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1. Introduction 

 

Ultrasonic guided waves are widely used in the 

communities of structural health monitoring (SHM) and 

nondestructive evaluation (NDE) of plate-like structures 

due to their low attenuation and high sensitivity to damages 

(Su et al. 2006, Xiang et al. 2014, Hong et al. 2017, Song et 

al. 2017). Currently, piezoelectric transducers (PZTs) as 

conventional contact-type sensors are widely used to 

generate and measure ultrasonic guided waves on 

structures, and then hidden damages can be identified by 

comparing the measured signals with the baseline signals 

from the pristine status (Lu et al. 2010). However, the 

comparison depends on a wealth of physical information 

such as dispersive relation, and usually leads to increased 

false alarm rates under harsh environments such as varying 

temperature and radioactive conditions. Additionally, in 

order to identify and localize small defects, a dense array of 

PZTs are demanded, but such installation is costly and 

labor-intensive. 

Recently, the scanning laser Doppler vibrometer 

(SLDV) system as a noncontact technique for measuring the 
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out-of-plane velocity in a grid of equispaced points over the 

 

structure surface is gaining prominence due to its 

noninvasive nature and highly spatial resolution (Flynn and 

Jarmer 2013, Chen et al. 2018a, b, Staszewski et al. 2004, 

Park et al. 2010). In this case, the ultrasonic wavefield 

image at the user-defined space over the structure surface 

can be acquired by SLDV. Comparing with the spatially 

limited contact-type sensors, SLDV can acquire the 

information of full wavefield data, also known as full 

wavefield measurements. In particular, the visualization of 

wave propagation can show the interaction of guided wave 

with structural damage, which enables automated and 

intuitive damage diagnosis without any baseline data. 

Numerous structural health monitoring approaches based on 

guided waves rely on the understanding of wavefields 

recorded by SLDV (Staszewski et al. 2004, Park et al. 

2010, 2014, Xiang et al. 2012, Di Ianni et al. 2015, Sohn et 

al. 2011). For instance, Sohn et al. (2011) used a fixed 

actuator to generate the guided wave and used SLDV to 

measure the corresponding guided wave for detecting 

delamination in a composite plate. Park et al. (2014) used 

SLDV to measure the ultrasonic guided wave for 

identifying and visualizing the hidden delamination in a 

GFRP wind turbine blade and debonding in CFRP aircraft. 

In practical applications, since the signal-noise-ratio of a 

single scan of SLDV is quite low, multiple time traces for 
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Abstract.  A wavefield sparse reconstruction technique based on compressed sensing is developed in this work to dramatically 

reduce the number of measurements. Firstly, a severely underdetermined representation of guided wavefield at a snapshot is 

established in the spatial domain. Secondly, an optimal compressed sensing model of guided wavefield sparse reconstruction is 

established based on l1-norm penalty, where a suite of discrete cosine functions is selected as the dictionary to promote the 

sparsity. The regular, random and jittered undersampling schemes are compared and selected as the undersampling matrix of 

compressed sensing. Thirdly, a gradient projection method is employed to solve the compressed sensing model of wavefield 

sparse reconstruction from highly incomplete measurements. Finally, experiments with different excitation frequencies are 

conducted on an aluminum plate to verify the effectiveness of the proposed sparse reconstruction method, where a scanning 

laser Doppler vibrometer as the true benchmark is used to measure the original wavefield in a given inspection region. 

Experiments demonstrate that the missing wavefield data can be accurately reconstructed from less than 12% of the original 

measurements; The reconstruction accuracy of the jittered undersampling scheme is slightly higher than that of the random 

undersampling scheme in high probability, but the regular undersampling scheme fails to reconstruct the wavefield image; A 

quantified mapping relationship between the sparsity ratio and the recovery error over a special interval is established with 

respect to statistical modeling and analysis. 
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averaging are commonly acquired at each scan point to 

reduce the effect of acquisition noise. Meanwhile, a large 

number of measurements are required to avoid spatial 

aliasing of the wavefield image. Therefore, the scanning 

acquisition process is usually time-consuming, particularly 

when the structure surface is large and the required 

measurement grid for wave propagation is dense. 
There is a recognized requirement to reduce the 

acquisition time by reducing the number of acquisitions in 

the spatial domain. If the wavefield image can be known to 

be sparse or compressible using a certain transform such as 

Fourier transform and wavelet transform, a novel sampling 

approach based on compressed sensing (CS) can be applied 

to reduce the number of measurements. Compressive 

sensing theory exploits the fact that most natural signals 

such as waves, possess a sparse representation in other 

transforming domain, and demonstrates the effectiveness 

for recovering signals from limited measurements without 

loss of information (Candes and Wakin 2008). CS has been 

used in a wide variety of applications, including the single 

pixel camera (Duarte et al. 2008), SHM (Ginsberg et al. 

2018, Yang et al. 2017 and 2019), source identification 

(Qiao et al. 2016) and seismology (Herrmann et al. 2012). 

For instance, a monotonic iterative shrinkage/thresholding 

algorithm of compressed sensing was developed for image 

restoration from 40% missing samples in an 

underdetermined case (Bioucas-Dias and Figueiredo 2007). 

Qiao et al. (2016a, b, 2019) developed the compressed 

sensing approach based on the prior of sparsity for 

identifying the location and time history of nine impact 

forces from highly incomplete and inaccurate 

measurements. In SHM, compressed sensing as a powerful 

tool has been used to extract the dispersion curves of guided 

wave (Alguri and Harley 2016, Xu et al. 2018). Considering 

the sparsity of guided wave in the wavenumber space, 

Harley (2016) combined sparse reconstruction algorithms 

with physic-based wave propagation model for predicting 

wave behavior in glass-fiber reinforced polymer composite 

plates without considering boundary reflections. However, 

many applications benefit from the knowledge of 

reflections. Furthermore, Alguri and Harlely (2016) 

proposed a dictionary learning method for building a 

predictive model of guided wave, which can reconstruct the 

reflected wave from the geometric boundary and was 

numerically validated in an aluminum plate. 

Currently, some studies are about how compressed 

sensing can be extended to guided wavefield reconstruction. 

Based on the sparsity of the wavefield in wavenumber-

frequency space and the prior of dispersion property, Mesnil 

and Ruzzene (2016) reconstructed the guided wavefield of a 

composite panel from sparse measurements using 

compressed sensing. In this case, the wavefield 

measurement error as well as the dispersion relation should 

be known a priori. Meanwhile, the reflected wave from 

geometric boundary is ignored and the reconstruction 

quality is highly sensitive to the precision of the dispersion 

relation (Yang et al. 2018). These approaches that rely on a 

priori of guided wave velocity and dispersion may not be 

realistic in practical scenarios, because the wave velocity 

expressed in an arbitrary structure is generally unknown. 

The success of guided wavefield sparse reconstruction lies 

on three factors, i.e., the existence of a sparsifying 

transform, a favorable random undersampling scheme and a 

sparsity-promoting recovery method. The undersampling 

scheme determines the measurement matrix of compressed 

sensing that should follow the restricted isometry property. 

Motivated by empirical observations in the seismic 

community, Hennenfent and Herrmann (2008) employed 

the jittered undersampling scheme as the measurement 

matrix of compressed sensing for controlling the maximum 

gap size of wavefield measurement. Synthetic and real 

seismic data indicate that the jittered undersampling scheme 

has a higher accuracy than the regular undersampling 

scheme in wavefield reconstruction (Hennenfent and 

Herrmann 2008). To reduce the acquisition time of SLDV 

for measuring wavefield, Di Ianni et al. (2015) used the 

jittered sampling scheme based on compressed sensing to 

minimize the number of points, and the SPGL1 algorithm 

was used to solve the compressed sensing model. 

Experimental results of an aluminum plate and a glass-

fiber-reinforced polymer plate show that the proposed 

approach could recovery the guided wavefield using less 

than 34% of the original sampling grid (Di Ianni et al. 

2015). 

In this paper, a wavefield sparse reconstruction method 

in conjunction with compressive sensing and sparse 

representation is developed to recovery the full guided 

wavefield from highly incomplete measurements. Different 

from the previous research, this work includes: (1) the 

approach requires only limited measurements and makes no 

assumption about the physics model; (2) the gradient 

projection as a convex optimization being computationally 

faster than competing methods is applied to solve the 

compressed sensing model of wavefield sparse 

reconstruction; (3) three undersampling schemes including 

the regular, random and jittered undersampling schemes are 

evaluated in a statistical context; and (4) a quantified 

mapping relation between the sparsity ratio and the 

recovery error on a special interval is first found in terms of 

statistics. 

 

 

2. General description of guided wavefield sparse 
reconstruction 
 

This section will focus on the compressed sensing 

model of wavefield sparse reconstruction based on wave 

propagation and its spatial sparsity in transforming domain. 

Three undersampling schemes are selected as the 

measurement matrices of CS model, including the regular, 

random and jittered schemes. 

 

2.1 Wave propagation model 
 

The guided wave propagation between any two points in 

a plate can be analytically expressed by their Green’s 

functions. For infinite plates with a single wave source, 

wave response 𝑦(𝑡) at a certain point may be modeled as 

convolution integral of the excitation source 𝑣𝑠(𝑡) with the 

Green’s function ℎ(𝑡) in the time domain (Sohn et al. 

2011) 
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𝑦𝑚(𝑡) = 𝑣𝑠(𝑡) ⊗ ℎ𝑚,𝑠(𝑡) = ∫ ℎ(𝑡 − 𝜏)𝑣𝑠(
𝑡

0

𝜏)𝑑𝜏 (1) 

where the symbol ⊗ denotes the convolution operation 

and 𝜏 is the time delayed operation satisfying 𝑡 ≥ 𝜏. Eq. 

(1) describes a forward problem that does not consider the 

wave propagation reflected from the damage and the 

geometric boundary, in which the response 𝑦𝑚(𝑡)  at 

arbitrary point is calculated from the corresponding Green’s 

function ℎ𝑚,𝑠(𝑡)  and the excitation source 𝑣𝑠(𝑡) . 

Furthermore, the convolution in Eq. (1) can be rewritten in 

the frequency domain 
 

𝑦𝑚(𝑓) = 𝑣𝑠(𝑓)ℎ𝑚,𝑠(𝑓) = 𝑣𝑠(𝑓)
𝑒𝑥𝑝( − 𝑖𝑘(𝑓)𝑑𝑚,𝑠)

√𝑑𝑚,𝑠

 (2) 

 

where 𝑑𝑚,𝑠 is the distance between the wave source and 

the observation point, 𝑘(𝑓)  is the wavenumber of the 

mode of interest. Note that Eq. (2) assumes that the plate is 

sufficiently large so that the reflected wave from the edge 

can be gated out in the time domain. If multiple-source 

scenarios are considered, including the reflected waves 

from damages and geometric boundaries, Eq. (2) can be 

reformulated as 
 

𝑦𝑚(𝑓) = ∑ 𝑣𝑠(𝑓)ℎ𝑚,𝑠(𝑓)

𝑆

𝑠=1

 (3) 

 

where S is the number of excitation sources. Clearly, guided 

waves are expressed as a summation of multiple responses. 

In this work, the full guided wavefield is reconstructed 

from limited measurements in the spatial domain rather than 

in the time domain, and the reconstruction accuracy with 

respect to the reduction ratio is studied. For a given 

snapshot of guided wavefield, the general undersampling 

model in space can be expressed as 
 

𝒚𝑚 = 𝑾𝒚𝑛 (4) 
 

where the vector 𝒚𝑚 ∈ ℝ𝑚  denotes the undersampling 

wavefield data that can be measured typically by a scanning 

laser Doppler vibrometer; the vector 𝒚𝑛 ∈ ℝ𝑛 denotes the 

unknown full wavefield data to reconstruct; n is the number 

of samples which should be acquired to respect the Nyquist 

sampling theory (i.e., the full-resolution sampling grid); the 

matrix 𝑾 ∈ ℝ𝑚×𝑛  presents the undersampling operator 

also named the measurement matrix in CS theory. Each 

element of 𝑾 is either zero or one. Eq. (4) makes a high 

dimension of the full wavefield reduce into a low dimension 

of the observed wavefield. That is to say, according to the 

special undersampling operator, the number of 

measurements m is downsampled from the number of full 

wavefield points n. In this case, each row of 𝑾 can be 

matched to an individual sensor. The measurement 

mechanism in Eq. (4) substitutes the traditional Nyquist-

based signal collection schemes. 

Obviously, if 𝑾 is an identity matrix, i.e., 𝑾 = 𝑰, the 

sampling process will keep all the points of the full 

wavefield in the spatial domain. Here, it is assumed that the 

number of linear measurements m is much less than the 

number of unknown variables n, i.e., 𝑛 ≫ 𝑚. The linear 

operator 𝑾 represents an underdetermined mapping from 

𝒚𝑛  to 𝒚𝑚 , meaning that Eq. (4) is a severely 

underdetermined inverse problem. By assuming that the 

SLDV measurements are almost ideally point-like, the 

undersampling matrix 𝑾 is given by the Dirac (identity) 

basis in which the rows corresponding to n - m locations are 

removed from the identity matrix. Furthermore, 𝑾 ∈ ℝ𝑚×𝑛 

can be regarded as a truncated identity matrix. Since 𝑾 is 

underdetermined, the traditional methods based on least 

squares methods for solving Eq. (4) end up with infinite 

solutions. Such limitations can only be overcome with 

further assumptions imposed. 

 

2.2 Undersampling schemes in space 
 

The design of the undersampling scheme is the most 

challenging factor for reconstructing guided wavefield. The 

purpose of designing a measurement matrix is to acquire 

limited data 𝒚𝑚  and then is to guarantee the accurate 

recovery of the dense data 𝒚𝑛 . In this section, three 

undersampling schemes are discussed, including regular, 

random and jittered schemes. If the undersampling matrix 

𝑾 corresponds to a regular scheme, i.e., data spatially 

downsampled below the Nyquist sampling rate, the 

measured points of wavefield along one or two spatial 

coordinates are evenly distributed over the surface of the 

structure. For the regular undersampling without 

randomization, the sampling locations (𝑥1, 𝑥2)  along 

horizontal and vertical directions on the plate can be 

defined by 
 

𝑥1(𝑖) = 𝑖Δ;          𝑖 = 1,2, . . . ,
𝑅𝑜𝑤

Δ
 

𝑥2(𝑗) = 𝑗Δ;          𝑗 = 1,2, . . . ,
𝐶𝑜𝑚

Δ
 

(5) 

 

where Row and Com denotes the size of dense grid along 

horizontal and vertical directions, respectively; the 

undersampling factor Δ that determines the interval size of 

the points along horizontal and vertical directions is taken 

to be Δ = 2, 3, . ... The regular undersampling scheme may 

fail to work because the reconstruction approach cannot 

efficiently discriminate the original spectrum from its 

severe aliasing. On the contrary, the random undersampling 

scheme according to a discrete uniform distribution spreads 

the energy of the spectral leakage across the Fourier 

domain, turning coherent aliases into harmless incoherent 

random noise. 

In the approach presented in this article, the number of 

scan points acquired in a standard laser vibrometer 

acquisition is decreased by using two different random 

undersampling techniques. As for the first random 

undersampling according to a discrete uniform distribution, 

each point of the wavefield is equally likely to be sampled 

over the structure. 
 

𝑥1(𝑖) = 𝜀𝑖;           𝑖 = 1,2, . . . ,
𝑅𝑜𝑤

Δ
 

𝑥2(𝑗) = 𝜀𝑗;          𝑗 = 1,2, . . . ,
𝐶𝑜𝑚

Δ
 

(6) 

 

where the discrete random variables 𝜀𝑖 and 𝜀𝑗 are integers 
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independently and identically distributed, according to a 

uniform distribution on the interval [1, 𝑅𝑜𝑤/Δ]  and 

[1, 𝐶𝑜𝑚/Δ] , respectively. Candes and Romberg’ work 

(2007) showed that taking random measurements is in some 

sense an optimal strategy for reducing the number of 

measurements. Consequently, the random undersampling 

scheme has no control on the size of the maximum gap. 

Within the field of CS, significant advances have been 

made regarding the main ingredients that go into the design 

of an undersampling scheme that favors sparsity-promoting 

recovery. 

A practical requirement of wavefield reconstruction is to 

control the maximum gap size. Jittered undersampling 

differentiates itself from random undersampling according 

to a discrete uniform distribution, which creates favorable 

recovery conditions by controlling the maximum gap in 

acquired data (Hennenfent and Herrmann 2008). The basic 

idea of the jittered undersampling is to regularly decimate 

the interpolation grid and subsequently perturb the coarse-

grid sample points on the fine grid. This means that one 

measurement is randomly selected within each cell of a 

regular grid defined in the region of interest. Jittered 

sampling locations (𝑥1, 𝑥2) along horizontal and vertical 

directions on the plane of the plate may be defined by 
 

𝑥1(𝑖) = (𝑖 − 1)𝛥 + 𝜀𝑖;          𝑖 = 1,2, . . . ,
𝑅𝑜𝑤

Δ
 

𝑥2(𝑗) = (𝑗 − 1)𝛥 + 𝜀𝑗;          𝑗 = 1,2, . . . ,
𝐶𝑜𝑚

Δ
 

(7) 

 

where the discrete random variables 𝜀𝑖 and 𝜀𝑗 are integers 

independently and identically distributed, according to a 

uniform distribution on the interval [1, Δ] . The jittered 

undersampling factor Δ that determines the size of the 

perturbation around the coarse regular grid is taken to be 

Δ = 2, 3, . .. . It is also assumed that the size n of the 

interpolation grid is a multiple of Δ2, so that the number of 

measured points 𝑚 = 𝑛/Δ2 is an integer. 

Therefore, the elements of the corresponding sampling 

matrix 𝑾 are given by 
 

𝑾(𝑖, 𝑗) = {
1,      if selected
0,      otherwize

 (8) 

 

For the jittered undersampling, the maximum gap size 

cannot exceed 3Δ  along two directions; for regular 

undersampling, all the gaps are of size Δ − 1; for the 

random undersampling according to a discrete uniform 

distribution, the maximum gap size is the length of row or 

column. The random undersampling schemes according to a 

discrete uniform distribution creates favorable recovery 

conditions for a reconstruction procedure. Note that the 

jittered undersampling shares the benefits of the random 

undersampling. 

 

2.3 Compressed sensing model 
 

The sampled guided wavefield is typically irregularly or 

coarsely sampled along one or two spatial coordinates and 

needs to be interpolated before being processed. Generally, 

the recovery problem of the underdetermined system is ill-

posed and permits infinite solutions. Such a limitation can 

be overcome if further assumptions are applied. In the 

theoretical framework of compressed sensing, a signal can 

be recovered exactly from severely undersampled data 

provided that (1) incoherence: the artifacts introduced by 

undersampling look like incoherent random noise in 

sparsifying domain, (2) sparsity: the signal exhibits sparsity 

in a known transform domain, and (3) solver: a data-

consistent sparsity-promoting procedure is used for the 

recovery (Candes and Romberg 2007). Incoherence is 

related to the idea that the elements of the sparsifying basis 

are poorly correlated with the sampling functions. Clearly, 

the random and jittered undersampling schemes described 

in previous subsection follows the first principle of 

compressive sampling. 

As mentioned before, CS relies on a sparsifying 

transform for the recovered signal and uses the sparsity 

prior to compensate for the undersampling loss during the 

recovery process. Sparsity expresses the idea that a signal 

can be represented by a small number of coefficients when 

expressed in terms of a proper basis. The original signal 

may not be sparse but its expansion is sparse in the special 

basis space. Although the actual signal is not exactly sparse, 

if the elements of the coefficient vector decay exponentially 

in absolute value, the signal is still compressible by solving 

the following sparstiy-promoting problem. Mathematically, 

suppose that at a given time the wavefield data of the dense 

grid over the surface of the plate 𝒚𝑛 is sufficiently sparse 

in some known transform 𝛷 such that 

 

𝒚𝑛 = 𝛷𝒙 (9) 

 

where the transformation matrix 𝛷 ∈ ℝ𝑛×𝑛is a dictionary 

matrix constructed by the basis functions. The column of 𝛷 

is the discrete waveform of the basis function, known as an 

atom of the dictionary. 𝒙 ∈ ℝ𝑛 is the coefficient vector of 

sparse representation, i.e., 𝒙 has few nonzero entries. The 

selected dictionary composed of basis functions produces 

the sparse representation of the considered wavefield data. 

A variety of dictionaries have been developed for 

representing signals. These dictionaries can be based on an 

analytic formulation such as Fourier, wavelets, or Gabor 

atoms (Qiao et al. 2015, b). Fourier bases are consequently 

good candidates for the constructing the sparsifying 

dictionary in the CS recovery procedure. In this paper, the 

sparsifying transform is defined as the discrete Fourier 

transform. However, because of its implicit periodicity, the 

fast Fourier transform (FFT) algorithm may cause 

reconstruction artifacts (Qiao et al. 2015). A way of 

avoiding this unwanted outcome is to work on the discrete 

cosine transform (DCT) of the original domain, in place of 

the discrete Fourier transform, without penalty on 

redundancy or computational complexity. That is to say that 

𝛷  in Eq. (9) presents the inverse discrete cosine 

transformation. In the strict sense, DCT provides the 

compressible representation of wavefield data rather than a 

sparse representation. The sparsity of the wavefield data 

means that most of the wavefield energy is captured by a 

few significant coefficients in Fourier domain. 

Subsequently, substituting Eq. (9) into Eq. (4), we can 
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get the following formula 

 

𝒚𝑚 = 𝑾𝛷𝒙 = 𝑨𝒙 (10) 

where 𝑨 ∈ ℝ𝑚×𝑛 is called the sensing matrix in terms of 

CS. We focus on a severely underdetermined system of 

linear equations. In practical applications, measurements are 

always contaminated by noise 
 

𝒚𝑚 = 𝑨𝒙 + 𝜂 (11) 
 

where 𝜂 is the noise term. The target of Eq. (11) is to 

estimate the vector of the sparse representation coefficients 

𝒙 that provide the optimal recovery of the full wavefield. 

As a result, the sparsity of 𝒙 can be used to overcome the 

singular nature of 𝑨 when reconstructing 𝒚𝑛  from 𝒚𝑚 . 

The governing equation describes a forward problem, in 

which sparse measurements of the system 𝒚𝑚  are the 

product of the sparse representation vector 𝒙  and the 

sensing matrix A . In contrast, given 𝒚𝑚 and 𝑨, solving 

𝒙  in Eq. (11) is an inverse problem of an severely 

underdetermined system. 

A convex unconstrained optimization version based on 

l1-norm penalty is given by the following sparsity model 
 

𝑚𝑖𝑛
𝒙

1

2
‖𝒚𝑚 − 𝑨𝒙‖2

2 + 𝜆‖𝒙‖1 (12) 

 

where ‖𝒙‖1 = ∑ |𝑥𝑖|
𝑛
𝑖=1  denotes the l1-norm of the 

coefficient vector 𝒙, and 𝜆 is the regularization parameter 

that establishes a fair balance between the residual and the 

sparsity of the unknown representation coefficients. The 

regularization penalty term ‖𝒙‖1  encourages small 

components of the coefficient vector 𝒙 to become zeros, 

and thus it can promote sparse solutions. Among all 

possible solutions of the severely underdetermined equation 

(Eq. (11)), the optimization problem of Eq. (12) finds the 

sparsest possible solution that explains the data. The l1-

norm regularization problem of Eq. (12) is convex and can 

be solved by many classical optimization algorithms 

(Bioucas-Dias and Figueiredo 2007, Figueiredo et al. 2007, 

Tropp and Wright 2010). The uniqueness of the sparse 

solution of Eq. (12) has been validated in (Candes and 

Wakin 2008, Donoho 2006) under the special condition. 

According to the compressed sensing theory, if Eq. (12) 

exits the sparsest solution, the following two conditions 

should be satisfied: (1) the coefficient vector 𝒙  is 

sufficiently sparse; (2) the elements of the undersampling 

operator are incoherent. The first condition of sparsity 

requires that the energy of 𝒙 is well concentrated in the 

sparsifying domain. The second condition of incoherent 

random undersampling involves the study of the sparsifying 

transform 𝛷  in conjunction with the undersampling 

operator 𝑾. When the second condition is not satisfied, 

sparsity alone is no longer an effective prior to solve the 

recovery problem. Meanwhile, the second condition 

provides a fundamental insight in choosing undersampling 

schemes that favor recovery by sparsity-promoting 

inversion. 

The application of l1-norm penalty in Eq. (12) requires 

that the sensing matrix 𝑨 verifies the restricted isometry 

property (RIP) with a constant 𝛿𝑠  smaller than unity 

(Donoho 2006) 
 

(1 − 𝛿𝑠)‖𝒚‖2
2 ≤ ‖𝑨𝑠𝒙‖2

2 ≤ (1 + 𝛿𝑠)‖𝒚‖2
2 (13) 

In practice this requirement is often replaced by 

ensuring that matrices 𝑾 and 𝛷 are incoherent (Candes 

and Romberg 2007, Perelli et al. 2013). It is mathematically 

verified by checking that the coherence, i.e., the maximum 

value of the scalar product between all the columns of the 

matrix 𝑨, is smaller than a constant defined in (Candes and 

Romberg 2007), meaning that the matrix 𝑨  is nearly 

orthonormal. This condition helps ensure that sparse 

recovery algorithms satisfy the RIP to accurately recover 

the sparse representation with a sufficient number of 

measurements. It is also worth noting that the inverse 

Fourier transforms operator 𝛷  is maximally incoherent 

with the sampling matrix 𝑾. Furthermore, if 𝒚𝑛 is sparse 

in certain a transform domain and 𝑨satisfies the RIP, there 

exists approaches that can uniquely reconstruct 𝒚𝑛 from 

the limited measurements 𝒚𝑚 . We randomly sample in 

space so that each measurement provides unique spatial 

information about guided wavefield. 

 

 
3. The gradient projection approach for guided 

wavefield sparse reconstruction 

 
Many convex optimization solvers often grouped into 

interior-point methods (Kim et al. 2007), iterative 

shrinkage/thresholding algorithms (Bioucas-Dias and 

Figueiredo 2007, Beck and Teboulle 2009) and projected 

gradient methods (Figueiredo et al. 2007), have been 

specifically adapted to the sparse reconstruction model for 

signal/image processing. In many cases, these algorithms 

are convex, computationally efficient, and robust. Different 

from other convex solvers, the iterative shrinkage/ 

thresholding algorithms and the gradient projection 

algorithms involve only matrix-vector products and do not 

involve expensive operations such as matrix factorization. 

Note that the iterative shrinkage/thresholding algorithms is 

applicable for the sparse deconvolution problem rather than 

the compressed sensing model of the underdetermined 

system (Qiao et al. 2019, Figueiredo et al. 2007). This study 

focuses on an improved gradient projection method for 

solving the compressed sensing model of guided wavefield 

sparse reconstruction in which there are fewer equations 

than unknowns. This section provides an overview of how 

the compressed sensing model of guided wavefield is 

implemented using the improved gradient projection 

algorithm. 

The gradient projection approach for sparse 

reconstruction has been applied to compressed sensing and 

other inverse problems (Figueiredo et al. 2007). Here, the 

gradient projection approach based on the l1-minimizer is 

selected for solving the CS problem due to its robustness in 

the presence of measurement noise. In order to employ the 

gradient projection approach for solving the severely 

underdetermined problem of guided wavefield sparse 

reconstruction, Eq. (12) should be formulated as a quadratic 

program. Firstly, one can split the sparse representation 

coefficient vector 𝒙 into the positive and negative parts as 
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follows 

 

𝒙 = 𝒖 − 𝒗,          𝒖 ≥ 0,          𝒗 ≥ 0 (14) 

where the elements of 𝒖 and 𝒗 are defined as 𝑢𝑖 = (𝑥𝑖)+ 

and 𝑣𝑖 = (−𝑥𝑖)+ for i = 1, 2 ,…, n. (𝑥)+ = 𝑚𝑎𝑥{ 0, 𝑥} 

denotes the positive-part operator. Thus, the sparsity-

induced term in Eq. (12) can be expressed as ‖𝒙‖1 =
𝟏𝑛

𝑇𝒖 + 𝟏𝑛
𝑇𝒗 , where the vector 𝟏𝑛 = [1,1, . . . ,1]𝑇  is 

composed of n ones. Therefore, Eq. (12) can be rewritten as 

a bound-constrained quadratic program 
 

𝑚𝑖𝑛
𝒖,𝒗

1

2
‖𝒚𝑚 − 𝑨(𝒖 − 𝒗)‖2

2 + 𝜆(𝟏𝑛
𝑇𝒖 + 𝟏𝑛

𝑇𝒗); 

subject to  𝐮 ≥ 0, 𝐯 ≥ 0 

(15) 

 

Furthermore, Eq. (15) can be rewritten as a standard 

quadratic program 
 

𝑚𝑖𝑛
𝒛

𝐺(𝒛) =
1

2
𝒛𝑇𝑩𝒛 + 𝒄𝑇𝒛;      𝒛 ≥ 0 (16) 

 

where 
 

𝑩 = [ 𝑨𝑇𝑨 −𝑨𝑇𝑨
−𝑨𝑇𝑨 𝑨𝑇𝑨

] ,          𝐳 = [
𝒖
𝒗

] ,  

𝒄 = 𝜆𝟏2𝑛 + [
−𝒃
𝒃

] ,                  𝒃 = 𝑨𝑇𝒚𝑚 
(17) 

 

The gradient of the objective function Eq. (16) is 

𝛻𝐺(𝒙) = 𝑩𝒛 + 𝒄. It can be seen that compared with the 

original problem described in Eq. (12), the dimension of Eq. 

(16) is enlarged twice, i.e., 𝒛 ∈ ℝ2𝑛. Indeed, the matrix-

vector operation involving  𝑩  can be performed more 

efficiently by virtue of its special structure. 

As part of the gradient projection approach of an 

iterative scheme, the target is to find the solution 𝒛𝑘+1 at 

iteration 𝑘 + 1 from the solution 𝒛𝑘 at iteration 𝑘 by the 

following formula 
 

𝒛𝑘+1 = 𝒛𝑘 + 𝜏𝑘𝜹𝑘 (18) 

 

Because the objective function of Eq. (16) is quadratic, 

the scalar 𝜏𝑘 ∈ [0,1] as the line search parameter can be 

determined simply by the closed-form formula 
 

𝜏𝑘 = mid {0,
(𝜹𝑘)𝑇𝛻𝐺(𝒛𝑘)

(𝜹𝑘)𝑇𝑩𝜹𝑘
, 1} (19) 

 

Note that if (𝜹𝑘)𝑇𝑩𝜹𝑘 = 0, the scalar is set 𝜏𝑘 = 1, 

and 𝜹𝑘 is determined at each iteration as 

 

𝜹𝑘 = (𝒛𝑘 − 𝛼𝑘𝛻𝐺(𝒛𝑘))+ − 𝒛𝑘 (20) 

 

where the scalar parameter 𝛼𝑘 is selected on the interval 

[𝛼𝑚𝑎𝑥𝑚𝑖𝑛 by a closed-form formula 
 

𝛼𝑘 = mid {𝛼
‖𝜹𝑘−1‖2

2

(𝜹𝑘)𝑇𝑩𝜹𝑘𝑚𝑎𝑥𝑚𝑖𝑛

} (21) 

 

It should be emphasized that the proposed approach for 

guided wavefield sparse reconstruction does not require 

matrix factorizations and only involves vector operations as 

well as matrix-vector multiplications at each iteration. 

The convergence speed of the convex optimization 

approaches for solving Eq. (16) benefits from a good 

starting point of the regularization parameter. That suggests 

that the speed of the gradient projection may become slow 

for small regularization parameters 𝜆 . Numerous 

experiments (Wright et al. 2009, Qiao et al. 2016b) 

demonstrated that the convergence of the gradient 

projection method and other convex optimization methods 

becomes slow if 𝜆 is small. If there is initially a large 𝜆, 

and then decrease 𝜆  gradually to the desired 𝜆 , it is 

usually much more efficiently to achieve a sparse solution. 

Such an accelerating strategy for dealing with the 

regularization parameter in sparse reconstruction methods is 

called continuation (Kim et al. 2007). The continuation 

scheme is shown to considerably speed up the iterative 

algorithm, leading to a converged solution in fewer 

iterations. In such a case, the gradient projection can be 

embedded in a continuation heuristic to accelerate its 

iteration. Naturally, the primary issue of continuation is how 

to construct a decreasing sequence of 𝜆 that yields a fast 

convergence rate. In this case, a decreasing sequence with 

respect to each iteration 𝑘 , 𝜆0 > 𝜆1 ⋯ > 𝜆𝑘 ⋯ > 𝜆 , is 

determined in advance, where 𝜆  denotes the target 

regularization parameter. Using this continuation strategy, 

the intermediate solution with 𝜆𝑘−1 is chosen as the initial 

estimate for the next iteration with 𝜆𝑘. In this work, the 

initial regularization parameter from a cold start is set as the 

largest value of 𝜆 = 0.8‖𝑨𝑇𝒚𝑚‖∞ , then decreased by a 

constant factor in 10 steps until the target value of 𝜆 =
0.001‖𝑨𝑇𝒚𝑚‖∞ is achieved. Experiments in the following 

section demonstrate that these parameters performance well 

in all cases. 

For an iterative process, choosing a good stopping 

criterion is important to timely stop an iteration when 𝒛𝑘 

becomes close to the optimum. The objective function 

𝐺(𝒛) is reasonably close to an optimal one 𝐺(𝒛∗). Here the 

relative change of the objective function (Eq. (16)) between 

two successive iterations is selected as the stopping 

criterion, defined as 
 

|𝐺(𝒛𝑘+1) − 𝐺(𝒛𝑘)|

𝐺(𝒛𝑘+1)
≤ 𝑡𝑜𝑙 (22) 

 

where 𝑡𝑜𝑙 is a small tolerance parameter, empirically set as 

𝜀 = 10−6 (Qiao et al. 2019). It means that once the relative 

change is less than or equal to an acceptable relative 

tolerance 𝑡𝑜𝑙, the iteration process will be stopped. 

 

 

4. Experimental verification 
 
In this section, a series of controlled experiments on an 

aluminum plate are conducted to verify the effectiveness 

and reliability of the sparse reconstruction approach under 

different excitation frequencies, different undersampling 

schemes and different undersampling ratios. Three 

undersampling schemes including regular, random and 

jittered schemes are compared and their recovery 
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uncertainty is in detail compared. A quantified mapping 

relation between the undersampling ratio and the recovery 

error is established with respect to statistical modeling and 

analysis. 

 

Fig. 1 Experimental set-up for guided wavefield 

measurement using the scanning laser Doppler 

vibrometer 

 

 

4.1 Experiment description 
 

A pristine aluminum plate (6061-T6) with a size of 

520×520×3 mm is set up as shown in Fig. 1. In this work, 

ultrasonic guided waves are generated using a fixed 

piezoelectric transducer and their responses are measured 

using a scanning laser Doppler vibrometer. A given 

inspection region of 50×50 mm on a dense grid of 49×47 (n 

= 2303 points) equally spaced points is scanned by a 

Polytec PSV400 SLDV. Neighbor points are approximately 

separated by 1 mm. The excitation signal of ultrasonic is 

generated by an arbitrary waveform signal generator and 

then amplified to 80 Vpp by a power amplifier for exciting 

the PZT. The excitation function is a 5-cycle Hanning 

windowed tone burst at two distinct central frequencies of 

30 kHz and 50 kHz as shown in Fig. 2. The excitation 

signal is applied to a round 10-mm-diameter piezoelectric 

transducer located on the left of the plate away from the 

scanned region. The guided wavefield data with out-of-

plane velocities are measured by SLDV. Each sampling 

point can be seen as a virtual sensor for recording guided 

wave signal. The sampling frequency of SLDV is 204.8 

kHz. Each point is repeatedly recorded 20 times for 

averaging purposes to reduce the measurement noise as 

much as possible. Note that the present reconstruction 

method allows for some degree of measurement error. The 

 

 

duration of scanning each point is 10 ms with a waiting 

time of 100 ms between neighbor measurements so that the 

wavefront of the previous measurement does not interfere 

with the latter measurement. For measuring guided 

wavefield by SLDV, it is critical to keep the 

synchronization between generating the ultrasonic wave by 

PZT and recording the wavefield by SLDV. Here, the 

control unit of SLDV can send a pulse trigger signal to both 

the signal generator and the acquisition process at each 

scan. 

Only a subset of scanning measurements are used for the 

problem formulation, while the entire set of scanning 

measurements are retained for evaluating the reconstruction 

accuracy. Wavefield data are reconstructed only on the grid 

of the measured full wavefield for comparison purposes. To 

clearly highlight each step of guided wavefield sparse 

reconstruction using compressed sensing, an overview of 

the whole procedure is depicted in Fig. 3, including (1) the 

sampling points in the spatial domain are determined by 

following an undersampling scheme where the 

measurement matrix 𝑾 ∈ ℝ𝑚×𝑛  of the compressed 

sensing model is determined; (2) the limited guided 

wavefield measurements 𝒚𝑚 ∈ ℝ𝑚 are recorded by using 

SLDV; (3) the full wavefield 𝒚𝑛 ∈ ℝ𝑛 on the dense grid 

are represented by the discrete cosine functions 𝜱 ∈ ℝ𝑛×𝑛; 

(4) given 𝒚𝑚 , 𝑾  and 𝜱 , one can construct the 

compressed sensing model in Eq. (12); (5) the gradient 

projection approach is applied to solved the convex 

optimization model of compressed sensing, and then the 

solution of the sparse coefficient vector 𝒙 ∈ ℝ𝑛  is 

obtained; (6) considering Eq. (9), the guided wavefield 

𝒚𝑛 ∈ ℝ𝑛 is reconstructed; (7) the uncertainty of different 

undersampling schemes and ratios on reconstruction 

accuracy are further investigated. Once the ultrasonic 

guided wave signals are collected over the entire scanning 

area, they can be post-processed for ultrasonic wavefield 

sparse reconstruction. 

The quality of wavefield sparse reconstruction solution 

will be quantitatively evaluated by the signal-to-

reconstruction error-ratio between the measured and 

reconstructed wavefields, defined as 
 

𝑆𝑁𝑅 = 20 𝑙𝑜𝑔 (
‖𝒚𝑛‖2

‖𝒚𝑛 − 𝒚̃𝑛‖2
) (23) 

 

 
 

  

(a) 30 kHz (b) 50 kHz 

Fig. 2 Two Hanning-windowed excitation pluses 
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where 𝒚𝑛 is the measured wavefield signal acquired on the 

dense grid by SLDV, and 𝒚̃𝑛 is the reconstructed wavefield 

signal by compressed sensing. The main objective of this 

work is to evaluate the capability of preserving the 

informative content of the signal (i.e., high SNR) while 

reducing the number of acquisition points, because such a 

reduction implies a parallel reduction of the acquisition time 

and a more efficient usage of the SLDV equipment. 

Furthermore, the undersampling ratio of the reconstructed 

wavefield with respect to Nyquist theorem is defined by 
 

𝑅𝑎𝑡𝑖𝑜 =
𝑚

𝑛
× 100% (24) 

 

where Ratio expresses the reduction of the number of 

measurements to acquire with respect to the full capture of 

the wavefield based on sampling criteria. Therefore, the 

compression ratio of the reconstructed wavefield can be 

thought as 1-Ratio. 
 
 

 

 

4.2 Wavefield reconstruction using different 
undersampling schemes 

 

Three undersampling schemes including the random, 

jittered and regular ones are conducted from a uniform full-

resolution grid on a 2-D spatial domain as shown in Fig. 4. 

The solid red circles correspond to the coarse under-

sampling locations 𝒚𝑚, which can be sparsely measured by 

SLDV. The fine grid of blue points denotes the full 

wavefield 𝒚𝑛, which is desired to be reconstructed. The 

upper panel of Fig. 4 depicts the distribution of 600 

undersampling points from 2303 dense points using three 

different schemes, meaning that one-out-of-four samples 

are approximately recorded. The lower panel of Fig. 4 

depicts the distribution of 272 undersampling points from 

2303 dense points using three different schemes, meaning 

that one-out-of-nine samples are approximately recorded. 

The size of the measurement matrix 𝑾 for the compressed 

 

 

 

Fig. 3 The flowchart of guided wavefield sparse reconstruction using compressed sensing 

   

(a) Selected 600 from 2303 dense points 

using the random scheme 

(b) Selected 600 from 2303 dense points 

using the jittered scheme 

(c) Selected 600 from 2303 dense points 

using the regular scheme 
 

   

(d) Selected 272 from 2303 dense points 

using the random scheme 

(e) Selected 272 from 2303 dense points 

using the jittered scheme 

(f) Selected 272 from 2303 dense points 

using the regular scheme 

Fig. 4 Three undersampling schemes with different sampling cases 
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sensing model is 600×2303 and 272×2303, corresponding 

to undersampling ratios 26.05% and 11.81%, respectively. It 

can be seen from Fig. 4 that the distribution of the 

undersampling points using the random and jittered 

schemes according to a discrete uniform distribution is 

random along horizontal and vertical directions in the 

spatial domain. On the contrary, the distribution of the 

undersampling points in Figs. 4 (c) and (f) is even regular 

aligned along horizontal and vertical directions. 

Furthermore, compared with the random scheme in Figs. 

4(a) and (b), the gap of the neighbor points using the jittered 

scheme on the grid is smaller. 

We focus on the recovery of the missing wavefield from 

highly incompletely experimental data. Only a fraction of 

the number of measurements are taken without any prior 

 

 

 

 

knowledge of their dispersion relative. Comparisons are 

made among the reconstruction results of four-fold and 

nine-fold spatially undersampled data. To evaluate the 

gradient projection method for solving the compressed 

sensing model, the wavefield recovery results of two 

snapshots related to different excitation frequencies, 

undersampling schemes and ratios are illustrated in Figs. 5-

8. Note that the guided wavefields measured by SLDV in 

Figs. 5 and 7 are directly generated by PZT without 

boundary reflections; the guided wavefields in Figs. 6 and 8 

are mainly reflected from the left boundary of the plate. 

Two different wavefield snapshots with excitation 

frequencies 30 kHz and 50 kHz are taken as examples. For 

instance, Fig. 5 illustrates the sparse reconstruction results 

of a snapshot (t = 180.66 μs) of the guided wave propaga- 

 

 

 

 

    

(a) The original wavefield 

 

(b) The random scheme with 

26.05% measurements 

(c) The jittered scheme with 

26.05% measurements 

(d) The regular scheme with 

26.05% measurements 
 

    

(e) The original wavefield 

 

(f) The random scheme with 

11.81% measurements 

(g) The jittered scheme with 

11.81% measurements 

(h) The regular scheme with 

11.81% measurements 

Fig. 5 Comparison for reconstructing a wavefield snapshot (t = 180.66 μs) with 30 kHz using different sampling schemes 

    

(a) The original wavefield 

 

(b) The random scheme with 

26.05% measurements 

(c) The jittered scheme with 

26.05% measurements 

(d) The regular scheme with 

26.05% measurements 
 

    

(e) The original wavefield 

 

(f) The random scheme with 

11.81% measurements 

(g) The jittered scheme with 

11.81% measurements 

(h) The regular scheme with 

11.81% measurements 

Fig. 6 Comparison for reconstructing a wavefield snapshot (t = 400.39 μs) with 30 kHz using different sampling schemes 
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tion at 30 kHz using three undersampling schemes along 

with two different undersampling ratios. Images of the first 

column in Fig. 5 as a reference are the original wavefield 

measured from SLDV and sampled above Nyquist rate 

along the horizontal and vertical directions. Note that Figs. 

5(a) and (e) have the same snapshot at a given time instant. 

The upper panel of Fig. 5 depicts the results of the snapshot 

(t = 180.66 μs) from 26.05% measurements using random, 

jittered and regular schemes. The lower panel of Fig. 5 

depicts the results of the snapshot (t = 180.66 μs) from 

11.81% measurements using random, jittered and regular 

schemes. Visually, in Figs. 5(d) and (h), the recovery results 

of the regularly undersampled wavefield using compressed 

sensing is severely aliased and unacceptable, no matter 

what the undersampling ratio is set. The situation is 

completely different in Figs. 5(b), (c) and (f), (g) for the 

random and jittered schemes. One can find that no matter 

the undersampling ratio is set as 26.05% or 11.81%, the 

reconstructed snapshots using random and jittered schemes 

have a perfect match with the measured snapshot. 

Furthermore, it seems that the jittered scheme has a better 

result than the random scheme. Similarly, for another 

snapshot (t = 400.39 μs) with 30 kHz, the reconstructed 

results using random and jittered schemes still have a good 

match with the measured snapshot as shown in Fig. 6. 

To evaluate the performance of the gradient projection 

approach for reconstructing wavefield with different 

excitation frequencies, two snapshots with 50 kHz are also 

reconstructed using three undersampling schemes as shown 

in Figs. 7 and 8. Compared with the cases with the 

excitation frequency 30 kHz in Figs. 5 and 6, the wavefields 

with the excitation frequency 50 kHz in Figs. 7 and 8 

include more waves in the same region over the structure. 

Nevertheless, the reconstructed snapshots using both the 

random and jittered scheme have a perfect match with the 

measured one, no matter the undersampling ratio is set as 

26.05% or 11.81%. The number of measurement points 

required for ultrasonic wavefield image is dramatically 

 

 

reduced. The difference between the measured wavefield 

and the reconstructed wavefield using the random and 

jittered schemes is visually negligible. It seems that the 

jittered scheme leads to an improved recovery compared to 

the random scheme according to a discrete uniform 

distribution. Conversely, the gradient projection approach of 

compressed sensing cannot generate the acceptable solution 

from the regular undersampling scheme. One can conclude 

that for a given undersampling ratio, both the random and 

jittered schemes are much more favorable than the regular 

scheme. Note that the difference in reconstruction quality 

solely lies in the spatial distribution of the sampled points, 

and the undersampling ratio as well as the recovery 

procedure is kept same. 

More specifically, in order to compare the effects of 

three undersampling schemes, the signal-to-reconstruction-

error-ratios (SNR) defined in Eq. (23) with excitation 

frequencies 30 kHz and 50 kHz are quantitatively listed in 

Tables 1 and 2, respectively. Clearly, the values of SNR for 

all the cases using the regular scheme are extremely low 

(less than 3 dB) and unacceptable. For the same snapshot at 

the same excitation frequency, the reconstructed wavefield 

using the undersampling ratio 26.05% has much higher 

SNR than that using the undersampling ratio 11.81%. These 

experiments illustrate that both random and jittered 

samplings create favorable results from severely 

undersampled points, which are much more accurate than 

those achieved by the simply regular scheme. Furthermore, 

SNRs of the jittered scheme are slightly higher than those of 

the random scheme under the same condition. For instance, 

SNRs of the random and jittered schemes with the 

excitation frequency 30 kHz at 180.66 μs are respectively 

23.01 dB and 25.32 dB. It means that the jittered scheme 

behaves similarly as the random scheme according to a 

discrete uniform distribution. 

More specifically, in order to compare the effects of 

three undersampling schemes, the signal-to-reconstruction-

error-ratios (SNR) defined in Eq. (23) with excitation 

 

 

 

    

(a) The original wavefield 

 

(b) The random scheme with 

26.05% measurements 

(c) The jittered scheme with 

26.05% measurements 

(d) The regular scheme with 

26.05% measurements 
 

    

(e) The original wavefield 

 

(f) The random scheme with 

11.81% measurements 

(g) The jittered scheme with 

11.81% measurements 

(h) The regular scheme with 

11.81% measurements 

Fig. 7 Comparison for reconstructing a wavefield snapshot (t = 190.43 μs) with 50 kHz using different sampling schemes 
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Table 1 SNR of the reconstructed guided wavefield with 30 

kHz using three undersampling schemes. 

Snapshot 

/μs 

Sampling 

ratio 

Random 

/dB 

Jittered 

/dB 

Regular 

/dB 

180.66 
26.05 23.01 25.32 2.62 

11.81 17.86 18.89 -0.75 

400.39 
26.05 22.48 23.14 -0.10 

11.81 18.53 19.39 0.12 
 

 

 

Table 2 SNR of the reconstructed guided wavefield with the 

excitation frequency 50 kHz using three 

undersampling schemes 

Snapshot 

/μs 

Sampling 

ratio 

Random 

/dB 

Jittered 

/dB 

Regular 

/dB 

190.43 
26.05 21.62 22.45 -0.26 

11.81 14.92 16.23 -0.58 

317.38 
26.05 21.82 21.85 -2.04 

11.81 18.40 18.96 2.38 
 

 

 

frequencies 30 kHz and 50 kHz are quantitatively listed in 

Tables 1 and 2, respectively. Clearly, the values of SNR for 

all the cases using the regular scheme are extremely low 

(less than 3 dB) and unacceptable. For the same snapshot at 

the same excitation frequency, the reconstructed wavefield 

using the undersampling ratio 26.05% has much higher 

SNR than that using the undersampling ratio 11.81%. These 

experiments illustrate that both random and jittered 

samplings create favorable results from severely 

undersampled points, which are much more accurate than 

those achieved by the simply regular scheme. Furthermore, 

SNRs of the jittered scheme are slightly higher than those of 

the random scheme under the same condition. For instance, 

SNRs of the random and jittered schemes with the 

 

 

excitation frequency 30 kHz at 180.66 μs are respectively 

23.01 dB and 25.32 dB. It means that the jittered scheme 

behaves similarly as the random scheme according to a 

discrete uniform distribution. 

Therefore, we can conclude that it is possible, under 

specific conditions, to exactly recover the original full 

wavefield from highly incomplete measurements by the 

gradient projection approach. Thus, the proposed sparse 

reconstruction technique is able to recover the guided 

wavefield from only 11.81% of measurements required by 

Nyquist theorem. In general, the jittered scheme has a 

slightly higher accuracy than the random scheme. Both 

random schemes can lead to an accurate reconstruction as 

good as the dense regular sampling using SLDV. For 

practical purposes, the former can thus be seen as an 

alternative undersampling scheme of the latter. Not all 

sampling schemes for a given undersampling ratio are 

comparable from a CS perspective. It is quite difficult for 

the regular scheme to reconstruct the full wavefield from 

limited data. 

 

4.3 Uncertainty comparison of different 
undersampling schemes 

 

The previous section illustrates the effectiveness and 

reliability of the sparse reconstruction approach from highly 

incomplete data through a single experiment. It has been 

experimentally demonstrated that the regular scheme 

always has a bad result. In this section, we will focus on the 

uncertainty comparison of two random undersampling 

schemes through a huge number of wavefield sparse 

reconstruction experiments. Here, the uncertainty is defined 

as the standard uncertainty that is equal to the standard 

deviation (Kirkup and Frenkel 2006). Each experiment is 

randomly repeated 1000 times, while the excitation 

frequency, the undersampling scheme and the number of 

sampling points remain unchanged. The sole difference lies 

in the distribution of the undersampling points in the spatial 

    

(a) The original wavefield 

 

(b) The random scheme with 

26.05% measurements 

(c) The jittered scheme with 

26.05% measurements 

(d) The regular scheme with 

26.05% measurements 
 

    

(e) The original wavefield 

 

(f) The random scheme with 

11.81% measurements 

(g) The jittered scheme with 

11.81% measurements 

(h) The regular scheme with 

11.81% measurements 

Fig. 8 Comparison for reconstructing a wavefield snapshot (t = 317.38 μs) with 50 kHz using different sampling schemes 
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(a) t = 180.66 μs with 26.05% measurements (b) t = 180.66 μs with 11.81% measurements 
 

  

(c) t = 400.39 μs with 26.05% measurements (d) t = 400.39 μs with 11.81% measurements 

Fig. 9 Uncertainty comparison of different sampling schemes with 30 kHz in terms of SNR 

  

(a) t = 190.43 μs with 26.05% measurements (b) t = 190.43 μs with 11.81% measurements 
 

  

(c) t = 317.38 μs with 26.05% measurements (d) t = 317.38 μs with 11.81% measurements 

Fig. 10 Uncertainty comparison of different sampling schemes with 50 kHz in terms of SNR 
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domain. The SNR of the reconstructed wavefield is again 

used to quantify the quality of the reconstruction procedure 

as shown in Figs. 9 and 10. In Fig. 9, the first and second 

columns illustrate the box plots of SNRs of the 

reconstructed wavefield at 30 kHz, which correspond to the 

undersampling ratios 26.05% and 11.81%, respectively. The 

central mark, i.e., the red line, presents the median of 1000 

SNRs, the edges of the box are the 25th and 75th 

percentiles, the whiskers present the most extreme 

datapoints. The SNRs outside of the whiskers are 

considered to be outliers and are plotted individually by thin 

“+”. Meanwhile, the mean of 1000 SNRs is also depicted 

and symbolized by thick “+”. It can be seen from Figs. 9 

and 10 that the median and mean values of 1000 SNRs are 

quite close. There exit the considerable overlap between the 

distributions of SNRs of the random and jittered schemes in 

term of statistics. 

Compared with the random scheme, the intervals of both 

the box edges and the whiskers using the jittered scheme in 

Figs. 9 and 10 are smaller. It can be further found in Tables 

3 and 4 that the standard deviations (i.e., namely the 

standard uncertainty) of SNRs of all the experiments are 

less than 1.5 dB; the standard deviations of jittered 

undersampling are smaller than those of random 

undersampling; the mean SNRs of jittered undersampling 

are commonly higher than those of random undersampling. 

Meanwhile, we can see from Figs. 9(d) and 10(d) that the 

mean SNRs of jittered undersampling are slightly lower 

than those of random undersampling, and its uncertainty in 

term of SNR is also smaller. Therefore, one can conclude 

from the uncertainty comparison that the wavefield sparse 

reconstruction approach based on both random and jittered 

schemes can achieve high SNRs. In general, the jittered 

scheme that produces a more uniform distribution, has a 

slightly better recovery than the random scheme in terms of 

statistics. The standard uncertainty of the jittered scheme is 

always smaller than that of the random scheme under the 

same condition. It is worth to mention that it is difficult to 

compare random and jittered schemes in limited 

 

 

 

 

experiments due to the overlap of probability distribution. 

 

4.4 Uncertainty comparison of different 
undersampling ratios 

 

The previous sections mainly evaluate the performance 

of the guided wavefield sparse reconstruction with two 

different undersampling ratios. Here, the uncertainty 

comparison of different undersampling ratios is made in 

terms of SNR using the same undersampling scheme. The 

purpose is to evaluate the capability of preserving the 

information content of signal while reducing the number of 

sampled points. Each experiment is randomly repeated 100 

times, while the excitation frequency, the undersampling 

scheme and ratio remain unchanged but the distribution of 

the sampled points is random. Since the jittered scheme 

involves the sampling in a coarse grid and has a similar 

recovery accuracy, here we solely focus on the random 

scheme that can randomly samples in arbitrary 

undersampling ratio to map a relation between the 

undersampling ratio and SNR. Figs. 11 and 12 show the 

uncertainty comparison of different undersampling ratios in 

terms of SNR using the random scheme at 30 kHz and 50 

kHz of central excitation frequency, respectively. The 

horizontal coordinate represents the underdetermined 

degree of the CS model, i.e., the undersampling ratio of the 

number m of the undersampling points to the number n of 

dense grid points (see Eq. (24)). The red curve is plotted by 

the averaged SNR of 100 repeated cases at each 

undersampling ratio. The discrete undersampling ratios are 

selected by changing the number of measurements as 

follows 

 
𝑅𝑎𝑡𝑖𝑜 = [100,200,272,300: 100: 1500]/2303 × 100% (25) 

 

There is a total of 16 discrete undersampling ratios on 

the interval [4.34%, 65.13%]. It is clear in Figs. 11 and 12 

that the SNRs significantly increase as the increase of the 

sampled points. Meanwhile, the standard uncertainty of 

Table 3 Uncertainty comparison of different sampling schemes at 30 kHz in terms of SNR 

Sampling scheme Random undersampling /dB Jittered undersampling /dB 

Snapshot /μs Sampling ratio Mean of SNR Std of SNR Mean of SNR Std of SNR 

180.66 
26.05 24.19 0.86 24.55 0.54 

11.81 18.05 1.44 18.79 0.90 

400.39 
26.05 23.19 0.29 23.31 0.23 

11.81 19.79 0.60 19.71 0.42 
 

Table 4 Uncertainty comparison of different sampling schemes at 50 kHz in terms of SNR 

Sampling scheme Random undersampling /dB Jittered undersampling /dB 

Snapshot /μs Sampling ratio Mean of SNR Std of SNR Mean of SNR Std of SNR 

190.43 
26.05 21.88 0.60 22.54 0.41 

11.81 15.35 1.03 16.47 0.68 

317.38 
26.05 21.59 0.29 21.69 0.24 

11.81 18.97 0.43 18.83 0.35 
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SNRs has a trend of decrease as the increase of the sampled 

points. Particularly, the SNRs have a sharp increase on the 

interval [4.34%, 13.03%]. It means that the increase of the 

sampled points can improve the performance of the 

wavefield sparse reconstruction procedure. The recovery 

algorithm achieves high SNRs (nearly reaches 30 dB) when 

the number of sampled measurements m is sufficiently 

large. In such cases, one can observe that the recovery 

approach works well starting from more than 11.81 % 

measurements with respect to the original grid, where the 

averaged SNR at each undersampling ratio is over 15 dB. 

This is in line with the results reported in (Hennenfent and 

Herrmann 2008) for seismic data acquisitions. 

We conduct the uncertainty comparison of different 

undersampling ratios ahead in the view of box plot. In the 

following, an interesting relationship between the 

undersampling ratio and the signal-to-reconstruction error-

ratio will be modeled. First, we empirically find after 

abundant statistical experiments that there exists a linear 

function relation between the undersampling ratio and the 

reciprocal of the relation error, defined as 

 

1/𝑟𝑒𝑙 = 𝑎× 𝑅𝑎𝑡𝑖𝑜 + 𝑏 (26) 

 

where 𝑟𝑒𝑙  denotes the relation error between the 

reconstructed wavefield and the measured wavefield; 

 

 

 

 

parameters a and b denote the constant scalar coefficients of 

the first-order polynomial. Combing the expression of SNR 

in Eq. (23), one can get a simple formula 

 

𝑆𝑁𝑅 = 20 ⋅ 𝑙𝑜𝑔( 𝑎× 𝑅𝑎𝑡𝑖𝑜 + 𝑏) (27) 

 

The analytic formula in Eq. (26) is given by curve fitting 

methods instead of Eq. (27) on the specific interval 

𝑅𝑎𝑡𝑖𝑜 ∈ (11.81%, 43.42%), and further the SNRs of other 

undersampling ratios𝑅𝑎𝑡𝑖𝑜 ∈ (43.42%, 65.13%) can be 

estimated. The linear relation is obtained by using 

polynomials with proper orders to fit the mean of 100 

values of 1/𝑟𝑒𝑙 over the specific interval. Furthermore, the 

mapping relation in Eq. (27) can be obtained as shown in 

Figs. 13 and 14. The pointwise standard-error bands of light 

gray shades show the standard uncertainty interval 

[𝑚𝑒𝑎𝑛 − 𝑠𝑡𝑑, 𝑚𝑒𝑎𝑛 + 𝑠𝑡𝑑], the scatters denotes 100 SNRs 

at each undersampling ratio, and the light red shades 

presents the predicted SNRs by Eq. (27) on the interval 

𝑅𝑎𝑡𝑖𝑜 ∈ (43.42%, 65.13%). As can be observed in Figs. 

13 and 14 that the true curves (in black) and the fitted 

curves (in red) have a good fit where the goodness of fit, 

namely the R-square 𝑅2>0.98 on (11.81%, 43.42%). 

Note that when R-square 𝑅2 is close one, the fitting result 

is better. The detailed definition of R-square 𝑅2 can be 

found in the textbook of statistics (Montgomery et al. 

 

 

 

 

  

(a) t = 180.66 μs (b) t = 400.39 μs 

Fig. 13 Map the relationship between SNR and the undersampling ratio at 30 kHz 

  

(a) t = 190.43 μs (b) t = 317.38 μs 

Fig. 14 Map the relationship between SNR and the undersampling ratio at 50 kHz 
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2010). The predicted SNRs on (43.42%, 65.13%)  are 

nearly on the standard uncertainty interval of SNRs 

[𝑚𝑒𝑎𝑛 − 𝑠𝑡𝑑, 𝑚𝑒𝑎𝑛 + 𝑠𝑡𝑑]. Therefore, one can conclude 

that the undersampling ratio on a specific interval is 

proportional to the reciprocal of the relation error of the 

reconstructed wavefield in high probability. 
 

 

5. Conclusions 
 

In this paper, a guided wavefield sparse reconstruction 

procedure is presented using compressed sensing for 

minimizing the number of sampling points. An 

underdetermined system of linear equations is solved in 

which there are fewer equations than unknowns in the 

compressed sensing frame. Three undersampling schemes, 

sparsity-promoting dictionary and the gradient projection 

approach are investigated to produce the best recovery of an 

undersampling wavefield obtained by the scanning laser 

Doppler vibrometer. The effectiveness and reliability of the 

sparse reconstruction approach are verified under different 

excitation frequencies, different wavefield snapshots, 

different undersampling schemes and different under-

sampling ratios. 

The experiments of guided wavefield reconstruction on 

an aluminum plate demonstrate that the proposed sparse 

reconstruction procedure succeeds in recovering the full 

wavefield from highly incomplete measurements with high 

accuracy, leading to dramatically reduced measurement 

points. In this case, 11.81% measurements can lead to a 

perfect full wavefield image that has a good match with the 

measured one by SLDV. Comparing with the regular 

undersampling scheme that fails to reconstruct the 

wavefield, both the random and jittered schemes following 

a discrete random uniform distribution have a higher SNR. 

The uncertainty comparison of different undersampling 

schemes shows that the jittered scheme that controls the gap 

of adjacent sampled points generally, has a higher SNR and 

a smaller uncertainty than the random scheme in terms of 

probability. For the same undersampling ratio, SNRs of the 

reconstructed results with different distributions of 

sampling points have a small deviation. The uncertainty 

comparison of different undersampling ratios shows that the 

increase of the undersampling points can generate a higher 

SNR and lead to a smaller uncertainty. There exists a simple 

analytic function relation between the undersampling ratio 

and the signal-to-reconstruction error-ratio on a specific 

interval in high probability. In this work, we focus on the 

sparse reconstruction of the guided wavefield on a pristine 

plate. In an ongoing work, we will evaluate the performance 

of the sparse reconstruction approach using compressed 

sensing on a damaged plate without baseline data. 
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