲𝑟 + Σ̃𝑟)

−1
 �̃�𝑟 

𝕍𝑞[𝑓∗
𝑟|𝒇𝑟 , 𝑥∗

𝑟 , {𝒙𝑛
𝑟 }𝑛=1

𝑁 ] 

= 𝑘𝑟(𝑥∗
𝑟 , 𝑥∗

𝑟) − (𝑲∗
𝑟)𝑇(𝑲𝑟 + Σ̃𝑟)

−1
𝑲∗

𝑟, 

(9) 

 

and similarly, for the events variables {𝑓∗
𝑒𝑖}

𝑖=1

𝐸∗
. 

The T-S fuzzy model of the model is established via the 

PDC scheme as follows. 
 

Model Rule i: 
 

IF  𝑥𝑅1(𝑡)  is  𝑀𝑅𝑖1(𝛼𝑚, 𝛽𝑚)  and … and 
      𝑥𝑅𝑘(𝑡)  is   𝑀𝑅𝑖𝑘(𝛼𝑚, 𝛽𝑚) 

(10) 
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THEN 

{
�̇�𝑅(𝑡) = 𝐴1(𝛼𝑚, 𝛽𝑚)𝑥𝑅(𝑡) + 𝐵1(𝛼𝑚, 𝛽𝑚)𝑢𝑅(𝑡)

𝑦𝑅(𝑡) = 𝐷𝑖(𝛼𝑚, 𝛽𝑚)𝑥𝑅(𝑡),                                     
 

                                                                𝑖 = 1,2, … , 𝑟. 

(11) 

 

Hence, the final state and final output of are 
 

�̇�𝑅(𝑡) =

∑ 𝑤𝑖(𝑥𝑅(𝑡), 𝛼𝑚, 𝛽𝑚) {
𝐴𝑖(𝛼𝑚, 𝛽𝑚)𝑥𝑅(𝑡)

+𝐵𝑖(𝛼𝑚, 𝛽𝑚)𝑢𝑅(𝑡)
}𝑟

𝑖=1

∑ 𝑤𝑖(𝑥𝑅(𝑡), 𝛼𝑚, 𝛽𝑚)𝑟
𝑖=1

, 
(12) 

 

𝑦𝑅(𝑡) =
∑ 𝑤𝑖(𝑥𝑅(𝑡), 𝛼𝑚, 𝛽𝑚)𝐷𝑖(𝛼𝑚, 𝛽𝑚)𝑥𝑅(𝑡)𝑟

𝑖=1

∑ 𝑤𝑖(𝑥𝑅(𝑡), 𝛼𝑚, 𝛽𝑚)𝑟
𝑖=1

. (13) 

 

Assume that the momentum equation can be 

characterized by the following differential equation 
 

𝑀�̈̄�(𝑡) = −𝑀�̄�𝜑(𝑡), (14) 
 

where 𝑋(𝑡) = [�̄�1(𝑡), �̄�2(𝑡) ⋯ �̄�𝑛(𝑡)] ∈ 𝑅𝑛 is an n-vector; 

�̈̄�(𝑡),  �̇̄�(𝑡),  �̄�(𝑡)  are the acceleration, velocity, and 

displacement vectors, respectively. This is only a static 

model and M is the mass of the system; 𝑀�̄�𝜑(𝑡) is a 

wave-induced external force which can be expressed as 

follows 

𝑀�̄�𝜑(𝑡) = 𝐹𝑤𝑥 − 𝐹𝑇𝑋 , (15) 
 

where 𝐹𝑤𝑥 is the horizontal wave force acting on the both 

sides of the structure; and 𝐹𝑇𝑥 is the horizontal component 

of the static (or the pre-tensioned) tension applied by the 

tension legs. The static tension is given by 𝐹𝑇𝑥 = 𝑓𝜉. 
 

IF          𝑥𝑅1(𝑡)  is  𝑀𝑅𝑖1(𝛼𝑚, 𝛽𝑚)  and … and 
              𝑥𝑅𝑘(𝑡)  is   𝑀𝑅𝑖𝑘(𝛼𝑚, 𝛽𝑚) 
THEN  𝑢𝑅(𝑡) = −𝐾𝑖�̂�𝑅(𝑡). 

(16) 

 

Observer Rule i: 
 

IF          𝑥𝑅1(𝑡)  is  𝑀𝑅𝑖1(𝛼𝑚, 𝛽𝑚)  and … and 
              𝑥𝑅𝑘(𝑡)  is   𝑀𝑅𝑖𝑘(𝛼𝑚, 𝛽𝑚) 

THEN  �̇̂�𝑅(𝑡) = 𝐴𝑖(𝛼𝑚, 𝛽𝑚)�̂�𝑅(𝑡) 
                             +𝐵𝑖(𝛼𝑚, 𝛽𝑚)𝑢𝑅(𝑡) 

                             +𝐿𝑖(𝑦𝑅(𝑡) − �̂�𝑅(𝑡)), 

(17) 

 

where 𝑦𝑅(𝑡) = 𝐷𝑖(𝛼𝑚, 𝛽𝑚)𝑥𝑅(𝑡),   �̂�𝑅(𝑡) = 𝐷𝑖(𝛼𝑚, 𝛽𝑚) 

�̂�𝑅(𝑡) and 𝑖 = 1,2, … , 𝑟. 

Thus, the overall fuzzy controller and fuzzy observer 

can be written as 
 

𝑢𝑅(𝑡) = −
∑ 𝑤𝑖(𝑥𝑅(𝑡), 𝛼𝑚, 𝛽𝑚)𝐾𝑖�̂�𝑅(𝑡)𝑟

𝑖=1

∑ 𝑤𝑖(𝑥𝑅(𝑡), 𝛼𝑚, 𝛽𝑚)𝑟
𝑖=1

, (18) 

 

𝑥𝑅(𝑡) =

∑ 𝑤𝑖(𝑥𝑅(𝑡), 𝛼𝑚, 𝛽𝑚) {

𝐴𝑖(𝛼𝑚, 𝛽𝑚)𝑥𝑅(𝑡)

+𝐵𝑖(𝛼𝑚, 𝛽𝑚)𝑢𝑅(𝑡)

+𝐿𝑖(𝑦𝑅(𝑡) − �̂�𝑅(𝑡))

}𝑟
𝑖=1

∑ 𝑤𝑖(𝑥𝑅(𝑡), 𝛼𝑚, 𝛽𝑚)𝑟
𝑖=1

, 

(19) 

 

The premise variables depend on the state variables 

estimated by the fuzzy observer, which are unknown. 

Therefore, (20) is used instead of (18) as a fuzzy controller 

𝑢𝑅(𝑡) = −
∑ 𝑤𝑖(𝑥𝑅(𝑡), 𝛼𝑚, 𝛽𝑚)𝐾𝑖�̂�𝑅(𝑡)𝑟

𝑖=1

∑ 𝑤𝑖(�̂�𝑅(𝑡), 𝛼𝑚, 𝛽𝑚)𝑟
𝑖=1

. (20) 

 

The closed-loop fuzzy relaxed system is rewritten as 

follows 
 

�̇̂�𝑅(𝑡) =

∑ ∑ 𝑤𝑖(𝑥𝑅(𝑡), 𝛼𝑚, 𝛽𝑚)𝑤𝑗(�̂�𝑅(𝑡), 𝛼𝑚, 𝛽𝑚)𝑟
𝑗=1

𝑟
𝑖=1

           {𝐴𝑖(𝛼𝑚, 𝛽𝑚) − 𝐵𝑖(𝛼𝑚, 𝛽𝑚)�̂�𝑅(𝑡)

            +𝐿𝑖𝐷𝑗(𝛼𝑚, 𝛽𝑚)(𝑥𝑅(𝑡) − �̂�𝑅(𝑡))}

∑ ∑ 𝑤𝑖(𝑥𝑅(𝑡), 𝛼𝑚, 𝛽𝑚)𝑤𝑗(�̂�𝑅(𝑡), 𝛼𝑚, 𝛽𝑚)𝑟
𝑗=1

𝑟
𝑖=1

 

 

From the discussion above, we can infer that if the 

dither has a sufficiently large frequency and a proper 

membership function is chosen, the trajectory of the closed-

loop fuzzy relaxed system and that of the closed-loop 

dithered chaotic system would be made as close as desired. 

This enables a rigorous prediction of the stability of the 

closed-loop dithered chaotic system by establishing that of 

the closed-loop fuzzy relaxed system. 

For controller design as proposed by Hammami (2001), 

Jankovic et al. (1996), Seibert and Suarez (1990), Sepulchre 

(2000), Sepulchre et al. (1997), Sontag (1989), and Sun et 

al. (2003), the standard first-order state equation is obtained 

from Eq. (21) assuming the equation of motion for a shear-

type-building modeled by an n-degrees-of-freedom system 

controlled by actuators and subjected to an external force 

𝜙(𝑡) 

�̇�(𝑡) = 𝐴𝑋(𝑡) + 𝐸𝜑(𝑡), (21) 

 

where Λ
𝑇 (𝑡) = [𝑋𝑇 (𝑡)     𝑈𝑇 (𝑡) ] , with 𝑋𝑇 (𝑡) =

[𝑥1(𝑡) 𝑥2(𝑡) ⋯ 𝑥𝛿(𝑡)]. We assume 𝑆 layers and each 

layer has 𝑅𝜎  (𝜎 = 1, 2, ⋯ , 𝑆)  neurons, in which 

𝑥1(𝑡)~𝑥𝛿(𝑡)  and 𝑢1(𝑡)~𝑢𝑚(𝑡)  are the input variables. 

The notation 𝑊𝜎  denotes the weight matrix of the 𝜎𝑡ℎ 

(𝜎 = 1, 2, ⋅⋅⋅ , 𝑆) layer. The transfer function vector of the 

𝜎𝑡ℎ  layer is defined as 𝛹𝜎 (𝑣) ≡

[𝑇(𝑣1) 𝑇(𝑣2) ⋅⋅⋅ 𝑇(𝑣𝑅𝜎 )]𝑇 . 

A neural-network-based model can be described as 

follows 
 

�̇�(𝑡) = 𝛹𝑆 (𝑊𝑆𝛹𝑆−1 (𝑊𝑆−1𝛹𝑆−2 (⋅⋅⋅⋅⋅

⋅ 𝛹2 (𝑊2𝛹1 (𝑊1 𝛬(𝑡))) ⋅⋅⋅⋅⋅⋅))), 

(22) 

 

where 𝛬𝑇 (𝑡) = [𝑋𝑇 (𝑡)     𝑈𝑇 (𝑡) ] , with 𝑋𝑇 (𝑡) =
[𝑥1(𝑡) 𝑥2(𝑡) ⋯ 𝑥𝛿(𝑡)]. We assume 𝑆 layers and each 

layer has 𝑅𝜎  (𝜎 = 1, 2, ⋯ , 𝑆)  neurons, in which 

𝑥1(𝑡)~𝑥𝛿(𝑡)  and 𝑢1(𝑡)~𝑢𝑚(𝑡)  are the input variables. 

The notation 𝑊𝜎  denotes the weight matrix of the 𝜎𝑡ℎ 

(𝜎 = 1, 2, ⋅⋅⋅ , 𝑆) layer. The transfer function vector of the 

𝜎𝑡ℎ  layer is defined as 𝛹𝜎 (𝑣) ≡

[𝑇(𝑣1) 𝑇(𝑣2) ⋅⋅⋅ 𝑇(𝑣𝑅𝜎 )]𝑇 . 

An LDI system can be described in the state-space 

representation (see Hu (2008) and Liu and Li (2010)) as 

follows 
 

�̇�(𝑡) = 𝐴(𝑎(𝑡))𝑌(𝑡), (23) 
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𝐴(𝑎(𝑡)) = ∑ ℎ𝑖(𝑎(𝑡))�̄�𝑖 ,

𝑟

𝑖=1

 (23) 

 

where 𝑟 is a positive integer; 𝑎(𝑡) is a vector signifying 

the dependence of ℎ𝑖(⋅) on its elements, i.e., ℎ𝑖(𝑎(𝑡)) ≡

ℎ𝑖(𝑎1(𝑡), 𝑎2(𝑡) ⋯ , 𝑎𝑛(𝑡)),   𝑎(𝑡) =

[𝑎1(𝑡), 𝑎2(𝑡), ⋯ , 𝑎𝑛(𝑡)]𝑇. (In general, 𝑎(𝑡) coincides with 

the state vector 𝑋(𝑡)); �̄�𝑖 (𝑖 = 1,  2, ⋯ ,  𝑟) are constant 

matrices; and 𝑌(𝑡) = [𝑦1(𝑡) 𝑦2(𝑡) ⋯ 𝑦𝑗(𝑡)] 𝑇. 

According to the interpolation method and Eq. (22), we 

can obtain 
 

�̇�(𝑡) 

= [ ∑ ℎ𝜍𝑆 (𝑡)𝐺𝜍
𝑆(𝑊𝑆[⋅⋅

2

𝜍𝑆 =1

⋅ [ ∑ ℎ𝜍2 (𝑡)𝐺𝜍
2

2

𝜍2 =1

(𝑊2 [ ∑ ℎ𝜍1 (𝑡)𝐺𝜍
1(𝑊1 𝛬(𝑡))])] ⋯

2

𝜍1 =1

])] 

= ∑ ℎ𝛺𝜎 (𝑡)𝐸𝛺𝜎 𝛬(𝑡)

𝛺𝜎

 

(24) 

 

Finally, based on Eq. (23), the dynamics of the NN 

model can be rewritten as the following LDI state-space 

representation 
 

�̇�(𝑡) = ∑ ℎ𝑖(𝑡)�̄�𝑖

𝑟

𝑖=1

Λ(𝑡), (25) 

 

also rearranged as follows 
 

�̇�(𝑡) = ∑ ℎ𝑖(𝑡){𝐴𝑖𝑋(𝑡)}

𝑟

𝑖=1

, (26) 

 

where 𝐴𝑖  is the partitions of 𝐸𝑖  corresponding to the 

partition Λ(𝑡). 
Based on the above modeling schemes for the NN-based 

approach, the nonlinear structural system (21) can be 

approximated as an LDI representation (26), “The LDI 

representation follows the same rules as the T-S fuzzy 

model, which combines the flexibility of fuzzy logic theory 

and the rigorous mathematical analysis tools of a linear 

system theory into a unified framework. To ensure the 

stability of the TLP system, the T-S fuzzy model and the 

stability analysis are recalled. First, the ith rule of the T-S 

fuzzy model, representing the structural system, can be 

represented as follows: 

Theorem 1: The augmented system (26) is 

asymptotically stable in the large if there exists a common 

positive definite matrix �̃� , the controller gains 𝐾𝑖  and 

observer gains 𝐿𝑖 , 𝑖 = 1, 2, … , 𝑟 can be found to satisfy 

the following matrix inequalities 
 

�̃�𝑖𝑖
𝑇 = (𝛼𝑚, 𝛽𝑚)�̃� + �̃��̃�𝑖𝑖 (𝛼𝑚, 𝛽𝑚) < 0, 

𝑖 = 1, 2, … , 𝑟 
(27) 

 

(
�̃�𝑖𝑗 (𝛼𝑚, 𝛽𝑚) + �̃�𝑗𝑖 (𝛼𝑚, 𝛽𝑚)

2
)

𝑇

�̃� (28) 

+�̃� (
�̃�𝑖𝑗 (𝛼𝑚, 𝛽𝑚) + �̃�𝑗𝑖 (𝛼𝑚, 𝛽𝑚)

2
) < 0, 

𝑖 < 𝑗 ≤ 𝑟. 

(28) 

 

where 
 

�̃�𝑖𝑗 (𝛼𝑚, 𝛽𝑚)

= [
𝐴𝑖(𝛼𝑚, 𝛽𝑚) − 𝐵𝑖(𝛼𝑚, 𝛽𝑚)𝐾𝑗 𝐵𝑖(𝛼𝑚, 𝛽𝑚)𝐾𝑗

0 𝐴𝑖(𝛼𝑚, 𝛽𝑚) − 𝐿𝑖𝐷𝑗(𝛼𝑚, 𝛽𝑚)
]. 

(29) 

 

This proof is lengthy, so it is not repeated here. The 

above matrix inequalities can be also converted to the LMI 

form 
 

𝑄𝐴𝑖
𝑇(𝛼𝑚, 𝛽𝑚) + 𝐴𝑖(𝛼𝑚, 𝛽𝑚)𝑄 

     −𝑌𝑖
𝑇𝐵𝑖

𝑇(𝛼𝑚, 𝛽𝑚) − 𝐵𝑖(𝛼𝑚, 𝛽𝑚)𝑌𝑖 < 0 

𝐴𝑖
𝑇(𝛼𝑚, 𝛽𝑚)𝑃2 + 𝑃2 𝐴𝑖(𝛼𝑚, 𝛽𝑚) 

     −𝐷𝑖
𝑇(𝛼𝑚, 𝛽𝑚)𝑁𝑖

𝑇 − 𝑁𝑖𝐷𝑖(𝛼𝑚, 𝛽𝑚) < 0 
𝑄𝐴𝑖

𝑇(𝛼𝑚, 𝛽𝑚) − 𝑌𝑗
𝑇𝐵𝑖

𝑇(𝛼𝑚, 𝛽𝑚) + 𝑄𝐴𝑖
𝑇(𝛼𝑚, 𝛽𝑚) 

     −𝑌𝑖
𝑇𝐵𝑖

𝑇(𝛼𝑚, 𝛽𝑚) + 𝐴𝑖(𝛼𝑚, 𝛽𝑚)𝑄 − 𝐵𝑖(𝛼𝑚, 𝛽𝑚)𝑌𝑗  

     +𝐴𝑗(𝛼𝑚, 𝛽𝑚)𝑄 − 𝐵𝑗(𝛼𝑚, 𝛽𝑚)𝑌𝑖 < 0, 

𝑖 < 𝑗 

 

𝐴𝑖
𝑇(𝛼𝑚, 𝛽𝑚)𝑃2 − 𝐷𝑗

𝑇(𝛼𝑚, 𝛽𝑚)𝑁𝑖
𝑇 + 𝑃2𝐴𝑖(𝛼𝑚, 𝛽𝑚) 

   −𝑁𝑖𝐷𝑗(𝛼𝑚, 𝛽𝑚) + 𝐴𝑗
𝑇(𝛼𝑚, 𝛽𝑚)𝑃2 − 𝐷𝑖

𝑇(𝛼𝑚, 𝛽𝑚)𝑁𝑗
𝑇 

   +𝑃2𝐴𝑗(𝛼𝑚, 𝛽𝑚) − 𝑁𝑗𝐷𝑖(𝛼𝑚, 𝛽𝑚) < 0, 

𝑖 < 𝑗 

 

where 𝑌𝑖 = 𝐾𝑖𝑄, 𝑌𝑗 = 𝐾𝑗𝑄, 𝑁𝑖 = 𝑃2𝐿𝑖 , and 𝑁𝑗 = 𝑃2𝐿𝑗 . 

According to Theorem, we can appropriately regulate 

the parameters 𝛼𝑚  and 𝛽𝑚  of dither, to stabilize the 

closed-loop fuzzy relaxed system. 

 

 

5. The experiment design and the simulation result 
 

The proposed Bayesian additive model with Gaussian 

process components was implemented in the system 

modeled by Eq. (30) from the dynamics 
 

𝑑

𝑑𝑡
[
𝑥1

𝑥2
] = [

0 1
−9 −6

] [
𝑥1

𝑥2
] + [

0
9𝑟

] (30) 

 

Similar operations can be found in previous studies (see 

Liu and Lin (2012a, b, 2013)), “By combining the whole set 

of fuzzy rules, the approximation of the nonlinear system is 

completed. Thus, the fuzzy model approximated nonlinear 

system can be described as follows: 
 

IF 𝑥1 ≥
𝜋

3
, then �̇� = 𝐴1�̃� + 𝐵1𝑢, 

RULE 2: IF 𝑥1 ≈
𝜋

90
, then �̇� = 𝐴2�̃� + 𝐵2𝑢 

 

According to Theorem 1 described in section 3, it 

provides a useful criterion that ensures the system response 

is stable in the large. Base on Theorem 1, selecting the 

proper common positive definite matrix 𝑃 and the control 

force 𝐾 becomes the key problem to be dealt with. In this 

paper, we use Bayesian additive model with Gaussian 

process to discover the proper solutions. In this case, the 
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obtained solutions can be classified into two categories: 

feasible and infeasible. It means that designing the fitness 

function in a binary operation form is a simpler way to 

answer to the need of this application. In this paper, the 

fitness function is designed based on the stability criterion 

derived from the LMI conditions via the Lyapunov function 

approach. The AND logical operation is employed in the 

fitness function for examining the solutions to produce the 

binary classification results on the discovered solutions. The 

fitness function is formulated as follows 
 

𝐹 = {
1, if Θ < 0 and 𝑃 = 𝑃𝑇 > 0
0, otherwise.                       

, 

𝛩 = (𝐴𝑖 − 𝐵𝑖𝐾)𝑇𝑃 + 𝑃(𝐴𝑖 − 𝐵𝑖𝐾) 
 

The matrix 𝑃 is always constrained to be symmetric 

when using Bayesian additive model with Gaussian process 

to adjust the elements inside it. In addition, a boundary 

condition is used at the initialization process for both 

matrices 𝑃 and 𝐾. The matrix 𝑃 is kept influencing by 

the same range of boundary conditions for producing 

feasible solutions in a suitable range. All parameters used in 

our experiment for Bayesian additive model with Gaussian 

process are listed in Table 1. 

The number of run listed in Table 1 aims to provide a 

series of experimental results for examining by statistical 

methods. In this paper, we choose a fixed iteration number 

to be the termination criterion. A larger population size 

requires more memory resource and computation power. 

Hence, we set the population size to be 26 in the 

experiment. The number of feasible solutions obtained by 

Bayesian additive model with Gaussian process in different 

runs are shown in Fig. 2. 

The statistical analysis of the results obtained by 

Bayesian additive model with Gaussian process over 40 
 

 

Table 1 Parameters for Bayesian additive model with 

Gaussian process 

Boundary condition for matrix 𝑃 and 𝐾  [-5, 5] 

Medium material Air 

Number of run 40 

Population size 26 

Number of iteration 600 
 

 

 

 

Fig. 2 Number of feasible solutions obtained in 30 runs 
 

Table 2 Statistical analysis of the obtained feasible solutions 

Mean 7502 

Minimum 6950 

Maximum 7758 

Mode 7404 

Standard Deviation (STD) 180.7580 
 

 

 

runs is given in Table 2. Although the STD of the obtained 

feasible solution in every run is a bit large, the number of 

found feasible solutions is still much more than enough to 

decide the system parameters in the application. 

According to the experimental results, Bayesian additive 

model with Gaussian process produces 7,502 feasible 

solutions in average. Assuming that every artificial agent 

allocates a feasible solution successfully in all iterations, the 

maximum number of feasible solutions that can be found in 

one run is 8,000. This implies that the success rate for 

utilizing the Bayesian additive model with Gaussian process 

to find feasible solutions is 93.77% in average. The 

solutions found by the Bayesian additive model with 

Gaussian process are determined as feasible if the eigen 

values are all negative, because the negative eigen values 

result in the control system staying stable in the large. 
 

 

6. Conclusions 
 

We proposed BAM-GP: A Bayesian additive model 

(BAM) with Gaussian process (GP) components that allows 

for an observed variable to be modeled as a sum of a 

variable number of non-linear functions on subsets of the 

input variables. We developed an efficient approximate 

inference algorithm using expectation propagation (EP), 

which allows us to both make predictions about the 

unobserved totals and to estimate the marginal distributions 

of the additive components. The proposed model is then 

capable of being flexible, while retaining its interpretability 

characteristics. Then, the fuzzy controller, the fuzzy 

observer and the dither signal are simultaneously introduced 

to transfer the chaotic motions to the origin. Finally, we 

believe that the presented methodology is quite general and 

that it can be easily adapted beyond the fuzzy controller and 

the fuzzy observer. 
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