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1. Introduction 

 

Vibration energy harvesting harnesses the kinetic energy 

from the surrounding environment. It is one of the vital 

technology for future battery-less sensors. Recently, the 

vibration energy harvesters with electromagnetic 

transducers have been actively investigated (Ashraf et al. 

2013, Nico et al. 2016, Nammari et al. 2018). Especially in 

civil engineering applications, many researches on the 

energy harvesting have been reported (Makihara et al. 2015, 

Kim et al. 2016, and Marian and Giaralis 2017). Since they 

usually utilized the resonance of the embedded spring-mass 

system, the slight detuning may result in a drastic drop in 

the generated power output (Zhu et al. 2010). Thus, the 

intensive researches have been carried out to make the 

vibration energy harvester robust in the variation of the 

exciting frequency. Ramlan et al. (2010) and Tang and Yang 

(2012) took advantage of the nonlinear vibrating system in 

increasing the bandwidth of the power output. Shahruz 

(2006), Ferrari et al. (2008), and Marin et al. (2013) 

proposed a parallel set of multiple single degree-of-freedom 

(DOF) harvesters whose natural frequencies were uniformly 

distributed over the bandwidth. Wu et al. (2014) and 

O’Donoghue et al. (2018) developed a 2DOF harvester 

where two single DOF spring-mass systems were serially 

connected. Wang and Tang (2017) studied a bistable 2DOF 

piezoelectric energy harvester with magnetic coupling in 

which a linear parasitic oscillator attached to the primary 

energy harvesting beam was used to generate two resonant 

peaks. Wong et al. (2009) designed a 3DOF harvester using 
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a three mass-spring-damper chain system. Zhang et al. 

(2016) tested a broadband electrostatic energy harvester 

with a dual resonance structure consisting of two cantilever-

mass subsystems, each with a mass attached at the free edge 

of a cantilever. Chen and Wu (2016) fabricated a 2DOF 

vibration structure formed by integrating a spiral diaphragm 

into a U-shaped cantilever to increase the usable bandwidth 

of a micromachined electromagnetic energy harvester. 

These researches utilized the multiple modes of multiple 

spring-mass systems connected in parallel or serial to 

improve the harvesting bandwidth. Meanwhile, Liu et al. 

(2012) fabricated a 3DOF electromagnetic MEMS energy 

harvester in which an elastically suspended single mass 

vibrates at three directional excitations of different 

frequencies. Their work distinguishes from previous by 

using the multiple DOF of the vibrating system of a single 

mass. Jang et al. (2010) and Kim et al. (2011) introduced a 

piezoelectric cantilever type energy harvester which utilized 

the vertical translation and rotation (2DOF) of a single 

proof mass. They connected two natural frequencies of a 

vibration system by placing them close together and 

achieved an enhanced bandwidth. Their harvester also 

utilized a single proof mass and can work at the 

unidirectional excitation. 

In this work, a 2DOF electromagnetic energy harvester 

of the single proof mass working at the unidirectional 

excitation is proposed. The motion of the spatial mass is 

constrained into the vertical translation and rotation (2DOF) 

by using four vertical tension springs. Halbach magnet 

array is introduced to increase the output power. We derived 

the analytic design equations, which can be utilized in 

finding the positions and the constant of springs satisfying 

two target resonant frequencies. The frequency bandwidth 

for power harvesting can be enhanced by locating two 

resonant frequencies close to each other. The prototype 
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Abstract.  In this paper, the design method and experimental validation for the two-degree-of-freedom (2DOF) electromagnetic 

energy harvester are presented. The harvester consists of the rigid body suspended by four tension springs and electromagnetic 

transducers. Once the two resonant frequencies and the mass properties are specified, both the constant and the positions for the 

springs can be determined in the closed form. The designed harvester can locate two resonant peaks close to each other and forms 

the extended frequency bandwidth for power harvesting. Halbach magnet array is also introduced to enhance the output power. In 

the experiment, two resonant frequencies are measured at 34.9 and 37.6 Hz and the frequency bandwidth improves to 5 Hz at the 

voltage level of 207.9 mV. The normalized peak power of 4.587 mW/G2 is obtained at the optimal load resistor of 367 Ω. 
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Fig. 1 Schematic of the 2DOF vibrating system in a plane 

 

 

realization was conducted to verify the proposed design 

equations. 
 

 

2. Analyses on the 2DOF vibrating system 
 

2.1 Free vibration analysis 
 

Fig. 1 shows a vibrating system which is composed of a 

rigid bar and four springs. The rigid bar plays a role of a 

proof mass, and four springs are installed parallel to the Y- 

axis. The springs have the same stiffness constant and are 

pretensioned that the motion of the rigid bar is confined to 

the 2DOF, i.e., rotation on the X-Y plane and translation in 

the Y- axis. In this paper, the Plücker’s line coordinates are 

utilized in describing the model for the geometrical analysis 

of the multi-DOF vibrating system (Blanchet 1988). The 

Jacobian matrix containing the line vectors of the four 

springs expressed in Plücker’s ray coordinates can be given 

by 

𝐣 = [�̂�1, ⋯ , �̂�4] = [
0 0 0 0
1 1 1 1
𝑟1 𝑟1 −𝑟2 −𝑟2

] (1) 

 

where 𝑟𝑖 is the distance from the mass center to the i-th 

spring and 𝑖 = 1,2. The stiffness matrix can be determined 

by (Griffis and Duffy 1991) 
 

𝐊 = 𝑘𝐣𝐣𝑇 = [

0 0 0
0 4𝑘 2𝑘(𝑟1 − 𝑟2)

0 2𝑘(𝑟1 − 𝑟2) 2𝑘(𝑟1
2 + 𝑟2

2)

] (2) 

 

The mass matrix of the rigid body at the mass center, O 

can be expressed by 
 

𝐌 = diag(𝑚,𝑚, 𝐽) (3) 
 

where m is the mass of the rigid bar and J is the mass 

moment of inertia. When the harmonic motion is assumed, 

the infinitesimal displacement of the rigid bar can be 

expressed 2as 
 

𝐗 = �̂�e𝑗𝛺𝑡 (4) 
 

where �̂� = [𝛿𝑥, 𝛿𝑦, 𝜙]𝑇. 𝛿𝑥, 𝛿𝑦, and 𝜙 are respectively 

the X-, Y- translation, and the Z- rotation. The equation of 

motion for the free vibration of the vibrating system with 

the mass and stiffness matrices of Eqs. (2) and (3) can be 

expressed by 

 

(𝐊 − 𝛺𝑖
2𝐌)�̂�𝒊 = 0 (5) 

 

where 𝛺𝑖 is the resonant frequency of the i-th mode, and 

�̂�𝒊 is the corresponding vibration mode vector. �̂�𝒊 can be 

normalized by the rotation 𝜙𝑖 and rewritten as 
 

�̂�𝒊 = [𝑦𝑖 −𝑥𝑖 1]𝑇 (6) 
 

where 𝑥𝑖 ≡ −
𝛿𝑦𝑖

𝜙𝑖
 and 𝑦𝑖 ≡

𝛿𝑥𝑖

𝜙𝑖
. The mode vector of Eq. (6) 

is the Plücker’s axis coordinates of line perpendicular to the 

X-Y plane and passing through (𝑥𝑖 , 𝑦𝑖) . It can be 

geometrically interpreted as the small repetitive rotation 

about the vibration center of i-th mode, (𝑥𝑖 , 𝑦𝑖). In the 

present study, since the stiffness matrix of Eq. (2) is 

singular and corresponds only to Y- translation and rotation 

on the X-Y plane, there exist two mode vectors found as 
 

�̂�1 = [0 −𝑥1 1]𝑇 (7a) 

 

�̂�2 = [0 −𝑥2 1]𝑇 (7b) 
 

which can be interpreted as the vibration centers are lying 

on the X- axis at (𝑥1, 0) and (𝑥2, 0), respectively, as 

shown in Fig. 1. 

Introducing the orthogonality condition of modes 

concerning the mass matrix gives (Meirovitch 2001) 
 

�̂�1
𝑇𝐌�̂�2 = 𝑚𝑥1𝑥2 + 𝐽 = 0 (8) 

 

Eq. (8) can be satisfied only if the signs of 𝑥1 and 𝑥2 

are different. Rewriting 𝑥2 in terms of 𝑥1 yields 
 

𝑥2 = −
𝐽

𝑚

1

𝑥1
= −𝛼2

1

𝑥1
 (9) 

 

where 𝛼 = √𝐽/𝑚 is radius of gyration. 

 

2.2 Base excited vibration analysis 
 

When the elastically supported rigid body is subject to a 

harmonic base excitation as shown in Fig. 2, the equation of 

motion of the body can be expressed by 
 

𝐌�̈� + 𝐂�̇� + 𝐊𝐙 = −𝐌�̈�𝟎 (10) 
 

where C is damping matrix, 𝐙 is relative displacement of 

the rigid body, i.e., 𝐙 = 𝐗 − 𝐗𝟎. Applying Eq. (4), 𝐙 =
�̂�e𝑗𝛺𝑡, and 𝐗𝟎 = �̂�0e

𝑗𝛺𝑡to Eq. (10) yields 
 

 

 

Fig. 2 Base excitation system 
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(𝐊 − 𝛺2𝐌 + 𝑗𝛺𝐂)�̂� = 𝛺2𝐌�̂�0 (11) 

 

In Eq. (11), Ω is the excitation frequency and �̂�0 is the 

line expressing the infinitesimal base excitation. The right 

side of Eq. (11) is the inertial force due to base excitation 

and can be expressed here as 

 

�̂� = 𝛺2𝐌�̂�0 (12) 

 

Recalling that �̂�𝒊  are the mode vectors, the modal 

matrix is given by 

 

𝐒 = [�̂�1 �̂�2 �̂�3] (13) 

 

Then mass, stiffness, and damping matrices M, K, and 

C can be diagonalized by the modal matrix as 

 

𝐒𝑇𝐌𝐒 = diag(�̃�1, �̃�2, �̃�3) (14a) 

 

𝐒𝑇𝐊𝐒 = diag(�̃�1, �̃�2, �̃�3) (14b) 

 

𝐒𝑇𝐂𝐒 = diag(�̃�1, �̃�2, �̃�3) (14c) 

 

It is noted here that the damping matrix C is assumed 

proportional to both the mass and the stiffness matrices. 

Applying Eq. (14) to Eq. (11) and rearranging gives the 

relative small displacement of the rigid body �̂� as the 

linear combination of the mode vectors by 

 

�̂� = ∑
�̂�𝑖

𝑇�̂�

(�̃�𝑖 − 𝛺2�̃�𝑖) + 𝑗𝛺�̃�𝑖

3

𝑖=1

�̂�𝒊 (15) 

 

If the i-th modal damping ratio 𝜁𝑖  defined as 𝜁𝑖 =
𝑐�̃�

2�̃�𝑖𝛺𝑖
 are assumed to be small, i.e., 𝜁𝑖 < 0.05, the damped 

resonant frequencies are almost identical to the undamped 

resonant frequencies. Thus, when Ω = Ωi at resonance, the 

response at i-th resonant peak can be approximated as 

 

�̂�𝑖 ≅
�̂�𝑖

T�̂�

𝑗𝛺𝑖�̃�𝑖
�̂�𝑖 (16) 

 

The work done by a vibrating body under the inertial 

force �̂� at the i-th resonant frequency can be expressed as 

 

𝑊𝑖 = �̂�𝑇�̂�𝑖 (17) 

 

As to the present 2DOF vibrating system of Fig. 1, the 

base motion is always applied along the Y-axis and the 

inertial force can be described as 

 

�̂� = 𝛺2𝐌[0 𝑎𝑐𝑐/𝛺
2 0]𝑇 (18) 

 

where 𝑎𝑐𝑐  is the dose of the acceleration. Further, the 

modal matrix of the present system has two vectors of Eq. 

(7) and one vector for the rigid body mode, i.e., the 

corresponding resonant frequency is zero, can be described 

as 

𝐒 = [�̂�1 �̂�2 �̂�3] = [
0 0 1

−𝑥1 −𝑥2 0
1 1 0

] (19) 

 

Then the modal mass parameters can be expressed from 

Eqs. (3) and (19) by 
 

�̃�𝑖 = �̂�𝑖
𝑇𝐌�̂�𝑖 = 𝑚(𝑥𝑖

2 + 𝛼2) (20) 
 

where i = 1, 2. Substituting �̃�𝑖 = 2�̃�𝑖𝛺𝑖𝜁𝑖 and Eqs. (18) 

and (20) into Eq. (17) yields the works at resonances as 
 

𝑊𝑖 =
𝑚𝑎𝑐𝑐

2 𝑥𝑖
2

𝑗2𝛺𝑖
2(𝑥𝑖

2 + 𝛼2)𝜁𝑖

 (21) 

 

 

3. Design method 
 

3.1 Derivation of the design equations 
 

It is desirable that the proposed harvester produces the 

identical works at its two resonances. Assuming 𝜁1 = 𝜁2, 

substituting Eq. (9) to Eq. (21) and applying identical 

condition of 𝑊1 = 𝑊2 yields 
 

𝑥1 = ±
𝛺1

𝛺2
𝛼 (22) 

 

The other location, 𝑥2 can be found from Eq. (9) as 
 

𝑥2 = ∓
𝛺2

𝛺1
𝛼 (23) 

 

Eqs. (22) and (23) shows that the positions of the 

vibration centers can be determined from the specified 

target frequencies and the radius of gyration. 

From Eq. (5), the equation for the stiffness matrix can 

be expressed by 
 

𝐊 = 𝐌𝐒𝚲𝐒−1 (24) 
 

where 𝚲 = [
𝛺1

2 0 0

0 𝛺2
2 0

0 0 0

]. Substituting Eqs. (3), (19), (22), 

and (23) into Eq. (24) yields 

 

𝐊 =

[
 
 
 
 
 
0 0 0

0
𝑚(𝛺1

4 + 𝛺2
4)

𝛺1
2 + 𝛺2

2

𝑚𝛼𝛺1𝛺2(𝛺2
2 − 𝛺1

2)

𝛺1
2 + 𝛺2

2

0
𝑚𝛼𝛺1𝛺2(𝛺2

2 − 𝛺1
2)

𝛺1
2 + 𝛺2

2

𝑚𝛼2𝛺1
2𝛺2

2

𝛺1
2 + 𝛺2

2 ]
 
 
 
 
 

 (25) 

 

Equating Eq. (24) with Eq. (2) gives the spring constant 

and the locations of the springs as follows 

 

𝑘 =
𝑚(𝛺1

4 + 𝛺2
4)

4(𝛺1
2 + 𝛺2

2)
 (26) 

 

r1 = 2α ∙
𝛺1𝛺2

3

𝛺1
4 + 𝛺2

4 (27a) 
 

395



 

Shi-Baek Park and Seon-Jun Jang 

 

Fig. 3 Design procedure 

 

 

r2 = 2α ∙
𝛺1

3𝛺2

𝛺1
4 + 𝛺2

4 (27b) 

 

3.2 design procedure 
 

The design process of the proposed 2DOF vibrational 

energy harvester consists of two steps. The first step is the 

vibration design. It starts from selecting the two target 

resonance frequencies 𝛺1  and 𝛺2 . When the mass 

 

 

 

Table 1 Input parameters for design of 2DOF vibrational 

energy harvester in a plane 

Parameters Value 

Material of rigid body Brass 

Size of rigid body 0.060(l) × 0.014(w) × 0.014(h) m3 

Size of device 0.060(l) × 0.060(w) × 0.150(h) m3 

Mass of rigid body (m) 0.098 kg 

Moment of inertia (J) 3.152 × 10-5 kg/m2 

Acceleration (acc) 0.15 G 

Target frequencies (Ω1, Ω2) 35, 38 Hz 
 

 

 

properties, i.e., m and J are given, the corresponding modes, 

i.e., vibration center, can be obtained from the design 

equations of Eqs. (22) and (23). The second step is the 

realization of the spring systems. The stiffness matrix can 

be synthesized from the calculated modes and target 

resonant frequencies. The spring properties, i.e., spring 

constant and locations of springs, can be found from the 

design equations of Eqs. (26) and (27). The flow chart for 

the design procedures is presented in Fig. 3. 
 

 

4. Experimental study 
 
4.1 Prototype design 
 

When the target resonant frequencies are set to 35 and 

38 Hz and the mass properties are given as Table 1, the X- 

coordinates of the vibration centers are calculated from Eqs. 

(22) and (23) to 𝑥1 = 0.0165 and 𝑥2 = −0.0194. The 

spring constant, k and location of springs are respectively 

obtained from Eqs. (26) and (27) as k = 1304.2 N/m, r1 = 

0.0163, and r2 = 0.0192 m. The designed prototype of the 

harvester has been constructed and tested. Two coils are 

installed on front and rear side of a rigid body and 

connected in series. A pair of the plat type Halbach magnet 

array is mounted on the base platform as shown in Fig. 4. It 

 

 

 

 

Fig. 4 Prototype of the 2DOF vibrational energy harvester 
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Table 2 Physical parameters of electromagnetic transducer 

Parameters Value 

Magnets Neodymium magnets (5EA) 

Size of magnet array 0.060(l) × 0.014(w) × 0.014(h) m3 

Magnetic flux density Max 8.06 × 10−1 T 

Diameter of coil 1.500 × 10−2 m 

Number of coil turn 1100 

Internal resistance of coil 116.1 Ω 
 

 

 

 

 

 

 

is suitable for the complex planar motion of the coil and 

provides a higher magnetic density than other architectures 

(Zhu et al. 2012). The maximum magnetic flux density was 

measured by gauss meter (Lutron GU3001) to 0.806 T, 

which is the twice of the value from the normal array. The 

FEMM simulation result in Fig. 5 compares the magnetic 

flux density distributions of two magnet array. It is clear 

that the magnetic flux density near the magnets of Halbach 

array is stronger than that of normal array. Both the 

measurement and the simulation show that the magnetic 

 

 

 

 

 

Fig. 5 Magnetic flux of normal (left) and Halbach (right) array pair by FEMM 

 

Fig. 6 Fabrication result and experimental setup of the 2DOF vibration harvester 

  

Fig. 7 (a) The total voltage output; and (b) optimal load resistance 
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flux was improved when the Halbach array was utilized. 

The physical parameters of the proposed electromagnetic 

transducer are given in Table 2. 

 

4.2 Experiment 
 

Fig. 6 shows the experimental setup of the fabricated 

harvester. It is attached on the shaker, which provides the 

constant acceleration in the vertical direction. The output 

voltage from the electrical generator of the harvester is 

measured by the oscilloscope (National Instrument NI 

PXIe-1071). The experimental open-circuit voltage outputs 

from the acceleration input of 0.15 G (1.47 m/s2) are shown 

in Fig. 7(a). They are well met with the designated target 

frequencies of 35 and 38 Hz, respectively. The proposed 

harvester can increase the bandwidth by connecting two 

peaks. The measured bandwidth is 5 Hz at the voltage level 

of 207.9 mV. The maximum output voltage of 389.4 mV is 

found at the first peak. Fig. 7(b) shows that the power out- 

put measured at 34.9 Hz when the load resistance is 

connected and changes from 0 to 700 Ω. The maximum 

output power is 0.1032 mW at 367 Ω, which can be 

expressed by the normalized power of 4.587 mW/G2. It can 

also be normalized by both the volume and the acceleration 

level to 0.4143 kg s/m3 (Beeby et al. 2007). 

 

 

5. Conclusions 
 

In this study, the design method of electromagnetic 

2DOF vibration energy harvester is proposed. The vibration 

system is described via Plücker’s line coordinates. The 

design equations are obtained from the orthogonality of the 

modes and the identical work conditions. When the two 

target resonant frequencies and mass properties are 

specified, the locations for the vibration centers, stiffness 

constant, and spring positions can be obtained in the closed 

form. The numerical example and its realization are 

provided to verify the proposed method. The experiment 

shows that the measured resonant peaks are well met to the 

target frequencies and the bandwidth increases to 5 Hz at 

the voltage level of 207.9 mV. The normalized maximum 

output power is found to 4.587 mW/G2. 
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