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1. Introduction 

 

Structural damage detection is an important aspect of 

structural health monitoring (SHM). Damage detection can 

be broadly classified into local damage detection and global 

damage detection. Vibration-based damage detection 

(VBDD) is one of the branches of the global damage 

detection method using non-destructive testing (NDT). The 

main idea behind the VBDD is that the changes in physical 

parameters (stiffness, damping, and mass), which will affect 

the vibration parameters (frequency, frequency response 

function, mode shape) of the structure. Two basic types of 

data are used in the vibration methods: time domain and 

frequency domain. Among them, natural frequencies and 

mode shapes are used widely as it can be measured easily. 

For this, so many different types of damage detection 

methods and indices are being developed using modal and 

frequency data. Some are discussed in the literature such as 

change in natural frequencies (Cawley and Adams 1979, 

Kim et al. 2003), changes in mode shapes (Kim et al. 

2003), mode shape curvature (Pandey et al. 1991), changes 

in flexibility (Pandey and Biswas 1994). 

Recently there is enormous development in soft 

computing tools, mathematics, and optimization techniques, 
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which are being used for damage detection problems. In 

optimization technique, structural damage detection 

problem can be defined as an inverse problem where an 

error function is defined using the vibration data from the 

structure. The error function is subsequently minimized 

with proper optimization methods to identify damage 

location and severity of damage. 

Mares and Surace (1996) presented a method to locate 

and quantify the damage with genetic algorithm (GA) by 

using a residual force method. Perera and Torres (2006) 

conducted a numerical as well as experimental study to 

detect the damage by using GA from the change of natural 

frequencies and mode shapes. A multi-chromosome genetic 

algorithm (GA) was introduced by Villalba and Laier 

(2012) for damage detection. Yu and Wan (2008) used an 

improved particle swarm optimization (IPSO) to detect the 

structural damage of a plane frame structure. Mohan et al. 

(2013) used particle swarm optimization (PSO) to detect the 

damage of structures from frequency response function 

(FRF) data. Miguel et al. (2012) used harmony search 

method to detect damage of the structure, under ambient 

vibration. Beside these ant colony optimization (Majumdar 

et al. 2012), cuckoo search method (Hosseinzadeh et al. 

2014), magnetic charged system search (Kaveh and Maniat 

2015), improved charged system search (Kaveh and 

Zolghadr 2015), artificial bee colony (Ding et al. 2015), 

Colliding Bodies Optimization (CBO) and Enhanced 

Colliding Bodies Optimization (ECBO) (Kaveh and 

Mahdavi 2016), echolocation search algorithm (Nobahari et 
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al. 2017), Cyclical Parthenogenesis Algorithm (Kaveh and 

Zolghadr 2017) were used in damage detection of 

structures. Kaveh et al. (2014) proposed a mixed particle 

swarm-ray optimization together with harmony search 

(HRPSO) is applied to detect damage in the structure. 

Kaveh and Maniat (2014) applied Charged System Search 

(CSS) algorithm for damage detection in skeletal structure 

using incomplete modal data. Pan et al. (2016) used hybrid 

self-adaptive Firefly-Nelder-Mead algorithm for structural 

damage detection. Pholdee and Bureerat (2016) performed a 

comparative study to identify the damage of three truss 

structures using different meta-heuristics. Meta-heuristic 

methods which they studied includes differential evolution 

(DE) artificial bee colony algorithm (ABC), real-code ant 

colony optimisation (ACOR), league championship 

algorithm (LCA), simulated annealing (SA), particle swarm 

optimisation (PSO), evolution strategies (ES), teaching-

learning-based optimisation (TLBO), adaptive differential 

evolution (ADE), evolution strategy with covariance matrix 

adaptation (CMAES), success-history based adaptive 

differential evolution (SHADE) and SHADE with linear 

population size reduction (L-SHADE). Chun and Yu (2017) 

proposed a PSO-based algorithm for structural damage 

detection using Bayesian multi-sample objective function. 

Big Bang and Big Crunch (BB-BC) optimization algorithm 

was used by Haung and Lu (2017) to detect the damage of 

beam, plate and European Space Agency Structures 

utilizing acceleration responses (AR) of the structure as 

objective function. Kaveh and Dadras (2018) developed an 

enhanced thermal exchange optimization (ETEO) algorithm 

and applied it to a wide range of structures to identify the 

damage. Ghannadi and Kourehli (2019) used moth-flame 

optimization (MFO) to detect damage in truss and shear 

frame structures. A comparison of results for identifying the 

damaged members of truss structures using Vibrating 

Particle system (VPS) and Enhanced Vibrating Particle 

system (EVPS) is performed by Kaveh et al. (2019). 

Optimization methods mentioned above show high 

accuracy in damage detection of structures when the 

number of design variables (structural elements) is small. It 

was found that the computational cost is very high to 

determine the damage location and quantify the damage 

simultaneously. The accuracy of the solution decreased with 

the increment of the design variables (Seyedpoor 2011). 

Hence, many researchers are interested to find a way to 

decrease the dimension of the optimization problem. This is 

implemented by excluding the elements of the structure 

which are less susceptible to damage. As a result, the 

algorithm locates the damaged element and its extent 

accurately with less computational time. The first approach 

is a hybrid technique, consists of two different methods 

which are used in two successive steps. Friswell et al. 

(1998) adopted a hybrid approach incorporating GA to 

locate the damage position, and standard eigensensitivity 

method was used to optimize the damage extent. Au et al. 

(2003) used elemental energy quotient difference in the first 

stage to locate the damaged domain approximately. Then 

the micro-genetic algorithm was incorporated in the second 

stage to quantify the damage using incomplete and noisy 

modal data. He and Hwang (2007) introduced a hybrid 

method, firstly a grey relation analysis was performed, and 

the most potentially damaged elements were detected. In 

the next step, the real parameter genetic algorithm with 

simulated annealing and an adaptive mechanism was used 

to estimate the damage of the pre-identified locations. Guo 

and Li (2009) described a two-stage method to locate and 

quantify the structural damage. The evidence theory was 

used in the first stage, to locate multiple damage sites. In 

the next stage, a micro search algorithm is used to detect the 

damage extent. Naser et al. (2010) developed a strategy 

based on design variable elimination using continuous 

genetic algorithm combined with sensitivity analysis and 

micro search for damage detection. A two-stage damage 

detection method was described by Fallahian and 

Seyedpoor (2010). A new type of objective function was 

introduced by Kaveh et al. (2018) where the computational 

burden of single-stage is reduced by a two-phase technique. 

It was used to identify the damage of skeletal structures. In 

the first phase, only the natural frequencies were used to 

compute the objective function. If the results are 

satisfactory, then only the second phase of the damage 

identification algorithm is performed using less number of 

mode shapes. Apart from these, other hybrid methods for 

damage detection utilizing optimization methods can be 

found in the reference (Baghmisheh et al. 2012, Rao et al. 

2012, Seyedpoor 2012, Xiang and Liang 2012, Fadel et al. 

2013, Hosseinzadeh et al. 2013, Xiang et al. 2013, Wang et 

al. 2014, Seyedpoor and Maryam 2016, Dinh-Cong et al. 

2018b). These hybrid methods work well if the locations of 

the damage are identified accurately in the first stage. It is 

reported that there is a chance to exclude some actual 

damage elements in the first stage in some damage 

scenarios (Kaveh and Zolghadr 2017). 

Another design variable reduction technique is the 

multistage technique, where a single algorithm is used in 

multiple stages. Damage variables are reduced 

simultaneously in the successive stages and lead to damage 

identification. The benefit of this approach is that one can 

use only a single technique which gives better control over 

the problem. Seyedpoor (2011) proposed a multistage PSO 

(MSPSO) algorithm to detect the damage. The main idea 

was to eliminate the design variables with zero damage 

value, from the search space of the next stage. Thus, search 

space of the design variables reduced at the successive 

stages and predicted the damage accurately. An adaptive 

multi-stage optimization method utilizing a modified 

particle swarm optimization (MPSO) was adopted to 

identify the multiple damage cases of the structural systems 

by Nouri Shirazi et al. (2014). The healthy elements were 

successively eliminated during the stages. The healthy 

elements were identified by a parameter, which changes 

with the increment of the stages. The algorithm required an 

upper and lower limit of the parameter. A specified range of 

the upper and lower limit of the parameter would help to 

identify the elements with the damaged severity in between 

that range, but a greater range would increase the 

computational cost, and the benefits of the damage variable 

reduction could not be fully utilized. Dinh-Cong et al. 

(2017) presented an efficient multi-stage optimization 

approach for damage detection in a plate structure. A 
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modified differential evolution (MDE) algorithm was used 

to minimize the objective function established via flexibility 

changes of structure. The main idea was to eliminate the 

low damage variables in each stage, to reduce the search 

space. 

There are three main limitations of these multi-stage 

approaches. Firstly, the above methods are based on a 

multi-stage strategy, and the criteria to shift the stages are 

based on maximum numbers iterations on each stage. These 

heuristic algorithms are stochastic in nature; sometimes, it 

may require lesser numbers of iteration than the maximum 

number of iterations to converge. In that case, an 

unnecessary extra computational effort will be required. On 

the contrary, if the algorithm does not reach to desire 

accuracy within the maximum numbers of iterations, then 

there is a chance of losing actual damaged members in the 

next stage. Secondly, former approaches need a predefined 

threshold value of damage index to identify the healthy 

elements. This threshold value had to be set by using 

previous experience. If it is kept too small, then the 

computational cost eventually will increase. On the other 

way, if the threshold value is more, it can neglect actual 

damage members with less damage index. Lastly, in the 

former approaches, the identified healthy elements were 

removed from the search space of the next stage. Generally, 

the numbers of healthy elements are more than damaged 

elements. So, elimination of healthy elements in successive 

stages will increase the number of required stages to 

converge, as well as will increase the computational cost. 

A multi-stage optimization technique is a simple and 

efficient technique to detect damage precisely, but the role 

of the stopping criteria of each stage and the threshold value 

of the damage index plays a significant part. A novel multi-

stage algorithm is adopted here to reduce the number of 

damage variables, and a standard PSO is used as an 

optimizer. Any heuristic based optimization technique can 

be adopted for the proposed multi-stage damage detection 

algorithm. But, PSO has been selected in the present study 

to compare with the previous results of multistage methods 

based on PSO (Nouri Shirazi et al. 2014). Here, proposed 

multi-stage method will overcome aforesaid limitations and 

has threefold advantages. Firstly, in this method stopping 

criteria of different stages depends on the tolerance value of 

the objective function instead of the number of iterations 

per stage. Thus, the algorithm becomes independent of the 

optimization technique used as well as takes care of the 

stochastic nature of the algorithms, which will eventually 

save computational effort and enhance the accuracy of the 

prediction. Secondly, the algorithm does not need a 

predefined threshold value of damage index for identifying 

the damaged elements. This algorithm adopts a self-

controlled strategy which automatically decides this 

threshold value of the damage index, no prior knowledge is 

needed. The algorithm sets a different threshold value for 

different problems. This value has been updated for each 

stage even for the same problem and automatically include 

all the damaged members in search space. Finally, it is 

observed that in a structure the number of healthy elements 

is greater than the number of damaged elements. In this 

multi-stage technique only the most susceptible damaged 

elements are included in successive stages, instead of 

excluding only healthy elements. Therefore, lesser numbers 

of design variables are included in search space, which will 

produce a higher accuracy and lower computational cost 

than existing single-stage and multi-stage techniques. For 

numerical experimentation of the proposed methodology, 

four examples are considered with and without noise 

addition to demonstrate the effectiveness of this method. 
 

 

2. Vibration-based structural damage detection 
 

In the present study, the structural damage is identified 

utilizing vibration data. 
 

2.1 Theory and background 
 

The equation of motion of an n-degree of freedom 

system without damping can be expressed as 

 

[𝑀]{𝑋̈} + [𝐾]{𝑋} = {𝑓} (1) 

 

[M] and [K] are the (n x n) global mass, and stiffness 

matrices of the structure respectively. {𝑓}, {𝑋} and {𝑋̈} 

are the vector externally applied load, displacement vector 

and acceleration vector respectively. The eigenvalue 

equation associated with Eq. (1) is given by 

 

([𝐾] − 𝜔𝑖
2[𝑀]){𝜑𝑖} = 0;          𝑖 = 1,2, . . . . 𝑛 (2) 

 

There exists n numbers of solutions of Eq. (2) {𝜔𝑖} and 
{𝜑𝑖} represents the natural frequency and corresponding 

vibration mode shape. 
 

2.2 Damage modeling 
 

Damage to the structure is considered as the reduction of 

the stiffness and mass. In the present study, it is assumed 

that damage will affect only the stiffness of the structure, 

but not the mass of the structure. Damage can be modeled 

by reducing one of the element’s stiffness parameters, such 

as the moment of inertia, cross-sectional area or elastic 

modulus. For the present study, the damage is modeled by 

reducing the elasticity modulus. A scalar parameter ‘damage 

index’(𝑥) is introduced here for reduction of the modulus 

of elasticity. The value of 𝑥 varies from 0 to 1, where zero 

value indicates the no damage case and a value near to one 

corresponds to complete damage of the corresponding 

member. The 𝑥 is defined as follows 
 

𝑥𝑖 =
𝐸𝑖

𝑢 − 𝐸𝑖
𝑑

𝐸𝑖
𝑢  (3) 

 

where [𝐸]𝑖
𝑢  and [𝐸]𝑖

𝑑  are the elastic moduli of the ith 

member of the structure in the undamaged and damaged 

state respectively and xi is the damage index for the 

corresponding member. Then the stiffness matrix of the ith 

member can be expressed as 
 

[𝑘]𝑒𝑖
𝑑 = (1 − 𝑥𝑖)[𝑘]𝑒𝑖 (4) 
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[k]ei and [𝑘]𝑒𝑖
𝑑  are the initial and updated damaged 

stiffness matrix of the ith member of the structure, 

respectively. This element stiffness matrix of damaged and 

undamaged members is assembled to create the total 

stiffness matrix of the structural system. 

The change of mass due to the presence of damage is 

neglected in the present study (Majumdar et al. 2012, 

Nanda et al. 2012). So, the eigenvalue equation of the 

damaged system is expressed as 

 

([𝐾]𝑒
𝑑 − (𝜔𝑖

𝑑)2[𝑀]){𝜑𝑖
𝑑} = 0;            𝑖 = 1,2, . . . . 𝑛 (5) 

 

where [𝐾]𝑒
𝑑 is the global stiffness matrix of the damaged 

system, and [𝑀]  is the global mass matrix. 

𝜔𝑖
𝑑 and 𝜑𝑖

𝑑 represents the natural frequency, and 

corresponding vibration mode shape for the damaged 

structure respectively. 
 

2.3 Modelling of noise 
 

Noise because of human errors are always present in the 

results of experimental modal testing. So, the result 

predicted by the mathematical model differs from the 

experimental result. It is essential to check the sensitivity of 

the proposed method with the uncertainty of these 

measurements errors. So, the simulated natural frequencies 

and mode shapes are polluted with uniformly distributed 

random noise. The frequencies and mode shape data 

including noise can be obtained using the following 

equations 
 

𝜔𝑖
𝑛𝑜𝑖𝑠𝑒 = 𝜔𝑖 (1 + 2 ×

𝑁𝐿

100
(𝑟𝑎𝑛𝑑 − 0.5)) (6) 

 

𝜑𝑗𝑖
𝑛𝑜𝑖𝑠𝑒 = 𝜑𝑗𝑖 (1 + 2 ×

𝑁𝐿

100
(𝑟𝑎𝑛𝑑 − 0.5)) (7) 

 

where, 𝜔𝑖
𝑛𝑜𝑖𝑠𝑒 is the i th natural frequency contaminated by 

noise and 𝜑𝑖
𝑛𝑜𝑖𝑠𝑒 is the jth component of the ith mode shape 

vector polluted by noise; 𝑁𝐿  is the noise level in 

percentage (e.g., 3.0 relates to 3.0% noise level) and ‘rand’ 

is the random number uniformly distributed in the range 

[0,1]. It is known that the natural frequencies are less 

contaminated by noise in comparison with mode shapes. As 

reported by Dinh-Cong et al. (2017) the frequencies and 

mode shapes are contaminated with a standard error of 

±0.15% and ±3.0% respectively. 

 

2.4 Objective function based on modal parameter 
 

The presence of damage will change the modal 

parameters (frequencies and mode shapes) of the structure. 

A correlation between the measured and predicted data will 

lead to the location and severity of the damage. For the 

present problem, this correlation is achieved by an objective 

function, which is defined as the error between the 

measured and numerical modal data. So, the damage 

detection problem reduced to a minimizing optimization 

problem. Frequency can be measured very easily and less 

affected by noise, but it is not possible to locate the damage 

using only frequency. For this inverse problem, a 

combination of frequency and mode shapes is selected as 

the objective function, 

The error in frequency 
 

𝐹1(𝑋) = √
1

𝑛
∑{𝜔𝑁,𝑖(𝑋) − 𝜔𝑀,𝑖}

2
𝑛

𝑖=1

 (8) 

 

The correlation between two sets of equal order vectors 
{𝜑𝐴} and {𝜑𝑥} , can be expressed by the Modal Assurance 

Criteria (Pastor et al. 2012). The MAC is defined as 

 

𝑀𝐴𝐶(𝑟, 𝑞) =
|{𝜑𝐴}𝑟

𝑇{𝜑𝑥}𝑞|
2

({𝜑𝐴}𝑟
𝑇{𝜑𝐴}𝑟)({𝜑𝑥}𝑞

𝑇{𝜑𝑥}𝑞)
 (9) 

 

Where {𝜑𝐴}𝑟 represents 𝑟th mode shape. A MAC value 

of 0 indicates no correlation, whereas a MAC value 1 

indicates two correlated modes. 

The error in the MAC value 

 

𝐹2(𝑋) = ∑ (1 − 𝑑𝑖𝑎𝑔 (𝑀𝐴𝐶({𝜑𝑁,𝑖(𝑋)}, {𝜑𝑀,𝑖})))
2

𝑛

𝑖=1

 (10) 

 

In the Eqs. (8) and (10) subscripts N and M refer to 

numerical and measured value, respectively. 𝜔𝑖 is the ith 

natural frequency and 𝜑𝑖 is the ith mode shape. 

The error combination of frequency and The MAC 

value 

𝐹(𝑋) = 𝛾1 × 𝐹1(𝑋) + 𝛾2 × 𝐹2(𝑋) (11) 

 

where F(X) represents a scalar value of error that depends 

on a vector 𝑋𝑇 = {𝑥1, 𝑥2, . . . . . . . . . . . . . , 𝑥𝑡} , which 

represents the damage variable containing the damage 

severity (xi , i = 1, 2,...t) for all t structural elements of the 

numerical model. 𝛾1 and 𝛾2 are the two weighting factors 

ensures a well-conditioned objective function (Harrison and 

Butler 2001). For the present study, the values of 𝛾1 and 

𝛾2  were taken as 0.01 and 100 respectively. Different 

numbers of frequencies and mode shape data are used in 

different examples. So, damage detection problem can be 

solved by using an optimization algorithm by finding a set 

of damage variables minimizing F(X). This optimization 

problem is defined as 

 

Find:                   𝑋𝑇 = {𝑥1, 𝑥2, … … … … . , 𝑥𝑡} 
Minimize:          𝐹(𝑋) 
Subjected to:     𝑥𝑙 ≤ 𝑥𝑖 ≤ 𝑥𝑢;       𝑖 = 1,2. . . . . . 𝑡 

(12) 

 

where xl and xu are the lower and upper bound of the 

damage index. For the present problem damage index (x) 

ranges from 0 to 0.9. 

The quality of the damage detection technique depends 

on the sparsity of the measured mode shape data. Mode 

shape data combining all degrees of freedom (dof) generally 

leads to better results. But in real life, it is not possible to 

get the data from all the dofs. So, it is essential to study 

optimum sensor placement (OSP) to collect the optimum 
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data from the structure for structural damage detection. Guo 

et al. (2004) used improved genetic algorithm to identify 

the optimal locations of sensors for structural health 

monitoring. Dinh-Cong et al. (2018a) used limited numbers 

of sensors to detect damage in laminated composite 

structure using iterated improved reduced system (IIRS) 

method and Jaya algorithm. Dinh-Cong et al. (2018b) 

applied Neumann series expansion-based second-order 

model reduction method (NSEMR-II) to condense the 

structural physical properties due to a limited number of 

sensors placed on the structure. Next, TLBO is used to 

identify the structural damage in the truss structures. But, in 

the present study, it is considered that the sensors are placed 

at all the nodes of the structures. So, the vibration data from 

all degrees of freedom are available and used the in the 

present numerical experimentation. The former approaches 

can be adopted in case of incomplete or sparse data. 
 

 

3. The proposed self-controlled multi-stage PSO 
algorithm 
 

The selection of the optimization algorithm is the most 

important part of the optimization based damage detection 

problem. The optimization algorithms often fall into the 

local optima trap; this is the main drawback of this type of 

damage detection methods. Local optima trap leads to false 

detection of damage. To avoid this problem and detect the 

damage properly an efficient algorithm is prescribed, which 

is eventually reduces the computational cost as well. In this 

study, a self-controlled multi-stage optimization method is 

proposed using PSO. The standard PSO is described at first 

and then proposed methodology is discussed in detail. 

 

3.1 PSO algorithm 
 

Particle swarm optimization is a population-based 

optimization technique which is proposed by Kennedy and 

Eberhart (1995). This is a stochastic optimization method, 

which is based on the social behavior of animals such as a 

swarm of birds and fish schooling. A swarm of particles is 

generated with random position and velocity. The position 

of each particle is a potential solution to the problem. The 

position of a swarm particle which is the closest to the 

destination is considered as the optimum solution of the 

problem. The procedure is described as follows: 
 

(1) The position of a particle in space will represent the 

value of design variables. Initially, the position of a 

particle is randomly generated with the upper and 

lower limit as mentioned in the optimization 

problem. Damage indices (x), which are given by 

Eq. (3) are treated as the design variables in this 

problem. The position of a particle is defined as {x1, 

x2....xt}, where t is the number of variables of the 

problem, which is the number of structural members 

for the present problem. 

(2) A swarm of P number of particles is generated with 

different and random positions. Each of the particles 

is a potential candidate for the solution. So, the 

position of the total population is represented as 

[𝑋]𝑆 = {𝑥1, 𝑥2, . . . . . , 𝑥𝑡}𝑆: 𝑆 ∈ {1,2, . . . . , 𝑃} (13) 

 

The objective function F which is given by the Eq. 

(12) is evaluated as FS for each particle location. 

These particles travel in the search space and 

simultaneously upgrade its position to reach the 

destination, which is the optimum solution of the 

problem. The lowest value of the objective function 

FS indicates the best solution, which is the nearest 

position of the particle to the destination and let the 

best position of the best particle is [X]best. Let 

[𝑋]𝑆
𝑏𝑒𝑠𝑡 = [𝑋]𝑆 

(3) A loop is initiated for a user-defined number of 

iterations N. Each particle position is updated with 

the help of Eqs. (14a) and (14b) 

 

[𝑋]𝑆
𝑖+1 = [𝑋]𝑆

𝑖 + [𝑉]𝑆
𝑖+1: 𝑖 ∈ {1,2, … . , 𝑁}, 

∀𝑆 ∈ {1,2, . . . . . . , 𝑃} 
(14a) 

 

here [V] is the velocity of the particle, it updates the 

particle position. 
 

[𝑉]𝑆
𝑖+1 = 𝑤𝑖[𝑉]𝑆

𝑖 + 𝐶1𝑟1([𝑋]𝑆
𝑏𝑒𝑠𝑡 − [𝑋]𝑆

𝑖 ) 

                 +𝐶2𝑟2([𝑋]𝑏𝑒𝑠𝑡 − [𝑋]𝑆
𝑖 ) 

(14b) 

 

The objective function 𝐹𝑆
𝑖+1([𝑋]𝑆

𝑖+1) is evaluated 

for the new particle position using Eq. (12). 

 

𝐹𝑆
𝑖+1 < 𝐹([𝑋]𝑏𝑒𝑠𝑡),   Then let    [𝑋]𝑏𝑒𝑠𝑡 = [𝑋]𝑆

𝑖+1 
𝐹𝑆

𝑖+1 < 𝐹([𝑋]𝑆
𝑏𝑒𝑠𝑡),   Then let    [𝑋]𝑆

𝑏𝑒𝑠𝑡 = [𝑋]𝑆
𝑖+1 

(15) 

 

(4) End of the loop 

(5) After completion of all iterations particle position 

[X] best is considered as the best solution. 
 

Where [𝑋]𝑆
𝑖 = {𝑥1, 𝑥2, . . . . . , 𝑥𝑡}𝑆: 𝑆 ∈ {1,2, . . . . . , 𝑃} 

Represents position vector of the S th particle in the ith 

iteration for the t variables. 

[𝑉]𝑆
𝑖+1 is the velocity vector of the Sth particle in the 

(i+1)th iteration, 

[𝑋]𝑆
𝑏𝑒𝑠𝑡 is the best position of the Sth particle between 

first and ith iteration, 

[𝑋]𝑏𝑒𝑠𝑡is the best position achieved by the whole swarm 

of a particle between first and i th iteration. 

r1 and r2 are random numbers uniformly distributed 

within [0,1]. C1 and C2 are the cognitive and social scaling 

parameter respectively. The term 𝑤𝑖 denotes the inertial 

weight, which controls the balance between the global-local 

searches. The inertia weight 𝑤𝑖 is defined by a linearly 

decreasing function from a maximum value 𝑤𝑚𝑎𝑥  to a 

minimum value 𝑤𝑚𝑖𝑛. More information about the PSO in 

the application of structural damage detection can be found 

in the works of Saada et al. (2013), Nanda et al. (2012). A 

study on the PSO parameters is performed to get an 

optimum result with minimum computational cost 

efficiency. Thus PSO parameters for the present problem is 

selected which are reported in Table 1. 
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Table 1 PSO parameters for all examples 

Parameters Description Value 

P The number of particles 75 

C1 Cognitive parameter 2.05 

C2 Social parameter 2.05 

𝑤𝑚𝑎𝑥 Maximum of inertia weight 1.10 

𝑤𝑚𝑖𝑛 Minimum of inertia weight 0.10 
 

 

 

3.2 Self controlled multistage optimization method 
 

A self-controlled multi-stage PSO (SCMSPSO) 

algorithm is proposed to accurately detect the damage 

location and severity with less computational cost. In 

general, only a few members of a structure are damaged, 

and the other members remain undamaged. But in a single 

stage method sometimes undamaged members are shown as 

damaged members with lesser severity than actual damaged 

members. As a result, the accuracy of the method is 

affected, and the original damage location and severity are 

not properly detected. In the present study, a self-controlled 

multi-stage strategy is proposed to minimize the objective 

function. In previous multi-stage studies stage, the 

termination criterion was based on the iteration number, 

which does not guarantee accuracy and cost efficiency 

simultaneously. In this method, the first stage termination 

criterion is based on the desired tolerance of the objective 

function. This will ensure that the original solution will 

remain in the search space. After satisfying the convergence 

criteria of the first stage, a threshold value of damage index 

is defined by the algorithm. This damage index threshold 

value will be updated in each stage by the algorithm until 

the problem converges. Previously this threshold value was 

taken arbitrarily and needed previous expertise. The design 

variables more than that value are considered as unhealthy 

elements, which are the most likely elements of the 

structure to be damaged. Only these damage prone elements 

are included in the next stage which results in the reduction 

in the dimension of the search space. This method includes 

all the damaged elements in a successive way, and the 

accuracy of the PSO algorithm increases subsequently. 

Thus, the algorithm achieves to exact localization and 

quantification of damage. Different steps involved in this 

method are enumerated as follows: 

 

(1) Set the parameters of PSO, and the number of initial 

design variables is t, which is the original total 

number of structural members. The values of other 

parameters (β) of the algorithm are set. 

(2) Randomly generate initial position and velocity of 

the P particles in the t dimensional space with 

specified limits 

 

𝑋𝑙 ≤ 𝑋𝑖 ≤ 𝑋𝑢     and     𝑉𝑙 ≤ 𝑉𝑖 ≤ 𝑉𝑢 
𝑖 = 1, 2, … 𝑃 

 

(3) Find an initial solution, 𝑋𝑝𝑠𝑜
𝑇 = {𝑥1, 𝑥2, . . . . . , 𝑥𝑡} by 

using standard PSO and achieve the first stage 

convergence criteria. 

(4) Find the maximum value of damage index (xmax) 

from the last solution. The threshold value of 

damage index to identify most damage prone 

elements are defined by a parameter μ. The value of 

μ is set by (xmax /β). 

(5) The members having damage index more than value 

μ is considered as an unhealthy element. And find 

the total numbers of such members. 

(6) Only unhealthy members (v) are kept in the set of 

design variables of the search space of the next 

optimization. So, the dimension of the optimization 

is reduced to v from t. Thus the dimension reduction 

of search space is (t-v). The damage indexes of 

healthy elements are set as zero. 

(7) Solve the problem using standard PSO and get the 

new solution, i.e., 𝑋𝑝𝑠𝑜
𝑇 = {𝑥1, 𝑥2, . . . . . , 𝑥𝑣} 

(8) Check the convergence criteria. If satisfy go to step 

9. Otherwise, go to step 4 with an increment of β. 

(9) Save the final optimal solution and stop the 

optimization process. 

 

From step 1 to 9 is described by a flowchart which is 

shown in Fig. 1. This algorithm works for a high number of 

design variables as well as low numbers of design variables, 

which is shown in examples considered in the study. A 

 

 

 

Fig. 1 The flowchart of the self-controlled multi-stage 

optimization algorithm 
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Fig. 2 10-bar planar truss (Kaveh and Mahdavi 2016) 

 

 

Table 2 Two damage scenarios induced in 10-bar planar 

truss 

Damage scenario I Damage case scenario II 

Element 

number 

Damage 

percentage 

Element 

number 

Damage 

percentage 

1 5.0% 2 5.0% 

- - 4 10.0% 
 

 

 

higher number of design variables takes a higher number of 

iterations to converge. In the present study, the initial value 

of β is taken as 2. The value of β gives the stage number 

(i.e., the 2th stage will have the value of β = 2). Stopping 

criteria for the first stage of the algorithm is considered as 

1e-2. And, the final stopping criteria for the present 

algorithm either 1e-7 (Dinh-Cong et al. 2018b) or no 

relative changse in the objective function for the next 50 

iterations. 
 

 

4. Numerical examples 
 
In order to show the efficiency of the proposed method 

for structural damage detection, four illustrative test 

examples are considered (Majumdar et al. 2012, Nouri 

Shirazi et al. 2014, Kaveh and Mahdavi 2016). The first 
 

 

example is a 10-bar planar truss, the second one is a 31-bar 

planar truss, the third example is a 47-bar planar truss and 

the last example is a 25- bar spatial truss. All the examples 

are studied in two circumstances of noise-free and noisy 

measurement data. In first three examples, frequencies and 

mode shapes are contaminated with 0.15% and 3.0% noise 

respectively. In the last example 0.5% and 5.0% noise is 

added to pollute the frequencies and mode shapes 

respectively to check the efficiency of the algorithm at 

higher level of noise. This will prove that noise addition 

will not affect the solution at all. Ten independent runs are 

made for each damage scenario to take care of the 

stochastic nature of the optimization algorithm. 
 

4.1 10 -bar planar truss 
 

A planar truss consists of ten members shown in Fig. 2 

is selected from Kaveh and Mahdavi (2016). The modulus 

of elasticity, material density, and cross-sectional area is 

considered as 2770 kg/m3, 69.8 GPa and 0.0025 m2. Two 

independent damage scenarios which are considered in this 

example are described in Table 2. Kaveh and Mahadavi 

utilized the first eight natural frequencies, and 

corresponding mode shapes to detect the damage in this 

structure. So, in the present study also the first eight 

frequencies are used to detect damage and results are 

compared with Kaveh and Mahdavi (2016). 

The performance of the proposed method for damage 

detection of the 10 bar planar truss is compared with the 

results  obtained by Enhanced Colliding Bodies 

Optimization (ECBO) (Kaveh and Mahdavi 2016) and PSO. 

ECBO is selected to compare the results with SCMSPSO 

because it is one of the most recent algorithms. The 

performance of single stage ECBO is excellent in damage 

detection problem reported by Kaveh and Mahdavi (2016). 

Only average value of predicted damage without noise is 

available for ECBO. Table 3 shows the average value of 

damage index, standard deviation, and an average number 

of structural analyses of the ECBO, PSO, and SCMSPSO 

for the scenarios I and II respectively. All three methods can 

detect the damage location accurately with a very small 
 

 
 

Table 3 The statistical results of damage assessment in 10- bar planar truss obtained by ECBO, PSO and SCMSPSO for each 

scenario with and without noise 

S
ce

n
ar

io
 

A
ct

u
al

 

lo
ca

ti
o
n
 

Without noise With noise 

ECBO 

(Kaveh and 

Mahdavi 2016) 

PSO SCMSPSO PSO SCMSPSO 

Avg. 

Value 

Std. 

Dev 

Avg. 

NSA 

Avg. 

value 

Std. 

Dev 

Avg. 

NSA 

Avg. 

Value 

Std. 

Dev 

Avg. 

NSA 

Avg. 

Value 

Std. 

Dev 

Avg. 

NSA 

Avg. 

value 

Std. 

Dev 

Avg. 

NSA 

1 𝛼1 0.04977 _ _ 0.0500 0.0 4700 0.05 0.0 1970 0.0387 
7.43e-

03 
14300 0.0523 

6.00e-

03 
6740 

2 

𝛼2 0.1000 _  0.9994 
1.68e-

04 
25890 

0.10 
5.14e-

06 
8925 

0.1002 
2.54e-

03 
17650 

0.1005 
5.50e-

03 
9425 

𝛼4 0.0499 _ _ 0.05005 
1.65e-

04 
0.05 

8.44e-

06 
0.0487 

2.31e-

03 
0.0505 

5.71e-

03 
 

*Avg. Value = average value of damage index with respect to F; Std Dev = standard deviation with respect to F; 

Avg. NSA= an average number of structural analyses 
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error in quantifying the severity of damage. Particularly, for 

the scenario I without noise, the error in the quantification 

of damage index is 0.46%, 0.0% and 0.0% for ECBO, PSO, 

and SCMSPSO respectively. The cost efficiency of the 

algorithms can be measured by comparing the average 

number of structural analyses (NSA). SCMSPSO takes 

58.08% less computational effort (NSA) than PSO. For the 

scenario I with noise (Table 3), the errors in damage index 

quantification are 22.6% and 4.6% for PSO and SCMSPSO 

respectively. The accuracy of SCMSPSO is better than 

PSO, as SCMSPSO successfully avoids false damage 

detection. Moreover, SCMSPSO takes 52.87% less NSA 

than PSO. Similarly, for the scenario II SCMSPSO 

performed better than ECBO and PSO, both without noise 

and with measurement noise. SCMSPSO shows better 

accuracy than the other two algorithms, in terms of damage 

index quantification with less computational cost. 

A typical run of the scenario I obtained by SCMSPSO 

and PSO without noise and with noise measurement is 

shown in Table 4. The problem converges in the second 

stage for SCMSPSO for both noisy as well as noise-free 

measurements. The required number of structural analyses 

in each stage, the total number of required structural 

analyses, design variables in each stage and elimination of 

damage variables in successive stages are described in 

Table 4. In case of without noise-free measurements, the 

first stage of SCMSPSO the number of variables is ten, 

which is equal to the total number of structural members. 

The optimization algorithm runs until the objective function 

value reaches to stopping criteria of the first stage. Then the 

problem enters into the next stage, and only the members 

with damage index more than the threshold value is 

 

 

considered here. In the second stage of the present run, the 

design variable number reduces to one from ten. Thus, the 

numbers of the damage variables decrease with the 

increment of stage, and consequently the accuracy of 

damage prediction increases. Whereas, PSO requires much 

more average numbers of structural analyses (NSA) than 

SCMSPSO, to achieve the same level of damage prediction 

accuracy. The damage prediction with noise by SCMSPSO 

successfully predicts only the damage members, whereas 

PSO predicts some other members with very less severity 

damage. Thus, SCMSPSO produces more accurate results 

than PSO and successfully avoids false damage prediction 

with considerably less computational cost. The damage 

identification results for the two damage scenarios are 

shown in Figs. 3 and 4 with noise and without noise. These 

figures show that this method accurately finds the damage 

location and severity without any false identification. Both 

the scenarios converge at the second stage of SCMSPSO. 

 

4.2 31 -bar planar truss 
 

The 31-bar planar truss shown in Fig. 5 is selected from 

Nouri Shirazi et al. (2014). The elasticity modulus and 

density of the material are 70 Gpa and 2770 kg/m3. In the 

present problem, three different damage scenarios are 

selected from Nouri Shirazi et al. (2014). These three 

damage scenarios are shown in Table 5. According to Nouri 

Shirazi et al. (2014), the first ten natural frequencies and 

corresponding mode shapes are utilized to predict the 

damage. 

The performance of the proposed method compared 

with MPSO (Nouri Shirazi et al. 2014) and PSO. The 

Table 4 Damage variable identified in the different stages of SCMSPSO and PSO for the scenario I 

of the 10-bar planar truss with noise free and noisy data 

Element no. 

Actual 

damage 

magnitude 

Without noise With noise 

SCMSPSO 
PSO 

SCMSPSO 
PSO 

Stage 1 Stage 2 Stage 1 Stage 2 

1 0.05 0.0541 0.05 0.05 0.0157 0.0485 0.0466 

2 0.0 0 - 0 0.0009 - 0.0029 

3 0.0 0 - 0 0.0280 0.0 0 

4 0.0 0 - 0 0 - 0 

5 0.0 0 - 0 0 - 0 

6 0.0 0 - 0 0 - 0 

7 0.0 0 - 0 0 - 0 

8 0.0 0 - 0 0 - 0 

9 0.0 0 - 0 0.0117 - 0.0045 

10 0.0 0 - 0 0 - 0.0036 

TVDI (μ) - 0.0207 - - 0.0140 - - 

RSA  450 300 5025 825 5555 20550 

TRSA  - 750 5025 - 6380 20550 

Design variables  10 1 10 10 2 10 

Elimination  0 9 - 0 8 - 
 

*TVDI = threshold value of damage index; RSA = required structural analyses; 

TRSA = total required structural analyses 
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Fig. 3 The obtained results of damage prediction for 10-bar 

planar truss using PSO and SCMSPSO considering 

noise free and noisy data for damage scenario I 
 

 

 

 

 

 

 

Fig. 4 The obtained results of damage prediction for 10-bar 

planar truss using PSO and SCMSPSO considering 

noise free and noisy data for damage scenario II 
 

 

 

 

 

 

 

Fig. 5 31-bar planar truss (Nouri Shirazi et al. 2014) 

Table 5 Three damage scenarios induced in 31-bar planar truss 

Damage scenario I Damage scenario II Damage scenario III 

Element number Damage ratio Element number Damage ratio Element number Damage ratio 

11 0.25 16 0.30 1 0.30 

25 0.15 - - 2 0.20 
 

Table 6 The statistical results of damage assessment in 31- bar planar truss obtained by MPSO, PSO and SCMSPSO for each 

scenario with and without noise 

S
ce

n
ar

io
 

A
ct

u
al

 

lo
ca

ti
o
n
 

Without noise With noise 

MPSO 

(Nouri Shirazi 

et al. 2014) 

PSO SCMSPSO PSO SCMSPSO 

Avg. 

Value 

Std. 

Dev 

Avg. 

NSA 

Avg. 

Value 

Std. 

Dev 

Avg. 

NSA 

Avg. 

Value 

Std. 

Dev 

Avg. 

NSA 

Avg. 

Value 

Std. 

Dev 

Avg. 

NSA 

Avg. 

Value 

Std. 

Dev 

Avg. 

NSA 

I 

𝛼11 0.2495 1.38e-3 

35700 

0.25 0.0 

42900 

0.25 0.0 

6685 

0.1959 
8.64e-

02 
108645 

0.2633 
3.16e-

02 
12135 

𝛼25 0.1496 9.24e-4 0.15 0.0 0.15 0.0 0.1192 
2.39e-

02 
0.1447 

1.41e-

02 

II 𝛼16
 0.3000 0.0 14100 0.30 0.0 16660 0.30 0.0 7780 0.2484 

7.36e-

02 
53430 0.3214 

2.84e-

02 
15840 

III 

𝛼1 0.3000 0.0 

33900 

0.30 0.0 

48540 

0.30 0.0 

8260 

0.2859 
1.03e-

02 
112575 

0.2988 
4.83e-

03 
11750 

𝛼2
 0.2000 0.0 0.20 0.0 0.20 0.0 0.1518 

6.67e-

02 
0.2024 

8.78e-

03 
 

*Avg. Value = average value of damage index with respect to F; Std Dev = standard deviation with respect to F; 

Avg. NSA= an average number of structural analyses. 
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average solutions, standard deviation and an average 

number of structural analyses of the MPSO, PSO, and 

SCMSPSO for all the scenarios of this problem are shown 

in Table 6. It can be observed from Table 6; all the 

algorithms can predict damage location as well as severity 

with an acceptable precision without noise. However, the 

 

 

difference can be noticed in terms of computational cost. 

SCMSPSO proves to be the most cost-efficient among the 

algorithms. 

Apart from this, in the presence of noise, the error will 

increase in all the scenarios. In the case of noisy 

measurement data, only PSO results are compared with the 

Table 7 Damage variable identified in the different stages of SCMSPSO and PSO for the scenario 

III of the 31-bar planar truss with noise free and noisy data 

Element no. 

Actual 

damage 

magnitude 

Without noise With noise 

SCMSPSO 
PSO 

SCMSPSO  
PSO 

Stage 1 Stage 2 Stage 1 Stage 2 

1 0.0 0 - 0.0 0.0 - 0.0 

2 0.0 0.0021 - 0.0 0.0277 - 0.0547 

3 0.0 0.0 - 0.0 0.0068 - 0.0044 

4 0.0 0.0 - 0.0 0.0 - 0.0 

5 0.0 0.0 - 0.0 0.0001 - 0.0 

6 0.0 0.0057 - 0.0 0.0 - 0.0 

7 0.0 0.0 - 0.0 0.0010 - 0.0018 

8 0.0 0.0 - 0.0 0.0469 - 0.0 

9 0.0 0.0 - 0.0 0.0 - 0.0 

10 0.0 0.0 - 0.0 0.0328 - 0.0 

11 0.25 0.2201 0.25 0.25 0.1039 0.2596 0.1451 

12 0.0 0.0 - 0.0 0.0 - 0.0 

13 0.0 0.0 - 0.0 0.0 - 0.0 

14 0.0 0.0 - 0.0 0.0 - 0.0 

15 0.0 0.0 - 0.0 0.0 - 0.0 

16 0.0 0.0 - 0.0 0.0 - 0.0 

17 0.0 0.0 - 0.0 0.0 - 0.0 

18 0.0 0.0 - 0.0 0.0 - 0.0 

19 0.0 0.0 - 0.0 0.0 - 0.0 

20 0.0 0.0 - 0.0 0.0 - 0.0 

21 0.0 0.1453 0.0 0.0 0.0 - 0.0521 

22 0.0 0.0 - 0.0 0.0 - 0.0074 

23 0.0 0.0008 - 0.0 0.0 - 0.0 

24 0.0 0.0031 - 0.0 0.0 - 0.0 

25 0.15 0.1240 0.15 0.15 0.1198 0.1473 0.1250 

26 0.0 0.0026 - 0.0 0.0220 - 0.0520 

27 0.0 0.0 - 0.0 0.0 - 0.0 

28 0.0 0.0 - 0.0 0.0 - 0.0 

29 0.0 0.0 - 0.0 0.0 - 0.0043 

30 0.0 0.0064 - 0.0 0.0 - 0.0 

31 0.0 0 - 0.0 0.0 - 0.0 

TVDI (μ)  0.110 - - 0.0599 - - 

RSA  4350 2625 25500 7400 5225 112575 

TRSA  - 6975 25500 - 12625 112575 

Design variables  31 3 31 31 2 31 

Elimination  0 28 - 0 29 - 
 

*TVDI = threshold value of damage index; RSA = required structural analyses; 

TRSA = total required structural analyses 
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SCPSPSO results due to unavailability of the results of 

MPSO. It can be observed from Table 6 that SCMSPSO 

predicts the damage severity more accurately with a lesser 

average number of structural analyses than PSO. More 

specifically, in the scenario I without noise all the 

algorithms predict damage severity and location accurately. 

Whereas MPSO requires lesser computational cost than 

PSO, but SCMSPSO takes even lesser computational cost 

among than PSO. SCMSPSO requires 81.27% and 84.41% 

less computational time (NSA) than MPSO and PSO 

respectively. As seen from Table 6, for the scenario I 

SCMSPSO predicts the damage severity with an error of 

5.32% and 3.53% for the elements 11 and 25 respectively. 

While the error between the obtained averages damage 

index and actual damage index by PSO is 21.64% and 

20.53% for the elements 11 and 25 respectively. Similarly, 

in scenario II and III, all the algorithm performs excellently 

in regards of damage severity prediction without noise. But 

the computational cost is the lowest for the SCMSPSO. In 

the case of measurements with noise (Table 6) SCMSPSO 
 

 

 

 

predicts the damage extent with a mean error of 7.13% and 

0.8% for scenario II and III respectively while those errors 

for PSO is 17.2% and 14.4% respectively. The accuracy of 

the damage severity prediction of actual damaged elements 

is improved for SCMSPSO as it successfully avoids false 

damage prediction. Moreover, with noisy measurements, 

SCMSPSO performs far better than PSO in terms of 

computational cost. 

Table 7 shows a typical run of scenario III obtained by 

SCMSPSO and PSO without noise and with noise 

measurement data. It is observed from Table 7, in the first 

stage of SCMSPSO with noise-free measurements; the 

variable number is the same as total numbers of truss 

elements which are thirty-one. In the first stage, SCMSPSO 

predicts the actual damaged elements and some false 

damaged elements in stage one, with few numbers of 

structural analyses. But, in the second stage, the algorithm 

keeps only three design variables in the search space. As a 

result, the problem converges in the second stage with a 

small number of structural analyses. Whereas, PSO requires 
 

 

 

 

 

 

Fig. 6 The obtained results of damage prediction for 31-bar planar truss using PSO and SCMSPSO considering 

noise free and noisy data for damage scenario I 

 

Fig. 7 The obtained results of damage prediction for 31-bar planar truss using PSO and SCMSPSO considering 

noise free and noisy data for damage scenario II 
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much more structural analyses to achieve the same accuracy 

of the solution. For noisy data, SCMSPSO shows less 

accurate results at the first stage as the number of variables 

is thirty-one. But, in the second stage, the number of design 

variables reduced to two, and it gives better accuracy than 

single stage PSO, as it successfully eliminates members 

without damage. SCMSPSO requires lesser structural 

analyses than PSO for damage detection with noise. Fig. 6, 

Figs. 7 and 8 show the three damage scenarios identified by 

SCMSPSO and PSO with and without noise. It can be 

observed from figures that SCMSPSO predict the damage 

location and damage extent with acceptable accuracy with 

and without noise. All the scenarios converge at the second 

stage of the algorithm. 

 

4.3 47 -bar planar truss 
 

A two-dimensional 47- bar power line tower shown in 

Fig. 9 is selected from Nouri Shirazi et al. (2014). The 

material density and elastic modulus for the members of the 

problem are 0.3 lb/in3 and 30,000 ksi respectively. For the 

present problem, four different damage cases are selected 

from Nouri Shirazi et al. (2014) , which are shown in Table 

8. The first ten natural frequencies and corresponding mode 

shapes are utilized to predict the damage. 

As seen in Table 9 without noise measurements PSO 

and SCMSPSO both can identify and quantify damage with 

zero error, but SCMSPSO takes much less computational 

time than PSO. More specifically SCMSPSO requires 

54.84%, 61.99%, 75.95% and 71.56% less structural 

analyses than PSO for damage detection of scenario I, II, III 
 

 

 

 

and IV respectively. While with noise measurements, 

SCMSPSO can identify damage and quantify it with minor 

error and computational time than PSO. The mean error 

between obtained average damage indices and actual 

damage indices by SCMSPSO are 0.63%, 1.03%, 0.95% 

and 0.625% for scenarios I, II, III and IV respectively. 

While those for PSO are 2.9%, 6.4%, 4.03% and 13.71% 

respectively. It should be emphasized that the SCMSPSO 

requires much less number of average structural analyses 

than PSO in noise measurements also. Thus, self-controlled 

multistage strategy helps the PSO algorithm to increase the 

accuracy and decrease the computational cost significantly. 

The damage identification by MPSO is represented by 

Nouri Shirazi et al. (2014) differently. The comparison of 

results between SCMSPSO and MPSO is shown in Tables 

10 and 11, which follows the representation of Nouri 

Shirazi et al. (2014). In Tables 10 and 11, the sign ‘+’ 

represents the identification of the exact location and 

magnitude of the damage. The sign ‘x’ represents the 

identification of the exact location without proper 

identification of damage extent. The sign ‘-’ represents the 

failure to identify the location and extent of the damage. 

Tables 10 and 11 show SCMSPSO identifies the damage 

with better accuracy and lesser computational cost than 

MPSO in all scenarios and both noisy and noise-free 

measurements. A typical run of scenario III obtained by 

SCMSPSO and PSO without noise and with noise 

measurement data is shown in Table 12. SCMSPSO utilizes 

the total number of structural members as initial design 

variables, and in the second stage, the design variables are 

reduced by the algorithm. As a result, SCMSPSO achieves 

 

 

 

 

Fig. 8 The obtained results of damage prediction for 31-bar planar truss using PSO and SCMSPSO considering 

noise free and noisy data for damage scenario III 

Table 8 Four damage scenarios induced in 47-bar planar truss 

Damage scenario I Damage scenario II Damage scenario III Damage scenario IV 

Element 

number 

Damage 

ratio 

Element 

number 

Damage 

ratio 

Element 

number 

Damage 

ratio 

Element 

number 

Damage 

ratio 

10 0.30 30 0.30 10 0.30 40 0.30 

- - - - 30 0.30 41 0.20 
 

356356



 

Structural damage identification of truss structures using self-controlled multi-stage particle swarm optimization 

 

 

 

 

 

 

 

 

Fig. 9 47-bar planar truss (Nouri Shirazi et al. 2014) 

Table 9 The statistical results of damage assessment in 47- bar planar truss obtained by PSO and SCMSPSO for each scenario 

with and without noise 

S
ce

n
ar

io
 

A
ct

u
al

 

lo
ca

ti
o
n
 Without noise With noise 

PSO SCMSPSO PSO SCMSPSO 

Avg. 

Value 

Std. 

Dev 

Avg. 

NSA 

Avg. 

Value 

Std. 

Dev 

Avg. 

NSA 

Avg. 

value 

Std. 

Dev 

Avg. 

NSA 

Avg. 

Value 

Std. 

Dev 

Avg. 

NSA 

I 𝛼10 0.30 0.0 17685 0.30 0.0 7985 0.2913 8.21e-03 67640 0.3019 7.60e-03 12915 

II 𝛼30
 0.30 0.0 23285 0.30 0.0 8850 0.2808 1.14e-02 57320 0.2969 1.38e-02 15120 

III 
𝛼10 0.30 0.0 

44925 
0.30 0.0 

10800 
0.2914 9.24e-03 

6980 
0.2991 7.54e-03 

20708 
𝛼30 0.30 0.0 0.30 0.0 0.2844 9.29e-03 0.2952 1.29e-02 

IV 
𝛼40 0.30 0.0 

46840 
0.30 0.0 

13320 
0.2696 2.47e-02 

86790 
0.2967 1.00e-02 

20340 
𝛼41 0.20 0.0 0.20 0.0 0.1654 6.35e-02 0.2003 5.81e-03 

 

*Avg. Value = average value of damage index with respect to F; Std Dev = standard deviation with respect to F; 

Avg. NSA = an average number of structural analyses 
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better accuracy with less computational cost than PSO for 

both with and without noise. 

The final damage prediction of this 47-bar planar truss 

for the scenario I and scenario II without noise and with 

noise is also performed by Nobahari et al. (2017) utilizing 

genetic algorithm (GA) and echolocation search algorithm 

(ESA). The results of GA and ESA are also compared with 

SCMSPSO only for these two scenarios with and without 

noise. The final damage prediction of scenario I with and 

without noise is shown in Figs. 10 and 11 respectively. Fig. 

10 shows that SCMSPSO performs better than PSO, ESA, 

and GA. Fig. 11 shows that SCMSPSO predicts damage 

 

 

 

 

severity better than other algorithms as it avoids false 

damage detection where the other algorithms predict false 

damaged elements. Similarly, Figs. 12 and 15 show 

structural damage prediction with and without noise 

measurements by SCMSPSO and PSO for case II and IV 

respectively. Damage identification by SCMSPSO, PSO, 

GA and ESA for case III with and without noise is shown in 

Figs. 13 and 14 respectively. As seen from Figs. 10 to 15, 

SCMSPSO performs the best among the algorithms and 

successfully avoids false damage detection for both noisy 

and noise-free measurements. 

 

Table 10 The damage identification results of 47-bar planar truss for scenario I to IV using MPSO and SCMSPSO without 

noise 

Sample no. 

Damage identification result 

MPSO (Nouri Shirazi et al. 2014) SCMSPSO 

Scenario I Scenario II Scenario III Scenario IV Scenario I Scenario II Scenario III Scenario IV 

1 + + x + + + + + 

2 - + + + + + + + 

3 + + x + + + + + 

4 + + + + + + + + 

5 - + x - + + + + 

6 + + + + + + + + 

7 + x + + + + + + 

8 + + + + + + + + 

9 + + + + + + + + 

10 + + + x + + + + 

Proper 

identification (%) 
80 90 70 90 100 100 100 100 

Avg. NSA 40800 17340 34170 28662 12915 8850 10800 13320 
 

*Avg. NSA = an average number of structural analyses 

Table 11 The damage identification results of 47-bar planar truss for scenario I to IV using MPSO and SCMSPSO with noise 

Sample no. 

Damage identification result 

MPSO (Nouri Shirazi et al. 2014) SCMSPSO 

Scenario I Scenario II Scenario III Scenario IV Scenario I Scenario II Scenario III Scenario IV 

1 x x x - x x x x 

2 - x - x x x x x 

3 - x x x x x x x 

4 - - x x x x x x 

5 x x x x x x x x 

6 x x x x x x x x 

7 x x x x x x x x 

8 x - x - x x x x 

9 x x x x x x x x 

10 x - - x x x x x 

Proper 

identification (%) 
70 70 80 80 100 100 100 100 

Avg. NSA 180790 156550 165640 265630 7985 15120 20708 20340 
 

*Avg. NSA = an average number of structural analyses 
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Table 12 Damage variable identified in the different stages of SCMSPSO and PSO for the scenario 

III of the 47-bar planar truss with noise free and noisy data 

Element no. 

Actual 

damage 

magnitude 

Without noise With noise 

SCMSPSO 
PSO 

SCMSPSO  
PSO 

Stage 1 Stage 2 Stage 1 Stage 2 

1 0.0 0.0178 - 0.0 0.0002 - 0.0 

2 0.0 0.0 - 0.0 0.0 - 0.0 

3 0.0 0.0 - 0.0 0.0 - 0.0 

4 0.0 0.0 - 0.0 0.0 - 0.0 

5 0.0 0.0 - 0.0 0.0 - 0.0 

6 0.0 0.0 - 0.0 0.0165 - 0.0 

7 0.0 0.0 - 0.0 0.0 - 0.0 

8 0.0 0.0 - 0.0 0.0 - 0.0 

9 0.0 0 - 0.0 0.0 - 0.0 

10 0.30 0.2963 0.30 0.30 0.2767 0.3014 0.29234 

11 0.0 0.0 - 0.0 0.0 - 0.0 

12 0.0 0.0002 - 0.0 0.0070 - 0.0 

13 0.0 0.0019 - 0.0 0.0021 - 0.0 

14 0.0 0.0 - 0.0 0.0 - 0.0 

15 0.0 0.0380 - 0.0 0.0 - 0.0 

16 0.0 0.0 - 0.0 0.0 - 0.0 

17 0.0 0.0 - 0.0 0.0 - 0.0 

18 0.0 0.0 - 0.0 0.0039 - 0.0 

19 0.0 0.0063 - 0.0 0.0 - 0.0 

20 0.0 0.0 - 0.0 0.0 - 0.0 

21 0.0 0.0238 - 0.0 0.1257 0.0 0.0 

22 0.0 0.1697 0.0 0.0 0.0109 - 0.0 

23 0.0 0.0 - 0.0 0.00863 - 0.0 

24 0.0 0.0 - 0.0 0.0 - 0.0 

25 0.0 0.0 - 0.0 0.0 - 0.0 

26 0.0 0.0 - 0.0 0.0 - 0.0 

27 0.0 0.0002 - 0.0 0.0007 - 0.0 

28 0.0 0.0 - 0.0 0.0239 - 0.0 

29 0.0 0.0007 - 0.0 0.0 - 0.0 

30 0.30 0.2798 0.30 0.30 0.2932 0.2802 0.29172 

31 0.0 0.0006 - 0.0 0.02857 - 0.0 

32 0.0 0.0052 - 0.0 0.0 - 0.0 

33 0.0 0.0 - 0.0 0.0021 - 0.0 

34 0.0 0.0 - 0.0 0.0 - 0.0 

35 0.0 0.0 - 0.0 0.0 - 0.0 

36 0.0 0.0006 - 0.0 0.0 - 0.0 

37 0.0 0.0 - 0.0 0.0 - 0.0 

38 0.0 0.0001 - 0.0 0.0 - 0.0 

39 0.0 0.0001 - 0.0 0.0006 - 0.0059 

40 0.0 0.0006 - 0.0 0.0001 - 0.0 

41 0.0 0.0005 - 0.0 0.0 - 0.0 

42 0.0 0.0 - 0.0 0.0 - 0.0 

43 0.0 0.0 - 0.0 0.0 - 0.0 

44 0.0 0.0026 - 0.0 0.0 - 0.0 
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Table 12 Continued 

Element no. 

Actual 

damage 

magnitude 

Without noise With noise 

SCMSPSO 
PSO 

SCMSPSO  
PSO 

Stage 1 Stage 2 Stage 1 Stage 2 

45 0.0 0.0 - 0.0 0.0001 - 0.0 

46 0.0 0.0 - 0.0 0.0 - 0.0027 

47 0.0 0.0117 - 0.0 0.0 - 0.0 

TVDI (μ)  0.1481 - - 0.1466   

RSA  6075 4125 52050 6000 10575 95700 

TRSA  - 10200 52050 - 16575 95700 

Design variables  47 3 47 47 3 47 

Elimination  0 44 - 0 44 - 
 

*TVDI = threshold value of damage index; RSA = required structural analyses; 

TRSA = total required structural analyses 

 

Fig. 10 The obtained results of damage prediction for 47-bar planar truss using GA, PSO, ESA and SCMSPSO 

considering noise free data for damage scenario I 

 

Fig. 11 The obtained results of damage prediction for 47-bar planar truss using GA, PSO, ESA and SCMSPSO 

considering with noise data for damage scenario I 
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Fig. 12 The obtained results of damage prediction for 47-bar planar truss using PSO and SCMSPSO considering 

noise free and with noise data for damage scenario II 

 

Fig. 13 The obtained results of damage prediction for 47-bar planar truss using GA, PSO, ESA and SCMSPSO 

considering noise free data for damage scenario III 

 

Fig. 14 The obtained results of damage prediction for 47-bar planar truss using GA, PSO, ESA and SCMSPSO 

considering with noise data for damage scenario III 
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Fig. 15 The obtained results of damage prediction for 47-bar planar truss using PSO and SCMSPSO considering 

noise free and noisy data for damage scenario IV 

 

Fig. 16 25-bar spatial truss (Majumdar et al. 2012) 
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Table 13 Two damage scenarios induced in 25-bar spatial 

truss 

Damage scenario I Damage case scenario II 

Element 

number 

Damage 

percentage 

Element 

number 

Damage 

percentage 

14 0.25 7 0.30 

- - 16 0.30 
 

 

 

4.4 25 -bar spatial truss 
 

A 25- bar spatial truss considered by Majumdar et al. 

(2012) is considered as the last example for the present 

study to show the robustness of the proposed algorithm, is 

shown in Fig. 16. The elastic modulus, material density, and 

cross-sectional area of all members are 200 GPa, 7850 

kg/m3, and 6.4165 mm2 respectively. For the present study, 

one single member damage and two members damage 

scenarios are considered, which are shown in Table 13. The 

first five natural frequencies and corresponding mode 

shapes are considered to identify the damages. 

The performance of the algorithm is compared with 

 

 

 

 

single-stage PSO, considering both noise and without noise 

data. In the present example, natural frequencies and mode 

shapes are polluted with 0.5% and 5.0% noise respectively 

to check the efficiency of the algorithm in case of a higher 

level of noise. 

Results of the current problem are shown in Table 14. It 

is observed from results that PSO and SCMSPSO 

performed well in scenario I for without noise. SCMSPSO 

takes less 73.91% less computational effort than PSO. In 

scenario II without noise, PSO shows an average error of 

12.11% to quantify the damage and two false damage 

locations also identified. But SCMSPSO accurately 

identifies the damage and quantify the same with 94.05% 

less computational cost than PSO. In the case of scenario I 

with noisy data, PSO identifies damage with an error of 

2.31%. But it identifies three false damage locations. 

Whereas, SCMSPSO detects the damage without any false 

damage, and takes 78.31% less computational time with an 

error of only 0.34%. Similarly, in scenario II, with noisy 

data PSO and SCMSPSO identify the damage location with 

an average error of 17.90% and 0.73%, respectively. PSO 

identifies six false damage locations, whereas SCMSPSO 

identifies one false damage location with only 1.58% of 

damage. In this scenario, SCMSPSO takes 69.58% less 

 

 

 

Table 14 The statistical results of damage assessment in 25- bar spatial truss obtained by PSO and SCMSPSO for each 

scenario with and without noise 

S
ce

n
ar

io
 

A
ct

u
al

 

lo
ca

ti
o
n
 

Without noise  With noise 

PSO SCMSPSO PSO SCMSPSO 

Avg. 

value 

Std. 

Dev 

Avg. 

NSA 

Avg. 

Value 

Std. 

Dev 

Avg. 

NSA 

Avg. 

Value 

Std. 

Dev 

Avg. 

NSA 

Avg. 

value 

Std. 

Dev 

Avg. 

NSA 

1 𝛼14 0.25 .0 18975 0.25 0.0 4950 0.2442 0.0122 59550 0.2508 7.60e-03 12915 

2 
𝛼7 0.2325 3.46e-04 

117300 
0.30 0.0 

6975 
0.2061 0.0675 

105300 
0.2970 0.0397 

32025 
𝛼16 0.2947 7.07e-06 0.30 0.0 0.2863 0.0138 0.3014 0.0099 

 

*Avg. Value = average value of damage index with respect to F; Std Dev = standard deviation with respect to F; 

Avg. NSA = an average number of structural analyses 

 

Fig. 17 The obtained results of damage prediction for 25-bar spatial truss using PSO and SCMSPSO considering 

noise free and noisy data for damage scenario I 
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Fig. 18 The obtained results of damage prediction for 25-bar spatial truss using PSO and SCMSPSO considering 

noise free and noisy data for damage scenario II 

Table 15 Damage variable identified in the different stages of SCMSPSO and PSO for the scenario 

II of the 25-bar planar truss with noise free and noisy data 

Element no. 

Actual 

damage 

magnitude 

Without noise With noise 

SCMSPSO 
PSO 

SCMSPSO  
PSO 

Stage 1 Stage 2 Stage 1 Stage 2 

1 0 0 - 0.0 0.0002 - 0.0 

2 0 0 - 0.0 0.0241 - 0.0326 

3 0 0 - 0.0 0.0 - 0.0 

4 0 0 - 0.0 0.04432 - 0.0465 

5 0 0.009 - 0.0390 0.0 0 0.0 

6 0 0.0 - 0.0 0.0 - 0.0 

7 0.3 0.211 0.30 0.2328 0.1880 0.2821 0.1825 

8 0 0.0 - 0.0075 0.0 - 0.0 

9 0 0.0961 - 0.0558 0.0 - 0.0 

10 0 0.0070 - 0.0 0.0 - 0.0 

11 0 0.0 - 0.0 0.0 - 0.0 

12 0 0.3697 0.0 0.1835 0.2708 0.0 0.2986 

13 0 0.3547 0.0 0.0825 0.1408 - 0.1516 

14 0 0.0 - 0.0 0.0 - 0.0 

15 0 0.0 - 0.0 0.0 - 0.0 

16 0.3 0.2876 0.30 0.2947 0.3060 0.31 0.3051 

17 0 0.0003 - 0.0 0.0 - 0.0 

18 0 0.0012 - 0.0 0.0 - 0.0 

19 0 0.0141 - 0.0019 0.0110 - 0.0112 

20 0 0.0 - 0.0 0.0 - 0.0 

21 0 0.0 - 0.0 0.0 - 0.0 

22 0 0.0 - 0.0 0.0 - 0.0 

23 0 0.0002 - 0.0 0.0 - 0.0 

24 0 0.0 - 0.0 0.0 - 0.0 

25 0 0.0010 0.1473 0.0031 0.1198 0.1473 0.0570 
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computational effort than PSO. In all scenarios, the standard 

deviation of results in the case of PSO is higher than 

SCMSPSO, which indicates that the consistency of 

SCMSPSO is better than PSO to identify and quantify the 

damage. 

A typical run of scenario II obtained by SCMSPSO and 

PSO without noise and with noise measurement data is 

shown in Table 15. SCMSPSO utilizes the total number of 

structural members as initial design variables, and in the 

second stage, the design variables are reduced by the 

algorithm. SCMSPSO successfully avoids false damage 

cases for both noise free and noisy measurements, which 

improves the accuracy of the results with less computational 

cost compared to single-stage PSO. The final damage 

identification results of scenario I, and scenario II are 

shown in Figs. 17 and 18 respectively. 

 

 

5. Conclusions 
 

Structural damage detection problem is formulated as an 

unconstrained optimization problem with an objective 

function based on natural frequencies and mode shapes. A 

self-controlled multi-stage strategy using particle swarm 

optimization is successfully implemented to estimate the 

damage location and severity in structures by minimizing 

the objective function. The methodology involves achieving 

an initial solution in the first stage when a small value of the 

objective function is reached, which has been selected as 

the first stage stopping criterion of the problem. Choosing a 

stopping criterion based on a small value of objective 

function instead of a fixed maximum number of iterations 

makes it independent of the optimization technique chosen. 

Moreover, this enables the algorithm to retain the actual 

solution in the search space. The algorithm also provides an 

automatic way of choosing an adaptable threshold value of 

the damage index to decide the most damage-prone 

elements which have to be kept in the search space of the 

next stage. The threshold value of the damage index chosen 

here adapts itself based on the peak value of damage index 

after the end of each stage. 

The performance of the proposed algorithm has been 

demonstrated by performing damage identification in four 

different example problems. It was found that the algorithm 

outperforms some of the well-established existing 

 

 

optimization based damage identification methods. More 

specifically, the comparison presented in this paper showed 

that there is a significant increase in the accuracy of damage 

identification in the case of noisy data with a considerable 

reduction in computational cost. On the other hand, in the 

case of noise-free data, the accuracy of all the algorithms 

considered in this work are found to be almost equal, but 

the proposed algorithm is significantly efficient 

computationally. These improvements can be attributed to 

the contributions made towards choosing the first stage 

stopping criteria and an adaptable threshold value of 

damage index. 

Although the self-controlled multi-stage strategy 

proposed here is used with PSO in this work, it has the 

potential to be combined with other optimization 

algorithms. Application of this strategy can lead to an 

effective and efficient identification of damage, which is 

evident from the results obtained in this paper. 
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Appendix I. Notation 
 

The following symbols are used in this paper: 

 

C1 = cognitive parameter 

C2 = social parameter 

Ed = elastic modulus of damage member; 

Eu = elastic modulus of undamage member; 

F1(X) = objective function based on error in the 

frequency 

F2(X) = objective function based on error in the 

MAC value 

F(X) = objective function based on linear 

combination of error in frequency and MAC 

{f} = load vector; 

[K] = global stiffness matrix; 

[𝐾]𝑒
𝑑 = global stiffnessmatrix of damage system; 

[𝑘]𝑒𝑖 = undamage stiffnessmatrix of ith member; 

[𝑘]𝑒𝑖
𝑑  = damage stiffnessmatrix of ith member; 

[M] = global mass matrix; 

NL = noise level in percentage; 

P = number of particles; 

r1, r2 = random number uniformly distributed 

within [0,1]; 

rand = uniformly distributed number in the range 

[0,1] 

t = initial total number of structural member; 

v = total number of unhealthy elements; 

{X} = displacement vector; 

{𝑋̈} = acceleration vector; 

xi = damage index of ith member; 

xmax = maximum damage index; 

wmax = maximum inertia weight; 

wmin = minimum inertia weight; 

β = stage indicator of multi-stage; 

μ = threshold value of damage index; 

𝛾1, 𝛾2 = weighting factors; 

𝜑𝑖 = ith mode shape of undamaged structure; 

𝜑𝑖
𝑑 = ith mode shape of the damage structure; 

𝜑𝑗𝑖
𝑛𝑜𝑖𝑠𝑒 = jth component of ith mode shape of the 

damage structure polluted with noise; 

𝜔𝑖 = ith natural frequency; 

𝜔𝑖
𝑑 = ith natural frequency of the damage 

structure; 

𝜔𝑁,𝑖(𝑋) = ith natural frequency of numerical model; 

𝜔𝑀,𝑖 = ith natural frequency of the experimental 

model; 

 

 

 
 
 
 
 
 
 
 
 
 
 

Appendix II. Acronyms 
 

The following acronyms are used in this paper: 

 

Avg. Value = average value of damage index; 

CBO  = colliding body optimization; 

ECBO = enhanced colliding body 

optimization; 

ESA = echolocation search algorithm; 

FRF = frequency response function; 

GA = genetic algorithm; 

IPSO = improved particle swarm 

optimization; 

MAC = modal assurance criteria; 

MDE = modified differential evolution; 

MPSO = modified particle swarm 

optimization; 

MSPSO = multi-stage particle swarm 

optimization; 

NDT = non-destructive testing; 

NSA = an average number of structural 

analyses; 

PSO = particle swarm optimization; 

RSA = required structural analyses; 

SCPSO = self-controlled multi-stage particle 

swarm optimization; 

Std. Dev = standard deviation of damage index; 

TVDI = threshold value of damage index; 

TRSA = Total required structural analyses; 

VBDD = vibration-based damage detection; 
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