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1. Introduction 

 

Rapidly development of science and technology tends to 

new era of nanotechnology including engineering, 

chemical, medicine, electronics that will change the 

direction of our life. Nanobars, nanotubes, nanobeams and 

nanoplates are potential structural elements commonly used 

in nanotechnology. Especially, nanobeam structure is 

commonly used in many applications such as, atomic force 

microscope (Nagase et al. 2010), nanosensors (Joshi et al. 

2011, Hashemi and Khaniki 2018), nanoswitches (Khadem 

et al. 2012), nano-probes (Barretta et al. 2018), 

nanoactuators and energy harvesters (Baroudi et al. 2018), 

rotational motors, nanotweezers (Li et al. 2018), and NEMS 

(Emam et al. 2018). 

The size-dependent effects are often insignificant and 

neglected in macro-structures. However, many experimental 

works have been observed that nano/micro-scale structures 

have size dependent effects on their mechanical and 

physical properties. Accordingly, adopted non-classical 

continuum models such as micromorphic, micropolar, 

Cosserat, nonlocal, strain gradient and couple stress theories 

have been demonstrated to be reliable with atomic model at 

micro/nano-scale and include classical continuum 

mechanics at macroscale, Eltaher et al. (2014). The 

nonlocal continuum theory, that developed by Eringen 

(1972, 1983 and 2002), has gained much popularity among 
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the researchers, because of its competence and easiness.The 

nonlocal theory is extracted from the lattice dynamics and 

phonon dispersions of atomic theory. Chen et al. (2004) 

demonstrated that the nonlocal continuum theories can be 

physically inferred from the molecular dynamics’ 

perspective. The theory is proposed that the stress at a point 

in elastic continuum is a functional of strain field at every 

point in domain, Eltaher et al. (2016). Huang (2012) 

presented uniform nonlocal kernel model to study the 

influences of the nonlocal long-range interactions on the 

vibration of a nanorod. Eltaher et al. (2012, 2013a, b) 

inspected free vibration of both isotropic and functionally 

graded (FG) nanobeams by implemented differential form 

of nonlocal Eringen model and finite element method. A 

comprehensive review on the applicability of nonlocal 

nanobeam models in mechanical behaviors and responses is 

presented by Eltaher et al. (2016). Akbaş (2016) studied 

forced vibration of a simple supported viscoelastic modified 

couple stress nanobeam by finite element method. 

Apuzzo et al. (2017) presented stress-driven nonlocal 

integral model (SDM) to illustrate a vibrational behaviors of 

Bernoulli-Euler nanobeams. Shen et al. (2017) studied 

dynamics behaviors of silicon nanobeams with axial motion 

subjected to transverse and longitudinal loads considering 

nonlocal and surface effects. Kaghazian et al. (2017) 

studied free vibration of a piezoelectric nonlocal nanobeam 

by using based on Euler-Bernoulli beam theory. Mouffoki et 

al. (2017) presented effects of moisture and temperature on 

free vibration of FG nonlocal nanobeams resting on elastic 

foundation. Akbaş (2017a) exploited modified couple stress 

theory to study the free vibration of edge cracked of FG 

microscale beams. Eltaher et al. (2018a) presented a 

modified porosity model to investigate the static and 
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dynamic behaviors of FG nonlocal porous nanobeams. 

Belmahi et al. (2018) investigated the vibration of single 

walled carbon nanotubes (SWCNTs) embedded in a 

polymeric matrix using nonlocal elasticity theories with 

account arbitrary boundary conditions effects. Akbaş 

(2017b, 2018a, b) studied forced vibration of FG 

microbeam with and without cracks by using modified 

couple stress theory and finite element method. Emam et al. 

(2018) studied postbuckling and free vibration behaviors of 

multilayer imperfect nonlocal nanobeams under a pre-stress 

load. Akbaş (2018c) illustrated the edge cracke effect on 

static bending of cantilever FG nanobeam subjected to 

transversal point load. In framework of nonlocal strain 

gradient theory and the Euler-Bernoulli beam theory, 

Simsek (2019) studied mechanical behaviors and forced 

vibration of FG nanobeams and presented their closed-form 

solutions. Eltaher et al. (2019a, b) explored the 

postbuckling and free vibration of perfect and imperfect 

CNTs by using energy equivalent method. Arani et al. 

(2019) studied wave propagation of FG nano-beams based 

on the nonlocal elasticity theory considering surface and 

flexoelectric effects. Hamed et al. (2019) investigated 

mechanical bending behaviors and vibrations of FG porous 

nonlocal nanobeams by using finite element method. Akbaş 

(2019) presented axially forced vibration response of 

cracked nonlocal nanorod under harmonic external 

dynamically load. Eltaher et al. (2020b) studied the static 

buckling stability and mode-shapes of composite laminated 

beams under varying axial in-plane loads by using 

numerical differential quadrature method. 

Perforation and etching of holes are frequently used in 

fabrication procedure of MEMS and NEMS, Luschi and 

Pieri (2014). Performance and behaviors of perforated beam 

structure are totally different than the fully beam structure. 

Jeong and Amabili (2006) studied vibration behaviors of 

perforated simply supported beams in contact with an ideal 

liquid and observed that natural frequencies are gradually 

reduced with an increase of the hole size. Mohite et al. 

(2008) offered a comprehensive model of squeeze-film 

damping in perforated 3-D MEMS structures. The influence 

of perforations on thermos-elastic damping and anchor 

losses in bulk plate resonators has been studied by Shao and 

Palaniapan (2008), Tu and Lee (2012). Sharma and Grover 

(2011) derived closed form expressions for the transverse 

vibrations of a homogenous isotropic thermos-elastic thin 

beam with voids. Luschi and Pieri (2012) presented 

compact analytical expressions for the equivalent bending 

stiffness of Euler-Bernoulli beam in the filled and 

perforated sections and used this model to compute the 

resonance frequencies of the perforated beam. 

Luschi and Pieri (2014, 2016) developed closed 

expressions for the equivalent bending and shear stiffness of 

clamped–clamped beams with regular square perforations 

and determined their resonance frequencies. El-Sinawi et al. 

(2015) presented comprehensive approach to feedback 

control of membrane displacement in perforated RF-MEMS 

switches. Bourouina et al. (2016) investigated effects of 

thermal loads and nonlocal length scale on free vibration of 

simply-supported nanobeams perforated with periodic 

square holes. Zulkefli et al. (2018) investigated stresses of 

perforated graphene NEM contact switches by 3D finite 

element simulation. In case of simply-supported boundary 

condition, Eltaher et al. (2018b, c) studied bending, 

buckling and free vibration behaviors of perforated nonlocal 

nanobeams. Kerid et al. (2019) investigated the magnetic 

field, thermal loads and small scale effects on the dynamic 

behaviors of perforated nanobeams with periodic square 

networks. Abdalrahmaan et al. (2019) presented a unified 

mathematical model to investigate free and forced vibration 

responses of perforated thin and thick beams. Cortés et al. 

(2019) developed geometry simplification of open-cell 

porous materials for elastic deformation by using finite 

element analysis. Almitani et al. (2019) introduced a semi-

analytical model capable of investigating the dynamic 

performance of perforated beam structure under free and 

forced conditions. Eltaher et al. (2020a) investigated 

mechanical behaviors of piezoelectric nonlocal nanobeam 

with cutouts.  

 To the author’s awareness, vibration behaviors of 

perforated thin/thick nanobeams including a size scale 

effect with generalized boundary conditions have not been 

studied. Consequently, this manuscript aims to fill this gap 

in the literature and present closed form and numerical 

solution of the frequency equations in case of generalized 

boundary conditions. This article is organized as follows: 

Section 2 portrays geometrical adaptation of perforated 

nanobeams. Mathematical models of thin and thick of 

perforated nanobeams modelled by nonlocal differential 

form of Eringen are also presented in Section 2. A closed 

form solutions and frequency equations for perforated 

nonlocal nanobeam with generalized boundary conditions 

are derived and illustrated in Section 3. Section 4 is devoted 

to validate a proposed model and present effects of length 

scale parameter, number of perforated holes, perforation 

size, shear effects, and boundary conditions on natural 

frequencies of perforated beams in nanoscale. Main 

observations, investigations and conclusions are briefed in 

Section 5. 

 

 

2. Problem formulation 
 

2.1 Geometrical modification 
 

Perforated beam is generally fabricated by sacrificial 

etching through a pattern of holes. These holes are squared 

in shape arranged in grid pattern, that used commonly in 

MEMS and NEMS applications. Due to perforation process, 

a geometrical adaptation will be affected on mechanical and 

electrical behaviors of perforated structure. In perforated 

beam analysis, the modification in bending stiffness, shear 

stiffness, mass inertia, and rotary inertia parameters must be 

considered. So, the modified expressions for these 

parameters will be depicted in detail through the next 

paragraph. 

The geometry of perforated nanobeam is shown in Fig. 

1. As illustrated, the perforated beam has a length of L, 

width of w and thickness of h. A beam is perforated with a 

pattern of square holes, that has spatial period 𝑙𝑠 and side 

𝑙𝑠 − 𝑡𝑠, and a number of hole-rows N along the section. 
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The filling ratio which is defined as the ratio of material 

thickness between two holes to the period length, can be 

formulated as 
 

𝛼 =
𝑡𝑠
𝑙𝑠

          0 ≤ 𝛼 ≤ 1 (1) 

 

that means the beam is completely filled at filling ratio 𝛼 =
1 , partially filling when 0 ≤ 𝛼 ≤ 1 , and completely 

perforated at 𝛼 = 0. From engineering view, the normal 

stress will be abridged in the parts between holes, which 

will be under-stressed with respect to the full beam case, 

and will be over-stressed in the remaining parts. By 

assuming that the total stress along the cross section is the 

same for both complete beam and perforated one and 

assuming a linear continuous stress distribution in the filled 

segments. Under this hypothesis, the equivalent bending 

stiffness can be depicted by Abdalrahmaan et al. (2019) as 

 

(𝐸𝐼)𝑒𝑞 = 𝐸𝐼
𝛼(𝑁 + 1)(𝑁2 + 2𝑁 + 𝛼2)

(1 − 𝛼2 + 𝛼3)𝑁3 + 3𝛼𝑁2

+(3 + 2𝛼 − 3𝛼2 + 𝛼3)𝛼2𝑁 + 𝛼3

 
(2) 

 

Considering the shear effect of perforated nanobeam, 

the shear stiffness will be modified as Eltaher et al. (2018b) 

 

(𝐺𝐴)𝑒𝑞 = 𝐺𝐴
𝛼3(𝑁 + 1)

2𝑁
 (3) 

 

It is noted that from Eq. (3), the shear stiffness is 

dependent on both filling ratio and number of holes. But, 

the filling ratio is more pronounced on the shear stiffness 

than the number of holes. The mass of the perforated beam 

per unit length can be modified as Luschi and Pieri (2014) 

 

(𝜌𝐴)𝑒𝑞 = 𝜌𝐴
[1 − 𝑁(𝛼 − 2)]𝛼

𝑁 + 𝛼
 (4) 

 

The equivalent moment of inertia per unit length can be 

calculated by integrating over a strip of N square cells of 

length 𝑙𝑠, (Abdalrahmaan et al. 2019) 

 

(𝜌𝐼)𝑒𝑞 = 𝜌𝐼

𝛼 [
(2 − 𝛼)𝑁3 + 3𝑁2

−2(𝛼 − 3)(𝛼2 − 𝛼 + 1)𝑁 + 𝛼2 + 1
]

(𝑁 + 𝛼)3
 

(5) 

 

 

 

The equivalent moment of inertia per unit length can be 

calculated by integrating over a strip of N square cells of 

length 𝑙𝑠, (Abdalrahmaan et al. 2019). 

 

2.2 Nonlocal constitutive equations 
 

The basis of nonlocal elasticity assumed that the stress 

at a point is a functional of strain field at every point in 

body domain. The nonlocal constitutive equation can be 

depicted by Eltaher et al. (2016a, 2018a, b) 

 

𝜎𝑖𝑗(𝑥) = ∫𝛼(|𝑥′ − 𝑥|, 𝜏)tij(𝑥
′)d𝑥′

𝑉

 (6) 

 

in which tij(𝑥
′) are the macroscopic stress tensor at point 

𝑥  and 𝛼(|𝑥′ − 𝑥|, 𝜏)  is nonlocal modulus function that 

represents the effect of interatomic bonding. 𝜏 is a material 

length scale constant. The macroscopic stress tensor can be 

described as a function of material elasticity tensor (𝐶) 

and strain (𝜀) by generalized Hooke’s law as 

 

t(𝑥) = 𝐶(𝑥): 𝜀(𝑥) (7) 

 

In 1983, Eringen (1983) proved that when nonlocal 

modulus described by a Green’s function, the nonlocal 

constitutive relation can be reduced to the differential form 

as 
[1 − (𝑒0𝑎)2 ∇2]𝜎𝑖𝑗 = 𝑡𝑖𝑗 (8) 

 

where 𝑒0  is a constant to match the reliable results by 

experiments, 𝑎 is the internallength scale, and ∇2 is the 

Laplacian operator. For one-dimensional nonlocal-

nanobeam, nonlocal constitute relation (Eq. (18)) can be 

written as 

 

𝜎𝑥𝑥 − 𝜇
𝜕2𝜎𝑥𝑥

𝜕𝑥2
= 𝐸𝜀𝑥𝑥;      [𝜇 = (𝑒0𝑎)2] (9a) 

 

𝜎𝑥𝑧 − 𝜇
𝜕2𝜎𝑥𝑧

𝜕𝑥2
= 𝐺𝛾𝑥𝑧 (9b) 

 

2.3 Governing equations of perforated nanobeams 
 
2.3.1 Perforated Thin Nanobeam (PNEB) 
In case of thin beam, kinematics assumptions of Euler-

 

Fig. 1 A perforated beam with geometrical parameters 
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Bernoulli theory can be applied as follows 

 

𝑢(𝑥, 𝑧, 𝑡) = 𝑢0(𝑥, 𝑡) − 𝑧
𝜕𝑤0(𝑥, 𝑡)

𝜕𝑥
 (10a) 

 

𝑤(𝑥, 𝑧, 𝑡) = 𝑤0(𝑥, 𝑡) (10b) 

 

in which 𝑢  is the inplane and 𝑤  is the out of plane 

displacements at any generic point. 𝑢0  and 𝑤0  are 

displacements along the neutral axis. Since, the axial 

displacement along neutral axis is very small comparable 

with transverse displacement and rotation, so it can be 

neglected. The strain can be defined by 

 

𝜀𝑥𝑥 =
𝜕𝑢(𝑥, 𝑧, 𝑡)

𝜕𝑥
 

       =
𝜕𝑢0(𝑥, 𝑡)

𝜕𝑥
− 𝑧

𝜕2𝑤0(𝑥, 𝑡)

𝜕𝑥2
= 𝜀𝑥𝑥

0 + 𝑧𝑘0 

(11) 

 

So, equation of motion of thin beam can be depicted by, 

Eltaher et al. (2013a) 

 

𝜕𝑁𝑅

𝜕𝑥
+ 𝑓(𝑥, 𝑡) = 𝑚0

𝜕2𝑢

𝜕𝑡2
 (12a) 

 

𝜕2𝑀𝑅

𝜕𝑥2
+ 𝑞(𝑥, 𝑡) −

𝜕

𝜕𝑥
(𝑁𝑏

𝜕𝑤

𝜕𝑥
) 

= 𝑚0

𝜕2𝑤

𝜕𝑡2
− 𝑚2

𝜕4𝑤

𝜕𝑥2𝜕𝑡2
 

(12b) 

 

in which 𝑁𝑅 and 𝑀𝑅 are axial force and bending moment 

resultants. 𝑓 and 𝑞 are the axial and transverse vertical 

distributed loads. 𝑁𝑏 is the axial compressive force. The 

translated mass inertia and rotary inertia of perforated beam 

are described by 
 

𝑚0 = ∫𝜌𝑑𝐴
𝐴

= (𝜌𝐴)𝑒𝑞 (13a) 

 

𝑚2 = 𝜌
ℎ

𝑙𝑠
∫(𝑥2 + 𝑦2)𝑑𝑥
𝐴

𝑑𝑦 = (𝜌𝐼)𝑒𝑞 (13b) 

 

The axial force and bending moment resultants can be 

described as following 
 

𝑁𝑅 = ∫𝐸𝜀𝑥𝑥𝑑𝐴

𝐴

= (𝐸𝐴)𝑒𝑞

𝜕𝑢0

𝜕𝑥
 (14a) 

 

𝑀𝑅 = ∫𝑧𝐸𝜀𝑥𝑥𝑑𝐴

𝐴

= −(𝐸𝐼)𝑒𝑞

𝜕2𝑤

𝜕𝑥2
 (14b) 

 

where 𝐸 is the Young modulus and 𝐼 is the area moment 

of cross-section. By substituting Eq. (14) into Eq. (12), the 

equation of motion of thin beam in terms of displacements 

can be derived as 

 

(𝐸𝐴)𝑒𝑞

𝜕2𝑢0

𝜕𝑥2
+ 𝑓(𝑥, 𝑡) = 𝑚0

𝜕2𝑢0

𝜕𝑡2
 (15a) 

 

(𝐸𝐼)𝑒𝑞

𝜕4𝑤

𝜕𝑥4
+ 𝑞(𝑥, 𝑡) −

𝜕

𝜕𝑥
(𝑁𝑏

𝜕𝑤

𝜕𝑥
) 

= 𝑚0

𝜕2𝑤

𝜕𝑡2
− 𝑚2

𝜕4𝑤

𝜕𝑥2𝜕𝑡2
 

(15b) 

 

Based on the nonlocal constitutive relations Eq. (9), the 

nonlocal force and moment resultants can be derived as 

 

𝑁𝑅 − 𝜇
𝜕2𝑁

𝜕𝑥2
= (𝐸𝐴)𝑒𝑞

𝜕𝑢𝑜

𝜕𝑥
 (16a) 

 

𝑀𝑅 − 𝜇
𝜕2𝑀

𝜕𝑥2
= −(𝐸𝐼)𝑒𝑞

𝜕2𝑤𝑜

𝜕𝑥2
 (16b) 

 

that can be handle as follows 

 

𝑁𝑅 = (𝐸𝐴)𝑒𝑞

𝜕𝑢𝑜

𝜕𝑥
+ 𝜇 (𝑚0

𝜕3𝑢𝑜

𝜕𝑥 𝜕𝑡2
−

𝜕𝑓

𝜕𝑥
) (17a) 

 

𝑀𝑅 = −(𝐸𝐼)𝑒𝑞

𝜕2𝑤𝑜

𝜕𝑥2
 

            −𝜇 [𝑁𝑏

𝜕2𝑤𝑜

𝜕𝑥2
− 𝑞 + 𝑚0

𝜕2𝑤𝑜

 𝜕𝑡2
− 𝑚2

𝜕4𝑤

𝜕𝑥2𝜕𝑡2
] 

(17b) 

 

Substituting Eq. (16) into Eq. (12), results the following 

equations of motion as 

 

(𝐸𝐴)𝑒𝑞

𝜕2𝑢𝑜

𝜕𝑥2
+ [1 − 𝜇

𝜕2

𝜕𝑥2
]  𝑓 

= [1 − 𝜇
𝜕2

𝜕𝑥2
]𝑚0

𝜕2𝑢𝑜

 𝜕𝑡2
 

(18a) 

 

−(𝐸𝐼)𝑒𝑞

𝜕4𝑤𝑜

𝜕𝑥4
+ [1 − 𝜇

𝜕2

𝜕𝑥2
] [𝑞 − 𝑁𝑏

𝜕2𝑤𝑜

𝜕𝑥2
] 

= [1 − 𝜇
𝜕2

𝜕𝑥2
] [𝑚0

𝜕2𝑤𝑜

 𝜕𝑡2
− 𝑚2

𝜕4𝑤𝑜

𝜕𝑥2𝜕𝑡2
] 

(18b) 

 

According to the following nonlocal natural boundary 

conditions at the beam boundaries 𝑥 = 0, 𝐿 

 

�̅� − (𝐸𝐴)𝑒𝑞

𝜕𝑢𝑜

𝜕𝑥
− 𝜇 (𝑚0

𝜕3𝑢𝑜

𝜕𝑥 𝜕𝑡2
−

𝜕𝑓

𝜕𝑥
) = 0 (19a) 

 

�̅� + (𝐸𝐼)𝑒𝑞

𝜕2𝑤𝑜

𝜕𝑥2
− 𝜇 [𝑁𝑏

𝜕2𝑤𝑜

𝜕𝑥2
− 𝑞 

+𝑚0

𝜕2𝑤𝑜

 𝜕𝑡2
− 𝑚2

𝜕4𝑤𝑜

𝜕𝑥2𝜕𝑡2
] = 0 

(19b) 

 

�̅� + (𝐸𝐴)𝑒𝑞

𝜕3𝑤𝑜

𝜕𝑥3
− 𝜇 [𝑁𝑏

𝜕3𝑤𝑜

𝜕𝑥3
−

𝜕𝑞

𝜕𝑥
 

+𝑚0

𝜕3𝑤𝑜

𝜕𝑥 𝜕𝑡2
− 𝑚2

𝜕5𝑤𝑜

𝜕𝑥3𝜕𝑡2
] − 𝑚2

𝜕3𝑤𝑜

𝜕𝑥𝜕𝑡2
= 0 

(19c) 

 

where �̅�, �̅� and �̅� represented the generalized forces. 
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2.3.2 Perforated Thick Nanobeam (PNTB) 
As the thickness to length of the beam reduces to less 

than 20, the shear effect should be considered and 

kinematics assumptions of Timoshenko beam theory can be 

applied as following 

 

𝑢(𝑥, 𝑧, 𝑡) = 𝑢0(𝑥, 𝑡) + 𝑧𝜙(𝑥, 𝑡) (20a) 

 

𝑤(𝑥, 𝑧, 𝑡) = 𝑤0(𝑥, 𝑡) (20b) 

 

in which 𝜙 is the rotation of the cross section. Based on 

Eq. (20), the nonzero strains are 

 

𝜀𝑥𝑥 =
𝜕𝑢(𝑥, 𝑧, 𝑡)

𝜕𝑥
=

𝜕𝑢0(𝑥, 𝑡)

𝜕𝑥
+ 𝑧

𝜕𝜙(𝑥, 𝑡)

𝜕𝑥
 (21a) 

 

𝜀𝑥𝑧 =
1

2
[
𝜕𝑢(𝑥, 𝑧, 𝑡)

𝜕𝑧
+

𝜕𝑤(𝑥, 𝑧, 𝑡)

𝜕𝑥
] 

       =
1

2
[𝜙(𝑥, 𝑡) +

𝜕𝑤0(𝑥, 𝑡)

𝜕𝑥
] =

1

2
𝛾𝑥𝑧 

(21b) 

 

According to Eq. (21b), the shear is constant through the 

beam thickness, which is impractical. To compensate the 

error due to constant shear, the shear correction factor is 

proposed. The governing equations of Timoshenko beam 

can be represented by 

 

𝜕𝑁

𝜕𝑥
+ 𝑓(𝑥, 𝑡) = 𝑚0

𝜕2𝑢0

𝜕𝑡2
 (22a) 

 

𝜕𝑄

𝜕𝑥
+ 𝑞(𝑥, 𝑡) −

𝜕

𝜕𝑥
(𝑁𝑏

𝜕𝑤0

𝜕𝑥
) = 𝑚0

𝜕2𝑤0

𝜕𝑡2
 (22b) 

 

𝜕𝑀

𝜕𝑥
− Q = 𝑚2

𝜕2𝜙

𝜕𝑡2
 (22c) 

 

where 𝑄  is the shear force resultant, which can be 

calculated by 

 

𝑄 = 𝑘𝑠 ∫𝜎𝑥𝑧 𝑑𝐴
𝐴

= 𝑘𝑠𝐺𝐴𝛾𝑥𝑧 

    = 𝑘𝑠𝐺𝐴 [𝜙(𝑥, 𝑡) +
𝜕𝑤0(𝑥, 𝑡)

𝜕𝑥
] 

(23) 

 

in which 𝑘𝑠  is a shear correction factor, 𝐺  is a shear 

modulus. Equations of motion can be prescribed in terms of 

displacement field by 

 

(𝐸𝐴)𝑒𝑞

𝜕2𝑢0

𝜕𝑥2
+ 𝑓(𝑥, 𝑡) = 𝑚0

𝜕2𝑢0

𝜕𝑡2
 (24a) 

 

𝑘𝑠(𝐺𝐴)𝑒𝑞 [
𝜕𝜙

𝜕𝑥
+

𝜕2𝑤0

𝜕𝑥2
] + 𝑞(𝑥, 𝑡) −

𝜕

𝜕𝑥
(𝑁𝑏

𝜕𝑤0

𝜕𝑥
) 

= 𝑚0

𝜕2𝑤0

𝜕𝑡2
 

(24b) 

 

(𝐸𝐼)𝑒𝑞

𝜕2𝜙

𝜕𝑥2
− 𝑘𝑠(𝐺𝐴)𝑒𝑞 [𝜙(𝑥, 𝑡) +

𝜕𝑤0

𝜕𝑥
] = 𝑚2

𝜕2𝜙

𝜕𝑡2
 (24c) 

In case of nonlocal perforated thick nanobeam, the 

nonlocal resultant forces of Timoshenko beam can be 

deduced by handling Eq. (9) and Eq. (21) as 
 

𝑁 − 𝜇
𝜕2𝑁

𝜕𝑥2
= (𝐸𝐴)𝑒𝑞

𝜕𝑢𝑜

𝜕𝑥
 (25a) 

 

𝑀 − 𝜇
𝜕2𝑀

𝜕𝑥2
= (𝐸𝐼)𝑒𝑞

𝜕𝜙

𝜕𝑥
 (25b) 

 

𝑄 − 𝜇
𝜕2𝑄

𝜕𝑥2
= (𝐺𝐴)𝑒𝑞𝑘𝑠𝛾𝑥𝑧 = (𝐺𝐴)𝑒𝑞𝑘𝑠 [𝜙 +

𝜕𝑤0

𝜕𝑥
] (25c) 

 

which can be represented in terms of displacements as 
 

𝑁 = (𝐸𝐴)𝑒𝑞

𝜕𝑢𝑜

𝜕𝑥
+ 𝜇 [𝑚0

𝜕3𝑢0

𝜕𝑥 𝜕𝑡2
−

𝜕𝑓

𝜕𝑥
] (26a) 

 

𝑀 = (𝐸𝐼)𝑒𝑞

𝜕𝜙

𝜕𝑥
+ 𝜇 [𝑁𝑏

𝜕2𝑤𝑜

𝜕𝑥2
− 𝑞 + 𝑚0

𝜕2𝑤𝑜

 𝜕𝑡2

− 𝑚2

𝜕3𝜙

𝜕𝑥𝜕𝑡2
] 

(26b) 

 

𝑄 = (𝐺𝐴)𝑒𝑞𝑘𝑠 [𝜙 +
𝜕𝑤0

𝜕𝑥
] 

+𝜇 [𝑁𝑏

𝜕3𝑤𝑜

𝜕𝑥3
−

𝜕𝑞

𝜕𝑥
+ 𝑚0

𝜕3𝑤𝑜

 𝜕𝑥 𝜕𝑡2
] 

(26c) 

 

Hence, equations of motion of PNTB in terms of 

displacements can be represented 
 

(𝐸𝐴)𝑒𝑞

𝜕2𝑢𝑜

𝜕𝑥2
+ [1 − 𝜇

𝜕2

𝜕𝑥2
]  𝑓 

= [1 − 𝜇
𝜕2

𝜕𝑥2
]𝑚0

𝜕2𝑢𝑜

 𝜕𝑡2
 

(27a) 

 

(𝐺𝐴)𝑒𝑞𝑘𝑠 [
𝜕𝜙

𝜕𝑥
+

𝜕2𝑤0

𝜕𝑥2
] 

+[1 − 𝜇
𝜕2

𝜕𝑥2
] [𝑞(𝑥, 𝑡) − 𝑁𝑏

𝜕2𝑤0

𝜕𝑥2
] 

= [1 − 𝜇
𝜕2

𝜕𝑥2
]𝑚0

𝜕2𝑤0

𝜕𝑡2
 

(27b) 

 

(𝐸𝐼)𝑒𝑞

𝜕2𝜙

𝜕𝑥2
− (𝐺𝐴)𝑒𝑞𝑘𝑠 [𝜙 +

𝜕𝑤0

𝜕𝑥
] 

= [1 − 𝜇
𝜕2

𝜕𝑥2
]𝑚2

𝜕2𝜙

𝜕𝑡2
 

(27c) 

 

and their boundary conditions at the beam boundaries are 
 

�̅� − {(𝐸𝐴)𝑒𝑞

𝜕𝑢𝑜

𝜕𝑥
+ 𝜇 [𝑚0

𝜕3𝑢0

𝜕𝑥 𝜕𝑡2
−

𝜕𝑓

𝜕𝑥
]} = 0 (28a) 

 

�̅� − {(𝐸𝐼)𝑒𝑞

𝜕𝜙

𝜕𝑥
+ 𝜇 [𝑁𝑏

𝜕2𝑤𝑜

𝜕𝑥2
− 𝑞 

+𝑚0

𝜕2𝑤𝑜

 𝜕𝑡2
+ 𝑚2

𝜕3𝜙

𝜕𝑥𝜕𝑡2
]} = 0 

(28b) 
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�̅� − {(𝐺𝐴)𝑒𝑞𝑘𝑠 [𝜙 +
𝜕𝑤0

𝜕𝑥
] − 𝑁𝑏

𝜕𝑤𝑜

𝜕𝑥
 

+𝜇 [𝑁𝑏

𝜕3𝑤𝑜

𝜕𝑥3
−

𝜕𝑞

𝜕𝑥
+ 𝑚0

𝜕3𝑤𝑜

 𝜕𝑥 𝜕𝑡2
]} = 0 

(28c) 

 

 

3. Analytical solution 
 

The natural frequencies and vibrational behavior of 

perforated nanobeam are solved analytically be separation 

of variable method. By setting the applied forces 𝑓 and 𝑞 

to zero, and assuming the nanobeam under constant axial 

compressive load 𝑁𝑏 = 𝑐𝑜𝑛𝑠𝑡. Since, the most significant 

frequencies of beam are the out of plane frequencies 

(transversal vibration), so that, the in-plane frequencies can 

be neglected with respect to out of plane frequencies. 

 

3.1 Frequency equations of PNEB 
 

In case of free vibration, it can be assumed that periodic 

solutions of motion equation (Eq. (18b) have the form 

𝑤0(𝑥, 𝑡) = 𝑊0(𝑥)𝑒(𝑖𝜔𝑡) , in which 𝑊0(𝑥)  is the spatial 

mode shape (eignvector) and 𝜔 is the natural frequency 

(eignvalue) of vibration. By substituting of periodic 

functions into Eq. (18b), obtains 

 

     [−(𝐸𝐼)𝑒𝑞

𝜕4

𝜕𝑥4
(𝑊0(𝑥)𝑒(𝑖𝜔𝑡))] 

     − [1 − 𝜇
𝜕2

𝜕𝑥2
] [𝑁𝑏

𝜕2

𝜕𝑥2
(𝑊0(𝑥)𝑒(𝑖𝜔𝑡))] 

= [1 − 𝜇
𝜕2

𝜕𝑥2
] [𝑚0

𝜕2

 𝜕𝑡2
(𝑊0(𝑥)𝑒(𝑖𝜔𝑡)) 

     −𝑚2

𝜕4

𝜕𝑥2𝜕𝑡2
(𝑊0(𝑥)𝑒(𝑖𝜔𝑡))] 

(29a) 

 

Eq. (28a) can be simplified to 

 

𝐴 𝑊0
𝐼𝑉 + 𝐵 𝑊0

′′ − 𝐶 𝑊0(𝑥) = 0 (29b) 

 

in which contact parameters are A = [(𝐸𝐼)𝑒𝑞 − 𝜇𝑁𝑏 −

𝜇 𝜔2𝑚2], B = [𝑁𝑏 + 𝜔2𝑚2 + 𝜇 𝜔2𝑚0], and C = 𝜔2𝑚0. 

The general solution of Eq. (28) can be described as 

 

𝑊0(𝑥) = 𝑐1𝑠𝑖𝑛(𝛼𝑥) + 𝑐2 𝑐𝑜𝑠(𝛼𝑥) 
                 +𝑐3𝑠𝑖𝑛ℎ(𝛽𝑥) + 𝑐4 𝑐𝑜𝑠ℎ(𝛽𝑥) 

(30) 

 

where, 𝛼2 =
1

2𝐴
(𝐵 + √𝐵2 + 4𝐴𝐶)  and 𝛽2 =

1

2𝐴
(−𝐵 +

√𝐵2 + 4𝐴𝐶). 

The slope can be computed by using Eq. (29a) 

 
𝑑𝑊0

𝑑𝑥
(𝑥) = 𝛼(𝑐1𝑐𝑜𝑠(𝛼𝑥) − 𝑐2 𝑠𝑖𝑛(𝛼𝑥) 

                     +𝛽(𝑐3𝑐𝑜𝑠ℎ(𝛽𝑥) + 𝑐4 𝑠𝑖𝑛ℎ(𝛽𝑥)) 

(31) 

 

By substituting periodic solution into Eqs. (19b) and 

(19c), the stress resultants can be calculated b 

 

𝑀 = [−𝐴𝑊0
′′ − 𝜇𝐶𝑊0]𝑒

(𝑖𝜔𝑡), (32) 

 

𝑉 = [−𝐴1𝑊0
′′ − 𝐵1𝑊0

′]𝑒(𝑖𝜔𝑡) (33) 

 

where, A1 = [(𝐸𝐴)𝑒𝑞 − 𝜇𝑁𝑏 − 𝜇 𝜔2𝑚2]  and B1 = 

[𝜔2𝑚2 + 𝜇 𝜔2𝑚0]. 
 

3.1.1 Simply supported BCs 
The simply supported boundary conditions at the beam 

boundaries 𝑥 = 0, 𝐿 are specified by 𝑊0 = 0 and 𝑀 = 0 

(Eq. (31)). Since, the nonlocal bending moment is 

dependent on both displacement and curvature. By applying 

the following conditions:- 𝑊0(𝑥 = 0) = 𝑊0
′′(𝑥 = 0) = 0 

and 𝑊0(𝑥 = 𝐿) = 𝑊0
′′(𝑥 = 𝐿) = 0, to the general solution 

of Eq. (29), results in 𝑐2 = 𝑐4 = 0, and 

 

𝑐1𝑠𝑖𝑛(𝛼 𝐿) + 𝑐3𝑠𝑖𝑛ℎ(𝛽𝐿) = 0 (34a) 

 

𝑐1[𝐴𝛼2 − 𝐶𝜇]𝑠𝑖𝑛(𝛼1𝐿) 
−𝑐3[𝐴𝛽2 + 𝐶𝜇]𝑠𝑖𝑛ℎ(𝛽𝐿) = 0 

(34b) 

 

By solving the two equations of (31) simultaneously, 

yields 𝑠𝑖𝑛(𝛼 𝐿) = 0   or  𝛼𝑛 =
𝑛𝜋

𝐿
 , hence the closed 

form solution of natural frequencies can be determined by 

 

𝜔𝑛 = (
𝑛𝜋

𝐿
)√

(𝐸𝐼)𝑒𝑞(𝑛𝜋 𝐿⁄ )2 − [1 − 𝜇(𝑛𝜋 𝐿⁄ )2]𝑁𝑏

[𝑚0 + 𝑚2(𝑛𝜋 𝐿⁄ )2][1 + 𝜇(𝑛𝜋 𝐿⁄ )2]
 (35) 

 

3.1.2 Clamped BCs 
In this case, the boundary condition at the beam 

boundaries 𝑥 = 0, 𝐿 are 

 

𝑊0 = 0,          𝑊0
′ =

𝑑𝑤

𝑑𝑥
= 0. (36) 

 

By applying these boundary conditions to Eqs. (29) and 

(30), then eliminating the coefficients 𝑐3 and 𝑐4, yields in 

the following equations 

 

[
𝑠𝑖𝑛(𝛼 𝐿) −

𝛼

𝛽
𝑠𝑖𝑛ℎ(𝛽𝐿) 𝑐𝑜𝑠(𝛼 𝐿) − 𝑐𝑜𝑠ℎ(𝛽𝐿)

𝛼𝑐𝑜𝑠(𝛼 𝐿) − 𝛼𝑐𝑜𝑠ℎ(𝛽𝐿) −(𝛼𝑠𝑖𝑛(𝛼 𝐿) + 𝛽𝑠𝑖𝑛ℎ(𝛽𝐿))
] {

𝑐1

𝑐2
} = {0} (37) 

 

For nonzero deflection  𝑊0 , the determinant of the 

coefficient matrix of the above equations must to be zero 

 
|𝐾| =  2 × 𝛼 × 𝛽 − 𝛼2 × 𝑠𝑖𝑛(𝛼 𝐿) × 𝑠𝑖𝑛ℎ(𝛽𝐿) 
            + 𝛽2 × 𝑠𝑖𝑛(𝛼 𝐿) × 𝑠𝑖𝑛ℎ(𝛽𝐿) 
            −2 × 𝛼 × 𝛽 × 𝑐𝑜𝑠(𝛼 𝐿) × 𝑐𝑜𝑠ℎ(𝛽𝐿) = 0 

(38) 

 

with 𝛼 and 𝛽 from in the above determinant and solve it 

numerically to get the natural frequency 𝜔. 

 

3.1.3 Cantilever BCs 
For this case, boundary conditions are 

 

      at     𝑥 = 0;     𝑊0 = 0,     
𝑑𝑤

𝑑𝑥
= 0 

&   at     𝑥 = 𝐿;      𝑀 = 𝑉 = 0 

(39) 
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Vibration of nonlocal perforated nanobeams with general boundary conditions 

Substitute with these conditions into Eq. (29), leads to 

the following equations 
 

 

Where 
 

𝐷1 = 𝐴1𝛼2𝑠𝑖𝑛(𝛼 𝐿) − 𝐵𝜇𝛼 cos(𝛼 𝐿) , 
𝐷2 = −[𝐴1𝛼2𝑐𝑜𝑠(𝛼 𝐿) + 𝐵𝜇𝛼 sin(𝛼 𝐿)], 
𝐷3 = −[𝐴1𝛽2𝑠𝑖𝑛ℎ(𝛽 𝐿) + 𝐵𝜇 𝛽𝑐𝑜𝑠ℎ(𝛽 𝐿)], 
𝐷4 = −[𝐴1𝛽2𝑐𝑜𝑠ℎ(𝛽 𝐿) + 𝐵𝜇 𝛽𝑠𝑖𝑛ℎ(𝛽 𝐿)]. 

 

For nonzero deflection 𝑊0, setting the determinant of 

the coefficient matrix of the above equations to zero, yields 

 
|𝐾| = 𝐴 × 𝐵 × 𝜇 × 𝛼 × 𝛽3 − 𝐴 × 𝐵 × 𝜇 × 𝛼3 × 𝛽 
           +2 × 𝐵 × 𝐶 × 𝜇2 × 𝛼 × 𝛽 
           −𝐴1 × 𝐶 × 𝜇 × 𝛼3 × 𝑐𝑜𝑠(𝛼 𝐿) 𝑠𝑖𝑛ℎ(𝛽𝐿) 
           +𝐴1 × 𝐶 × 𝜇 × 𝛽3 × 𝑐𝑜𝑠ℎ(𝛽𝐿) 𝑠𝑖𝑛(𝛼 𝐿) 
           −𝐵 × 𝐶 × 𝜇2 × 𝛼2𝑠𝑖𝑛(𝛼 𝐿) 𝑠𝑖𝑛ℎ(𝛽𝐿) 
           +𝐵 × 𝐶 × 𝜇2 × 𝛽2𝑠𝑖𝑛(𝛼 𝐿) 𝑠𝑖𝑛ℎ(𝛽𝐿) 
           −2𝐴 × 𝐵 × 𝜇 × 𝛼2 × 𝛽2 × 𝑠𝑖𝑛(𝛼 𝐿) 𝑠𝑖𝑛ℎ(𝛽𝐿) 
           −𝐴 × 𝐵 × 𝜇 × 𝛼 × 𝛽3𝑐𝑜𝑠(𝛼 𝐿) 𝑐𝑜𝑠ℎ(𝛽𝐿) 
           +𝐴 × 𝐵 × 𝜇 × 𝛼3 × 𝛽𝑐𝑜𝑠(𝛼 𝐿) 𝑐𝑜𝑠ℎ(𝛽𝐿) 
           −2𝐵 × 𝐶 × 𝜇2 × 𝛼 × 𝛽𝑐𝑜𝑠(𝛼 𝐿) 𝑐𝑜𝑠ℎ(𝛽𝐿) 
           −𝐴1 × 𝐶 × 𝜇 × 𝛼 × 𝛽2𝑐𝑜𝑠(𝛼 𝐿) 𝑠𝑖𝑛ℎ(𝛽𝐿) 
           +𝐴1 × 𝐶 × 𝜇 × 𝛼2 × 𝛽𝑠𝑖𝑛(𝛼 𝐿) 𝑐𝑜𝑠ℎ(𝛽𝐿) = 0 

(41) 

 

By substituting 𝛼 and 𝛽 in the above determinant, and 

solving it numerically to get the natural frequency 𝜔. 

 

3.1.4 Propped BCs 
The boundary condition in the case of propped beam are 

 

      at     𝑥 = 0;     𝑊0 = 0,     
𝑑𝑤

𝑑𝑥
= 0 

&   at     𝑥 = 𝐿;     𝑊0 = 𝑀 = 0. 
(42) 

 

Substitute with these conditions to Eq. (29), leads to the 

following relations 

 

 

By setting the determinant of the coefficient matrix of 

the above equations to zero, yields in 

 
|𝐾| =  𝐴(𝛼2 + 𝛽2) 

             × (𝛼𝑐𝑜𝑠(𝛼𝐿)𝑠𝑖𝑛ℎ(𝛽𝐿) − 𝛽𝑠𝑖𝑛(𝛼𝐿)𝑐𝑜𝑠ℎ(𝛽𝐿)) = 0 

Since   𝐴(𝛼2 + 𝛽2) ≠ 0,     so: 

             (𝛼𝑐𝑜𝑠(𝛼𝐿)𝑠𝑖𝑛ℎ(𝛽𝐿) − 𝛽𝑠𝑖𝑛(𝛼𝐿)𝑐𝑜𝑠ℎ(𝛽𝐿)) = 0 

and,     𝛼 × 𝑡𝑎𝑛ℎ(𝛽𝐿) = 𝛽 × 𝑡𝑎𝑛(𝛼𝐿). 
 

Substitute with 𝛼 and 𝛽  into Eq. (41) and solve it 

numerically to get the natural frequency 𝜔. 

 

 

 

3.2 Frequency equations of PNTB 
 

In case of thick nanobeam, assuming periodic solutions 

for both deflection [𝑤0(𝑥, 𝑡) = 𝑊0(𝑥)𝑒(𝑖𝜔𝑡)] and rotation 

[𝜙(𝑥, 𝑡) = Φ(𝑥)𝑒(𝑖𝜔𝑡)]. By substituting these assumptions 

into equations of motion of NTB (Eqs. (26b) and (26c), 

results 
 

𝑁𝑏

(𝑮𝑨)𝒆𝒒𝑘𝑠
𝜇𝑊0

𝐼𝑉 + [1 −
𝑁𝑏

(𝑮𝑨)𝒆𝒒𝑘𝑠
−

𝜇𝜔2𝑚0

𝐺𝐴𝑘𝑠
]𝑊0

′′ 

+
𝜔2𝑚0

(𝑮𝑨)𝒆𝒒𝑘𝑠
𝑊0 + Φ′′ = 0 

(44a) 

 

[(𝐸𝐼)𝑒𝑞 − 𝜇𝜔2𝑚2]Φ
′′ 

+[𝜇𝜔2𝑚2 − (𝐺𝐴)𝑒𝑞𝑘𝑠]Φ−(𝐺𝐴)𝑒𝑞𝑘𝑠𝑊0
′ = 0 

(44b) 

 

By manipulating Eqs. (42a) and (42b), the transverse 

displacement variable can be represented by 

 

[((𝐸𝐼)𝑒𝑞 − 𝜇𝜔2𝑚2)
𝜇𝑁𝑏

𝐺𝐴𝑘𝑠

]𝑊0
𝑉𝐼 

+[((𝐸𝐼)𝑒𝑞 − 𝜇𝜔2𝑚2) (1 −
𝑁𝑏

(𝐺𝐴)𝑒𝑞𝑘𝑠
−

𝜇𝜔2𝑚0

(𝐺𝐴)𝑒𝑞𝑘𝑠
) 

+
𝜇𝑁𝑏

(𝐺𝐴)𝑒𝑞𝑘𝑠
(𝜔2𝑚2 − (𝐺𝐴)𝑒𝑞𝑘𝑠)]𝑊0

𝐼𝑉 

+[(𝜔2𝑚2 − (𝐺𝐴)𝑒𝑞𝑘𝑠) (1 −
𝑁𝑏

(𝐺𝐴)𝑒𝑞𝑘𝑠
−

𝜇𝜔2𝑚0

(𝐺𝐴)𝑒𝑞𝑘𝑠
) 

+
𝜔2𝑚0

(𝐺𝐴)𝑒𝑞𝑘𝑠
((𝐸𝐼)𝑒𝑞 − 𝜇𝜔2𝑚2)]𝑊0

′′ 

+
𝜔2𝑚0

(𝐺𝐴)𝑒𝑞𝑘𝑠
(𝜔2𝑚2 − (𝐺𝐴)𝑒𝑞𝑘𝑠)𝑊0 = 0 

(45) 

 

 

It is observed that, the six-order differential term is 

dependent on the axial force 𝑁𝑏. By neglecting the effect of 

the axial load, Eq. (43) can be reduced to 

 

𝐴𝑇 𝑊0
𝐼𝑉 + 𝐵𝑇 𝑊0

′′ − 𝐶𝑇  𝑊0 = 0 (46) 
 

in which 
 

𝐴𝑇 = [((𝐸𝐼)𝑒𝑞 − 𝜇𝜔2𝑚2) (1 −
𝜇𝜔2𝑚0

𝐺𝐴𝑘𝑠
)] (47a) 

 

[

0 1 0 1
𝛼 0 𝛽 0

(𝐴𝛼2 − 𝐶𝜇)𝑠𝑖𝑛(𝛼 𝐿) (𝐴𝛼2 − 𝐶𝜇)𝑐𝑜𝑠(𝛼 𝐿) −(𝐴𝛽2 − 𝐶𝜇)𝑠𝑖𝑛ℎ(𝛽𝐿) −(𝐶𝜇 − 𝐴𝛽2)𝑐𝑜𝑠ℎ(𝛽𝐿)

𝐷1 𝐷2 𝐷3 𝐷4

]{

𝑐1

𝑐2

𝑐3

𝑐4

} = {0} (40) 

[

0 1 0 1
𝛼 0 𝛽 0

𝑠𝑖𝑛(𝛼 𝐿) 𝑐𝑜𝑠(𝛼 𝐿) 𝑠𝑖𝑛ℎ(𝛽𝐿) 𝑐𝑜𝑠ℎ(𝛽𝐿)

(𝐴𝛼2 − 𝐶𝜇)𝑠𝑖𝑛(𝛼𝐿) (𝐴𝛼2 − 𝐶𝜇)𝑐𝑜𝑠(𝛼 𝐿) −(𝐴𝛽2 + 𝐶𝜇)𝑠𝑖𝑛ℎ(𝛽𝐿) −(𝐴𝛽2 + 𝐶𝜇)𝑐𝑜𝑠ℎ(𝛽𝐿)

] {

𝑐1

𝑐2

𝑐3

𝑐4

} = {0} (43) 
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𝐵𝑇 = [𝜔2𝑚0 (
(𝐸𝐼)𝑒𝑞

(𝐺𝐴)𝑒𝑞𝑘𝑠
+ 𝜇) 

          +𝜔2𝑚2 (1 − 2
𝜇𝜔2𝑚0

(𝐺𝐴)𝑒𝑞𝑘𝑠
)] 

(47b) 

 

𝐶𝑇 = 𝜔2𝑚0 (1 −
𝜔2𝑚2

(𝐺𝐴)𝑒𝑞𝑘𝑠
) (47c) 

 

The general solution of Eq. (44) can be presented by 

 

𝑊0(𝑥) = 𝑐1𝑠𝑖𝑛(𝛼𝑇𝑥) + 𝑐2 𝑐𝑜𝑠(𝛼𝑇𝑥) 
                 +𝑐3𝑠𝑖𝑛ℎ(𝛽𝑇𝑥) + 𝑐4 𝑐𝑜𝑠ℎ(𝛽𝑇𝑥) 

(48) 

 

where, 𝛼𝑇
2 =

1

2𝐴𝑇
(𝐵𝑇 + √𝐵𝑇

2 + 4𝐴𝑇𝐶)         and    

𝛽𝑇
2 =

1

2𝐴𝑇
(−𝐵𝑇 + √𝐵𝑇

2 + 4𝐴𝑇𝐶). 

In case of q = 0 and 𝑁𝑏 = 0, the rotation variable 𝜙 

can be computed by 
 

𝜙 = 𝑆11

𝜕3𝑊

𝜕𝑥3
+ 𝑆22

𝜕𝑊

𝜕𝑥
 (49) 

 

where 
 

𝑆11 = [
−(𝑬𝑰)𝒆𝒒 + 𝜇𝜔2𝑚2

(𝑮𝑨)𝒆𝒒𝑘𝑠 − 𝜔2𝑚2
] [1 −

𝜇𝜔2𝑚0

(𝑮𝑨)𝒆𝒒𝑘𝑠
] (50a) 

 

𝑆22 = [
−(𝑮𝑨)𝒆𝒒𝑘𝑠

(𝑮𝑨)𝒆𝒒𝑘𝑠 − 𝜔2𝑚2
] 

            [1 −
𝜔2𝑚0(𝜇𝜔2𝑚2 − (𝑬𝑰)𝒆𝒒)

((𝑮𝑨)𝒆𝒒𝑘𝑠)
2

] 

(50b) 

 

And, stress resultants can be computed by 
 

𝑀 = −[𝐸𝐼 − 𝜇𝜔2𝑚2] (1 −
𝜇 𝜔2𝑚𝑜

𝐺𝐴𝑘𝑠
)

𝑑2𝑊

𝑑𝑥2
 

     = −𝐴
𝑑2𝑊

𝑑𝑥2
 

(51) 

 

𝑉 = (𝐺𝐴)𝑒𝑞𝑘𝑠𝑆11

𝜕3𝑊

𝜕𝑥3
 

        +[(𝐺𝐴)𝑒𝑞𝑘𝑠𝑆22 + (𝐺𝐴)𝑒𝑞𝑘𝑠 − 𝜇 𝜔2𝑚𝑜]
𝜕𝑊

𝜕𝑥
 

(52) 

 

3.2.1 Simply supported BCs 
In case of simply supported beam, applying the 

boundary conditions 𝑊0 = 0  and 𝑀 = 0  at the beam 

boundaries 𝑥 = 0, 𝐿, the frequency equation of NTB can be 

presented by 
 

𝜔𝑛 = (
𝑛𝜋

𝐿
)
2

√

(𝐸𝐼)𝑒𝑞

{[[1 + (
𝑛𝜋

𝐿
)
2
Κ𝑠]𝑚0 +  (

𝑛𝜋

𝐿
)
2
𝑚2] [1 + (

𝑛𝜋

𝐿
)
2
𝜇]}

 

where    Κ𝑠 =
(𝐸𝐼)𝑒𝑞

(𝐺𝐴)𝑒𝑞
 

in which Κ𝑠 is the influence of shear deformation on the 

natural frequency. The condition Κ𝑠 = 0 corresponds to 

the absence of the shear effect. 

 

3.2.2 Clamped BCs 
The boundary condition for clamped beam at the 

boundaries 𝑥 = 0, 𝐿  are  𝑊0 = 0 , and  𝜙 = 0 . By 

applying these boundary conditions in Eqs. (46) and (47) 

then eliminating the coefficients 𝑐3  and 𝑐4 , yields the 

following equations 

 

[
𝐷1 𝐷2
𝐷3 𝐷4

] {
𝑐1

𝑐2
} = {0} (53) 

 

where 
 

𝐷1 = 𝑠𝑖𝑛(𝛼𝑇 𝐿) −
(−𝛼𝑇

3𝑆11 + 𝛼𝑇𝑆22)

(𝛽𝑇
3𝑆11 + 𝛽𝑇𝑆22)

𝑠𝑖𝑛ℎ(𝛽𝑇𝐿) 

𝐷2 = 𝑐𝑜𝑠(𝛼𝑇𝐿) − 𝑐𝑜𝑠ℎ(𝛽𝑇𝐿) 
𝐷3 = (−𝛼𝑇

3𝑆11 + 𝛼𝑇𝑆22)𝑐𝑜𝑠(𝛼𝑇  𝐿) 

           −
(−𝛼3𝑆11 + 𝛼𝑇𝑆22)

(𝛽𝑇
3𝑆11 + 𝛽𝑇𝑆22)

 

           × (𝛽𝑇
3𝑆11 + 𝛽𝑇𝑆22)𝑐𝑜𝑠ℎ(𝛽𝑇𝐿)) 

𝐷4 = −((−𝛼𝑇
3𝑆11 + 𝛼𝑇𝑆22)𝑠𝑖𝑛(𝛼𝑇 𝐿) 

           +(𝛽𝑇
3𝑆11 + 𝛽𝑇𝑆22)𝑠𝑖𝑛ℎ(𝛽𝑇𝐿)) 

 

For nonzero deflection 𝑊0 , the determinant of the 

coefficient matrix of the above equations must to be zero. 

Hence 
 

[𝑆11
2(𝛽𝑇  

6 − 𝛼𝑇
6) + 2 × 𝑆11 × 𝑆22 × (𝛼𝑇

4 + 𝛽𝑇
4) 

−𝑆22
2(𝛼𝑇

2 − 𝛽𝑇
2)] × 𝑠𝑖𝑛(𝛼𝑇  𝐿 ) × 𝑠𝑖𝑛ℎ(𝛽𝑇𝐿) 

+ 2 × [𝑆11
2𝛽𝑇 

3 × 𝛼𝑇
3 + 𝑆11 × 𝑆22 

× (𝛼𝑇
3 × 𝛽𝑇 − 𝛼𝑇 × 𝛽𝑇

3) − 𝑆22
2(𝛼𝑇 × 𝛽𝑇)] 

× (𝑐𝑜𝑠(𝛼𝑇 𝐿) × 𝑐𝑜𝑠ℎ(𝛽𝑇𝐿) − 1) = 0 

(54) 

 

By substituting with 𝛼 and 𝛽  from Eq. (46) in the 

above determinant and solve it numerically to get the 

natural frequency 𝜔. 

 

3.2.3 Cantilever BCs 
For this case, the boundary condition are: at 𝑥 =

0;  𝑊0 = 0, 𝜙 = 0 at 𝑥 = 𝐿;   𝑀 = 𝑉 = 0. Substitute with 

these conditions in Eqs. (46) and (47) leads to the following 

equations 
 

𝑐2 + 𝑐4 = 0 (55a) 

 

(−𝛼𝑇
3𝑆11 + 𝛼𝑇𝑆22)𝑐1 + (𝛽𝑇

3𝑆11 + 𝛽𝑇𝑆22)𝑐3 = 0 (55b) 

 

𝛼𝑇
2𝑠𝑖𝑛(𝛼𝑇  𝐿)𝑐1 + 𝛼𝑇

2𝑐𝑜𝑠(𝛼𝑇 𝐿)𝑐2 

−𝛽𝑇
2𝑠𝑖𝑛ℎ(𝛽𝑇𝐿)𝑐3 − 𝛽𝑇

2𝑐𝑜𝑠ℎ(𝛽𝑇𝐿)𝑐4 = 0 
(55c) 

 

(−(𝐺𝐴)𝑒𝑞𝑘𝑠𝑆11𝛼𝑇
2 + 𝐴𝑇 

+(𝐺𝐴)𝑒𝑞𝑘𝑠𝑆22)𝛼𝑇[𝑐𝑜𝑠(𝛼𝑇  𝐿)𝑐1 − sin(𝛼𝑇  𝐿) 𝑐2] 

+((𝐺𝐴)𝑒𝑞𝑘𝑠𝑆11𝛽𝑇
2 + 𝐴𝑇 

+(𝐺𝐴)𝑒𝑞𝑘𝑠𝑆22)𝛽𝑇[𝑐𝑜𝑠ℎ(𝛽𝑇  𝐿)𝑐3 + sinh(𝛽𝑇𝐿) 𝑐4] 

= 0 

(55d) 

 

By eliminating the coefficients 𝑐3 and 𝑐4 in the above 

system and setting the determinant of the coefficient matrix 

to zero, yields in 
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|𝐾| =  𝐴𝑇 × 𝐵𝑇 × 𝜇 × 𝛼𝑇 × 𝛽𝑇
3 

            −𝐴𝑇 × 𝐵𝑇 × 𝜇 × 𝛼𝑇
3 × 𝛽𝑇  

            +2 × 𝐵𝑇 × 𝐶𝑇 × 𝜇2 × 𝛼𝑇 × 𝛽𝑇 
            −𝐴𝑇 × 𝐶𝑇 × 𝜇 × 𝛼𝑇

3 × 𝑐𝑜𝑠(𝛼𝑇  𝐿) 𝑠𝑖𝑛ℎ(𝛽𝑇𝐿) 

            +𝐴𝑇 × 𝐶𝑇 × 𝜇 × 𝛽𝑇
3 × 𝑐𝑜𝑠ℎ(𝛽𝑇𝐿) 𝑠𝑖𝑛(𝛼𝑇  𝐿) 

            −𝐵𝑇 × 𝐶𝑇 × 𝜇2 × 𝛼𝑇
2𝑠𝑖𝑛(𝛼𝑇  𝐿) 𝑠𝑖𝑛ℎ(𝛽𝑇𝐿) 

            +𝐵𝑇 × 𝐶𝑇 × 𝜇2 × 𝛽𝑇
2𝑠𝑖𝑛(𝛼𝑇  𝐿) 𝑠𝑖𝑛ℎ(𝛽𝑇𝐿) 

            −2𝐴𝑇 × 𝐵𝑇 × 𝜇 × 𝛼𝑇
2 × 𝛽𝑇

2 
            × 𝑠𝑖𝑛(𝛼𝑇 𝐿) 𝑠𝑖𝑛ℎ(𝛽𝑇𝐿) 

            −𝐴𝑇 × 𝐵𝑇 × 𝜇 × 𝛼𝑇 × 𝛽𝑇
3𝑐𝑜𝑠(𝛼𝑇 𝐿) 𝑐𝑜𝑠ℎ(𝛽𝑇𝐿) 

            +𝐴𝑇 × 𝐵𝑇 × 𝜇 × 𝛼𝑇
3 × 𝛽𝑇𝑐𝑜𝑠(𝛼𝑇 𝐿) 𝑐𝑜𝑠ℎ(𝛽𝑇) 

            −2𝐵 × 𝐶𝑇 × 𝜇2 × 𝛼𝑇 × 𝛽𝑇𝑐𝑜𝑠(𝛼𝑇  𝐿) 𝑐𝑜𝑠ℎ(𝛽𝑇𝐿) 

            −𝐴𝑇 × 𝐶𝑇 × 𝜇 × 𝛼𝑇 × 𝛽𝑇
2𝑐𝑜𝑠(𝛼𝑇  𝐿) 𝑠𝑖𝑛ℎ(𝛽𝐿) 

            +𝐴𝑇 × 𝐶𝑇 × 𝜇 × 𝛼𝑇
2 × 𝛽𝑇𝑠𝑖𝑛(𝛼𝑇 𝐿) 𝑐𝑜𝑠ℎ(𝛽𝑇𝐿) = 0 

 

Substitute with 𝛼𝑇 and 𝛽𝑇  in the above determinant 

and solve it numerically to get the natural frequency 𝜔. 

 

3.2.4 Propped BCs 
For a propped beam, the boundary condition are: at  

𝑥 = 0;  𝑊0 = 0, 𝜙 = 0  and at 𝑥 = 𝐿;  𝑊0 = 𝑀 = 0 . 

Substitute with these conditions in Eqs. (46) and (47) leads 

to the following relations 

 

 

By eliminating the coefficients 𝑐3 and 𝑐4 in the above 

system and setting the determinant of the coefficient matrix 

to zero, yields in 

 

|𝐾| =  −𝐴𝑇(𝛼𝑇
2 + 𝛽𝑇

2) × [(𝛽𝑇
2𝑆11 + 𝑆22)𝛽𝑇 

             × 𝑡𝑎𝑛(𝛼𝑇𝐿) + (𝛼𝑇
2𝑆11 − 𝑆22)𝛼𝑇 × 𝑡𝑎𝑛ℎ(𝛽𝑇𝐿)] 

             = 0 

Since        𝐴𝑇(𝛼𝑇
2 + 𝛽𝑇

2) ≠ 0,     so: 
                 [(𝛽2𝑆11 + 𝑆22)𝛽𝑇 × 𝑡𝑎𝑛(𝛼𝑇𝐿) 
                 +(𝛼𝑇

2𝑆11 − 𝑆22)𝛼𝑇 × 𝑡𝑎𝑛ℎ(𝛽𝑇𝐿)] = 0 
Yields,     (𝑆22 − 𝛼𝑇

2𝑆11)𝛼 ∗ 𝑡𝑎𝑛ℎ(𝛽𝑇𝐿) 
                 = (𝛽2𝑆11 + 𝑆22)𝛽𝑇 ∗ 𝑡𝑎𝑛(𝛼𝑇𝐿) 

(52) 

 

Substitute with 𝛼𝑇 and 𝛽𝑇 into Eq. (55) and solve it 

numerically to get the natural frequency 𝜔. 

 

 

4. Numerical results 
 
Through this section, proposed model will be validated 

with the previous works, and parameter studies will be 

developed to illustrate effects of number of holes, filling 

ratio, size scale parameter, and shear deformation on natural 

frequencies of thin or thick perforated beams with different 

boundary conditions. 

 

4.1 Model validation 
 

The fundamental frequency of full Euler and 

Timoshenko nanobeam with the following characteristics 

Table 1 Comparison of non-dimensional fundamental 

frequencies for TNNB and TKNB 

Nonlocal 

parameter 

Present Reddy (2007) 

TNNB TKNB TNNB TKNB 

0.0 9.8594 9.8281 9.8696 9.8381 

1.0 9.4062 9.3762 9.4159 9.3858 

2.0 9.0102 8.9815 9.0195 8.9907 

3.0 8.6604 8.6327 8.6693 8.6416 

4.0 8.3483 8.3217 8.3569 8.3302 

5.0 8.0677 8.0421 8.0761 8.0503 
 

 

 

[𝐸 = 30 𝑥106, = 0.3, 𝐺 =
𝐸

2(1+𝜐)
, 𝜌 = 1, 𝐿 = 10, 𝑏 = ℎ  

=
𝐿

20
, 𝑘𝑠 =

5

6
] are exploited in computing the numerical 

values. The non-dimensional frequency is calculated by 

using the following formula 𝜆𝑖 = 𝜔𝑖𝐿
2√

𝑚0

𝐸𝐼
 . The present 

and Reddy (2007) results as illustrated and compared in 

Table 1. As shown, the frequency of nanobeam is decreased 

by increasing the nonlocal parameter for both TNNB and 

 

 
TKNB. The frequency of TNNB is greater than the 

frequency of TKNB at the same nonlocal parameter, due to 

the presence of shear effect. As observed from Table 1, the 

current model is validated with previous work of Reddy, 

since no significant deviation is noticed. 
 

4.2 Parametric studies 
 

Through this section, effects of number of holes, filling 

ratio, and nanoscale parameter on the natural frequencies of 

clamped, cantilever, and propped perforated nanobeams are 

discussed. The analysis assumed that [110] single crystal 

silicon nanobeam with the following parameters 
 

𝐸 = 169 𝐺𝑃𝑎,     𝜇 = 0.064,     𝐺 = 79.6 𝐺𝑃𝑎, 
𝜌 = 2.329𝑒3 𝑘𝑔/𝑚3,     𝑎𝑛𝑑     𝑘𝑠 = 5/6. 

 

The beam has the following dimensions, length 𝐿 =
141.1 nm, width 𝑏 = 46.9 nm, and thickness ℎ = 𝐿/20. 

 

4.2.1 Effect of filling ratio 
The effect of filling ratio on the fundamental frequency 

of perforated macro/nanobeams for clamped BCs is present 

in Fig. 2. As presented from figures, NEB and NTB are 

identical and have the same natural frequencies at full beam 

𝛼 = 1. However, reducing the filling ratio less than one, the 

shear effect on natural frequencies become significant. The 

filling ratio has opposite effect on NEB vs NTB. As shown 

in case of NEB, as the filling ratio decreases the 

fundamental frequencies increases significantly. However, 

in case of NTB, the reducing of filling ration tends to 

[
 
 
 

0 1 0 1
𝛼𝑇 0 𝛽𝑇 0

𝑠𝑖𝑛(𝛼𝑇 𝐿) 𝑐𝑜𝑠(𝛼𝑇  𝐿) 𝑠𝑖𝑛ℎ(𝛽𝑇𝐿) 𝑐𝑜𝑠ℎ(𝛽𝑇𝐿)

𝐴𝑇𝛼𝑇
2𝑠𝑖𝑛(𝛼𝑇𝐿) 𝐴𝑇𝛼𝑇

2𝑐𝑜𝑠(𝛼𝑇  𝐿) −𝐴𝑇𝛽𝑇
2(𝑠𝑖𝑛ℎ(𝛽𝑇𝐿) 𝐴𝑇𝛽𝑇

2𝑐𝑜𝑠ℎ(𝛽𝑇𝐿)]
 
 
 

{

𝑐1

𝑐2

𝑐3

𝑐4

} = {0} (56) 
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decrease the fundamental frequencies. The filling ratio and 

shear effect are more significant within range of (0.2 <
𝛼 < 0.9). It is not logic to calculate the natural frequency 

when 𝛼 < 0.2 , because in this case, the beam is 

approximately fully empty. 

Effects of filling ratio on the fundamental frequencies of 

cantilever and propped nanobeam are presented in Figs. 3 

and 4, respectively. As shown, the filling ratio is most 

significant in the range of (0.2 < 𝛼 < 0.8) in case of 

cantilever BCs, and (0.2 < 𝛼 < 0.9) in case of propped 

beam. In these ranges, filling ratio tends to increase the 

natural frequencies as it increases in case of NTB. On the 

otherwise, by increasing the filling ratio, NEB fundamental 

 

 

 

 

 

 

frequencies are decreased. It is noted that specially, at 𝜇 =
300 𝑛𝑚2 for cantilever BCs, NEB is overestimeted than 

NTB evern that when 𝛼 = 1. For other all cases, NEB and 

NTB are identically for full beam without perforation. 

 

4.2.2 Effect of number of holes 
The effect of number of holes on the natural frequencies 

with varying the nanaoscale parameter, for a specified 

filling ratio and different boundary conditions are illustrated 

in Figs. 5-7. For a case in hand at smaller filling ratio (𝛼 =
0.2, 0.5), the highest frequency observed for NEB at NE = 8 

and the smallest frequency noticed for NTB at NT = 8. It is 

noticed, as the number of holes increase in case of NEB, the 
 

 

 

 

   

(a) at 𝜇 = 0 (Classical case) (b) at 𝜇 = 100 𝑛𝑚2 (c) at 𝜇 = 300 𝑛𝑚2 

Fig. 2 Effect of filling ratio and number of holes along the section on fundamental frequencies for clamped BCs 

   

(a) at 𝜇 = 0 (Classical case) (b) at 𝜇 = 100 𝑛𝑚2 (c) at 𝜇 = 300 𝑛𝑚2 

Fig. 3 Effect of filling ratio and number of holes along the section on fundamental frequencies for cantilever BCs 

   

(a) at 𝜇 = 0 (Classical case) (b) at 𝜇 = 100 𝑛𝑚2 (c) at 𝜇 = 300 𝑛𝑚2 

Fig. 4 Effect of filling ratio and number of holes along the section on fundamental frequencies for Propped BCs 
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natural frequency is increased. However, in case of NTB, as 

the number of holes increased, the natural frequency is 

decreased for all boundary conditions. As seen, increasing 

the hole number from 1 to 4 is more pronounced than 

increasing hole number from 4 to 8, for small filling ratio. 

In case of 𝛼 = 0.9, the hole number becomes insignificant 

on the natural frequencies for clamped, cantilever and 

propped beams. In case of clamped case at of 𝛼 = 0.9, the 

beam theory has not affected on the natural frequency as 

shown in Fig. 5(c), where the frequency of NEB and NTB 

are approximately identical. However, Beam theory has a 

significant influence on the natural frequency of cantilever 

and propped boundary conditions, where NEB is larger than 

 

 

 

 

 

 

NTB at the same filling ratio, hole number, and nonlocal 

parameters. 

 

4.2.3 Effect of nonlocal parameter 
As shown from Figs. 5-7, as the nonlocal parameter 

increased, the natural frequency is decreased significantly 

due to the softening of the material. It is observed that, for 

clamped and propped boundary conditions, the natural 

frequency proportional inversely linear with the nonlocal 

parameter. However, in case of cantilever, the natural 

frequency proportional inversely nonlinear with nonlocal 

parameter. It is noticed that, the nonlocal parameter has the 

same effect on both NEB and NTB. 

 

 

 

 

 

 

 

   

(a) at 𝛼 = 0.2 (b) at 𝛼 = 0.5 (c) at 𝛼 = 0.9 

Fig. 5 Effect of number of holes with varying nonlocal parameter on fundamental frequencies for Clamped BCs 

   

(a) at 𝛼 = 0.2 (b) at 𝛼 = 0.5 (c) at 𝛼 = 0.9 

Fig. 6 Effect of number of holes with varying nonlocal parameter on fundamental frequencies for Cantilever BCs 

   

(a) at 𝛼 = 0.2 (b) at 𝛼 = 0.5 (c) at 𝛼 = 0.9 

Fig. 7 Effect of number of holes with varying nonlocal parameter on fundamental frequencies for Propped BCs 
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Fig. 8 Effect of filling ratio on the natural frequency at 

different boundary conditions 

 

 

4.2.4 Effect boundary conditions 
The effect of filling ratio and boundary conditions on 

the fundamental frequency at specified hole number and 

nonlocal parameter is presented in Fig. 8. As noticed for 

𝛼 > 0.4, the highest natural frequency is observed in case 

of simply supported beam for both NEB and NTB, and the 

smallest natural frequency is noticed in case of propped 

boundary conditions for both NEB and NTB. It is observed 

frequencies of clamped and cantilever lay between simply 

and propped boundary conditions. Frequencies of clamped 

and cantilever boundary conditions can be arranged in the 

following descending order: - cantilever (NEN), clamped 

(NEB), clamped (NTB), and cantilever (NTB). 

 

 

5. Conclusions 
 

This investigation tries to complete the previous work of 

Eltaher (2018c), to consider the natural frequency of 

perforated nanobeam with different boundary conditions, 

that not studied elsewhere. The effect of long-range atomic 

interaction of nanobeam is adopted by nonlocal differential 

from of Eringen. The kinematic assumption of Euler-

Bernoulli and Timoshenko beam theories are assumed to 

illustrate the shear effects on the vibrational phenomenon. 

Closed from and numerical solutions for natural frequency 

are derived in detail for all boundary conditions. Effects of 

boundary conditions, hole number, filling ratio and 

nanoscale parameter on the fundamental frequency are 

illustrated and discussed in detail. The main deductions 

resulting from the parametric studies can be summarized as: 

 

(1) The filling ratio is most significant in the range of 
(0.2 < 𝛼 < 0.8)  in case of cantilever BCs, and 
(0.2 < 𝛼 < 0.9) in case of clamped and propped 

beams. 

(2) The filling ratio has opposite effect on NEB vs 

NTB. 

(3) At smaller filling ratio (𝛼 = 0.2, 0.5), the highest 

frequency observed for NEB and NE = 8 and the 

smallest frequency noticed for NTB and NT = 8. 

(4) As the nonlocal parameter increased, the natural 

frequency is decreased significantly due to the 

softening of the material. 

(5) The highest natural frequency is observed in case of 

simply supported beam for both NEB and NTB, and 

the smallest natural frequency is noticed in case of 

Propped boundary conditions for both NEB and 

NTB. 
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