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1. Introduction 

 

Gradual deterioration in bridges due to aging has 

become one of the critical issues in civil engineering 

practices in recent years. It is now a very common problem 

encountered by the developed countries, and for sure will be 

in the developing countries as well in the near future. 

Taking Japan as an example, the bridges in Japan which are 

in service for more than fifty years will reach 67% in 2033, 

see Fig. 1. There is indeed great need of a reliable and 

accurate bridge health monitoring system for evaluating the 

potential risks contained in the structures. Particularly, it is 

more important for short-span and mid-span bridges which 

take up a considerably high proportion among the all 

bridges. In accordance with theory, damage in bridge 

structures is supposed to be diagnosed from the change in 

bridge modal parameters as these are direct reflections of 

the structural conditions. 

An effective structural monitoring system needs to be 

established based on proper measurement. Among all the 

developed approaches, structural health monitoring (SHM) 

using vibration measurement data showed the most 

promising performances. In this approach, the vibration 
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data from the bridge is collected and analyzed to estimate 

the modal properties of structures which will then be 

assessed in the risk analysis (Doebling et al. 1996, Salawu 

1997, Ko and Ni 2005, Wang et al. 2016, Xu et al. 2019a, 

b). The fundamental concept of this technology is that 

modal parameters can be directly related to structures’ 

physical properties. Therefore, changes in physical 

properties, such as reductions in stiffness, will mean a 

decrease of structural strength. However, the sensitivity of 

bridge modal parameters to the damages is usually not very 

obvious (Spiridonako et al. 2016). It is of great importance 

to establish a method in observing the structural conditions 

based on more sensitive features. Meanwhile, it also has to 

be adequate enough to cope with the damage detection 

algorithm, e.g., window size, in order to provide reliable 

results. 

In recent times, many techniques have been developed 

and devoted to tackle this issue. It aims to identify the 

hidden information of structural conditions from the 

structural vibration data (Deraemaeker et al. 2007, Dilena 

and Morassi 2011, Kim et al. 2012, Zhang and Lam 2015a, 

Zhang et al. 2015, 2019). From the acquired vibration data, 

one aims to extract damage-sensitive features and then to 

discriminate among features from the damaged and 

undamaged bridges quantitatively (Worden et al. 2000, Gul 

and Catbas 2009, Cho et al. 2010, Dohler et al. 2012). 

These two procedures can also be named as feature 

 
 
 

Long term structural health monitoring for old deteriorated bridges: 
a copula-ARMA approach 

 

Yi Zhang1, Chul-Woo Kim 2, Lian Zhang 2, Yongtao Bai 3, 

Hao Yang 4, Xiangyang Xu 4 and Zhenhao Zhang 5 
 

1 School of Civil Engineering, Tsinghua University, Beijing 100084, China 
2 Department of Civil and Earth Resources Engineering, Kyoto University, Kyoto 615-8540, Japan 

3 College of Civil Engineering, Chongqing University, Chongqing, China 
4 Geodetic Institute, Faculty of Civil Engineering and Geodetic Science, Leibniz University Hanover, Germany 

5 School of Civil Engineering, Changsha University of Science and Technology, Changsha, China 
 
 

(Received November 12, 2018, Revised December 8, 2019, Accepted December 26, 2019) 

 
Abstract.  Long term structural health monitoring has gained wide attention among civil engineers in recent years due to the 

scale and severity of infrastructure deterioration. Establishing effective damage indicators and proposing enhanced monitoring 

methods are of great interests to the engineering practices. In the case of bridge health monitoring, long term structural vibration 

measurement has been acknowledged to be quite useful and utilized in the planning of maintenance works. Previous researches 

are majorly concentrated on linear time series models for the measurement, whereas nonlinear dependences among the 

measurement are not carefully considered. In this paper, a new bridge health monitoring method is proposed based on the use of 

long term vibration measurement. A combination of the fundamental ARMA model and copula theory is investigated for the first 

time in detecting bridge structural damages. The concept is applied to a real engineering practice in Japan. The efficiency and 

accuracy of the copula based damage indicator is analyzed and compared in different window sizes. The performance of the 

copula based indicator is discussed based on the damage detection rate between the intact structural condition and the damaged 

structural condition. 
 

Keywords:  structural health monitoring; copula; long term assessment; bridge structure; ARMA model 

 

285



 

Yi Zhang, Chul-Woo Kim, Lian Zhang, Yongtao Bai, Hao Yang, Xiangyang Xu and Zhenhao Zhang 

 

 

extraction and feature discrimination. Plenty research works 

have been done on the development of these procedures for 

vibration measurement data based structural health 

monitoring. The fundamental concept is established based 

on the use of structural dynamic properties, such as 

frequency, damping constant and mode shapes (Xia and Ni 

2016). Magalhaes et al. (2010) had applied a strategy to 

identify the structural damages based on the bridge 

vibration data after removing of environmental and 

operational effects. An output-only based structural health 

monitoring approach is proposed for the bridge health 

monitoring by Reynders et al. (2013). Spiridonakos and 

Chatzi (2014) had proposed a stochastic structural 

identification method for observing the old bridges based on 

vibration and environmental data. Until recently, 

Spiridonakos et al. (2016) had adopted polynomial chaos 

expansion models for modeling the operational variability 

in the monitoring of structures. Some researches also tend 

to use artificial neural network in the damage identifications 

(Gopal et al. 2019, Garg et al. 2019). In general, from the 

recent advances in structural health monitoring, it is now 

widely recognized that the time series record of the 

structural modal parameters can be employed as an 

indicator. 

In analyzing the time series data, linear regression 

models focusing on individual statistical analysis are 

commonly applied. However, the use of nonlinear 

dependency between different time series data in the 

structural damage detection has not been considered yet. 

Usually, the nonlinear dependences in time series data is 

either ignored or directly considered in linear manner. 

However, as a matter of fact, nonlinear dependences are 

quite common among sensor measurement (Huynh et al. 

2018). It should be taken into account when analyzing the 

time series data. Under such circumstances, a copula based 

method is proposed in this study for handling the problem. 

Copula is a promising tool in modeling the dependences 

among different variables. It is very accurate in capturing 

the dependency changes between different time series data. 

Many former references have studied and investigated the 

feature of this approach (Zhang and Lam 2016, Yang et al. 

2017, Zhang et al. 2018a, b). Therefore, it would be 

valuable if a copula based damage identification method 

can be formulated for structural health monitoring. 

Realizing these initiatives, this paper attempts to 

propose a new structural damage identification method by 

combining the copula theory with time series model. The 

main objective is to utilize the concept of copula in 

 

 

modeling the dependences between the output data, and try 

to use ARMA model to characterize the statistical properties 

among the time series output. The copula would serve as a 

tool to identify the anomalous data among the multivariate. 

Section 2 will first introduce the fundamental concepts in 

vibration data based structural health monitoring method. 

The copula based structural identification method is then 

proposed and discussed in Section 3. A real bridge located 

in Japan is then selected as a case study for demonstrating 

the proposed approach in Section 4. Section 5 provides a 

further discussion on the results from the structural damage 

identification analysis. Finally, the findings and conclusions 

are summarized in Section 6. 

 

 

2. Framework of long term bridge health 
monitoring 
 

The most convenient structural health monitoring 

approach for detecting damages in bridge structures is 

through the use of a linear time series model such as the 

autoregressive (AR) model for the modal parameters. 

Several precedent studies on the use of time series vibration 

data are summarized as follows. 

 

2.1 AR model 
 

In the monitoring of a bridge structure, the data of 

acceleration are measured from the bridge through the 

sensor system. A linear time-series model, Autoregressive 

(AR) model can be constructed to characterize the system 

output. The coefficients of the optimal AR model can be 

adopted to represent the system for bridge diagnosis. The 

AR model can be formulated as following 

 

𝑦(𝑘) = ∑ 𝑎𝑖𝑦

𝑝

𝑖=1

(𝑘 − 𝑖) + 𝑒(𝑘) (1) 

 

where y(k) is the output of the structural dynamic system at 

time k, ai indicates the AR coefficient of i-th order and e(k) 

represents the error term. 

Based on the first three AR coefficients, the parameter 

known as Damage Sensitive Feature (DSF) or Damage 

Indicator (DI) can be defined by Eq. (2) 

 

𝐷𝐼 =
|𝑎1|

√𝑎1
2 + 𝑎2

2 + 𝑎3
2
 (2) 

 

Fig. 1 Percentage of bridges in serves for over 50 years (Zhang et al. 2017a) 
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where a1, a2 and a3 indicate the first, second and third AR 

coefficients respectively. Nair et al. (2006) showed that the 

first three AR coefficients are the significant ones among all 

the AR coefficients that can characterize the modal 

properties of a structural system. This is also agreed by Kim 

et al. (2013) who discovered that the first three order AR 

coefficients is a promising choice in bridge health 

monitoring. 

 

2.2 Mahalanobis distance 
 

The DI could be utilized as a reference in observing the 

structural condition. If there is a large deviation with the 

observations of structure at its intact condition, the 

structural condition is believed to have some damages. Such 

indicator based structural health monitoring method is very 

convenient and widely utilized in engineering applications. 

However, many researchers also critique this concept for its 

inefficiency in data usage. The construction of a time series 

model usually requires too much information which usually 

requires a very long observation time period. Moreover, the 

stability of the damage index in single time series is 

sometimes inadequate enough in structural safety 

assessments. Therefore, many studies attempt to develop 

structural health monitoring method by utilizing multiple 

measurement sources. Among these, the Mahalanobis 

Distance (MD) is one of the widely adopted approaches 

(Chang and Kim 2016). 

MD is a multivariate statistical distance that 

quantitatively shows how different the current condition is 

from the intact condition with the following equation. 

 

𝑀𝐷 = (
1

𝑘
) 𝑍𝑖

𝑇𝐶−1𝑍𝑖 (3) 

 

where Zi is the normalized vector obtained by normalized 

values of Xi (i = 1,…, k) and 𝑍𝑖 =
𝑋𝑖−𝑚𝑖

𝑠𝑖
; Xi is the value of 

i-th characteristic, mi is the mean of i-th characteristic, si is 

the standard deviation of i-th characteristic, ki indicates 

number of characteristic/variables and C-1 represents the 

inverse of the correlation matrix. 

Although MD is a simple concept that can be efficiently 

applied, the drawbacks are also obvious. It is recognized 

MD might not offer an accurate measure of structural 

damage if the multiple measurement are nonlinearly 

dependent. Therefore, with the aim of advancing the field of 

structural health monitoring, there is a strong need of 

finding a more robust damage identification approach 

which could handle multivariate data sources with nonlinear 

dependences. 

 

 

3. Copula-ARMA damage detection method 
 

To arrive at a more efficient multivariate damage 

detection method, the concept of copula is introduced in the 

time series data analysis. Copula is a highly applicable 

statistical tool for modeling multivariate data. It has been 

widely applied in various engineering fields including 

offshore engineering (Zhang et al. 2017b), reliability theory 

(Zhang and Lam 2015b) as well as in hydrology and 

environmental sciences (Salvadori and De Michele 2007). 

This section discusses a new copula based damage detection 

methodology proposed this study, the copula-ARMA 

approach. The detailed explanations will start from 

introducing ARMA and copula theory first, and then 

followed by the theoretical combination of these two. 

 

3.1 ARMA model 
 

Autoregressive-moving-average (ARMA) model is 

acknowledged as one of the most useful statistical tool for 

modeling and predicting future values in the time series. 

Theoretically, it is composed of an autoregressive part and a 

moving average part. The general fundamental properties of 

ARMA model can be found in any mathematical text books, 

see (Liebscher 2008). 

An ARMA model is denoted as ARMA(p, q) where p 

refers to the number of autoregressive terms and q refers to 

the number of moving-average terms. A general formulation 

of ARMA(p, q) model can be given as below. 

 

𝑋𝑡 = 𝜀𝑡 + ∑ 𝜑𝑖𝑋𝑡−𝑖 +

𝑝

𝑖=1

∑ 𝜃𝑗𝜀𝑡−𝑗

𝑞

𝑗=1

 (4) 

 

where 𝑋𝑡 is the time series value at time t, 𝜑𝑖 (i = 1, 2,…, 

p) represent the auto-regressive parameters, 𝜃𝑗 (j = 1, 2,…, 

q) are the moving average parameters and {𝜀𝑡} denotes a 

normal white noise process. 

The prediction of 𝑋𝑡  can be calculated based on 

previous observations 𝑋𝑡−𝑖 and its associated error terms 

𝜀𝑡−𝑗 . The AR(p) part is corresponding to the regression 

terms associate the present value and its past values. The 

MA(q) part is mainly referring to the modeling error terms, 

which determines the dependences between different 

observations. 

In order to judge the best fit model orders, and Akaike 

Information Criterion (AIC) can be employed. The AIC is a 

measure for the relative quality of statistical models. It 

serves as a useful tool for model selection as it calculates 

relative quality of one model compared to the others 

(Akaike 1974). The formulation of AIC is given as below. 

 

𝐴𝐼𝐶 = 2k − 2 ln(�̂�) (5) 

 

where k is the number of parameters in the statistical model. 

In ARMA model, if the model under consideration is a 

linear regression, k is referring to the number of regressors, 

including the intercept. �̂�  represents the maximized 

likelihood function value of the assessed model M, which 

can be computed from following. 

 

�̂� = 𝑝(𝑥│�̂�, 𝑀) (6) 

 

where �̂� indicates the parameter values that maximize the 

likelihood function and 𝑥 refers to the observed data. The 

AIC consists of two terms; the first term is the log-

likelihood function and the second term is a penalty 
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function for the number of AR order. 

 

3.2 Copula 
 

Copula is a concept in statistics for modeling 

multivariate data by using only uniform marginal 

distributed variables. It is very powerful in characterizing 

the dependences between random variables. Copula has 

been widely applied in quantitative financial analysis and 

risk management. Nowadays, it also becomes quite popular 

in engineering practices. Especially in reliability 

engineering field, it is recognized as one of the most 

powerful tools for modeling and simulating random 

variables in multivariate analysis (Zhang et al. 2018a, b). 

A copula function is a joint distribution function of 

multiple random variables U1, U2, … ,Up, each of which is 

marginally uniformly distributed from 0 to 1, e.g., U(0, 1). 

The construction of a copula model originates from the joint 

multivariate model. For random variables 𝑋1, 𝑋2, . . . , 𝑋𝑝 

with a joint cumulative distribution function, it can be 

formulated as following. 

 

𝐹(𝑥1, 𝑥2, . . . , 𝑥𝑝) 

= 𝑃 (𝑋1 ≤ 𝑥1,   𝑋2 ≤ 𝑥2, . . . , 𝑋𝑝 ≤ 𝑥𝑝) 
(7) 

 

By substituting the marginal cumulative distribution 

function as following 

 

𝐹𝑗(𝑥) = 𝑃(𝑋𝑗 ≤ 𝑥),          𝑗 =  1, 2, . . . , 𝑝 (8) 

 

A copula function would then be generated by the below 

expression 

 

𝐹 (𝑥1, 𝑥2, . . . , 𝑥𝑝)  =  𝐶 [𝐹1 (𝑥1), 𝐹2 (𝑥2), . . . , 𝐹𝑝 (𝑥𝑝)] (9) 

 

If each 𝐹𝑗  (𝑥), if it is continuous, the copula function𝐶 

would be unique. In other words, the joint distribution of 

𝑋1, 𝑋2, . . . , 𝑋𝑝can be described by the marginal distributions 

𝐹𝑗  (𝑥) and the copula 𝐶. This is also known as Sklar’s 

theorem (Nelsen 2006).The copula links the marginal 

distributions together to form the joint distribution. From a 

modeling perspective, Sklar’s theorem allows separating the 

modeling of the marginal distributions 𝐹𝑗  (𝑥)  from the 

dependence structure, which provides high flexibility in 

copula function. 

In real practices, there are two well-known families of 

copulas, Gaussian copula and Archimedean copulas. In this 

study, the Gaussian copula is selected for the structural 

health monitoring as it is the most general and fundamental 

copula model. A Gaussian copula is constructed from a 

multivariate normal distribution by using the probability 

integral transform. The Gaussian copula can be written as 

following equation. 

 

𝐶(𝑢1, … , 𝑢𝑁; 𝜌) = 𝛷𝜌(𝛷−1(𝑢1) + ⋯ + 𝛷−1(𝑢𝑁)) (10) 

 

where ρ is the correlation coefficient matrix, 𝛷𝜌 (·,...,·) 

stands for the standard multivariate normal distribution 

function, 𝛷−1(·)  represents the inverse function of 

standard normal distribution function. 

In the case of two variables, the Gaussian copula has 

only the single parameter ρ. It conveniently incorporates the 

correlation into a function that combines each of the 

marginal distributions to produce a bivariate cumulative 

distribution function. In terms of bivariate dependence, 

there are some dependence measures like Pearson 

correlation coefficient, Spearman’s rho and Kendall’s tau 

which worth for a mention before the copula approach is 

applied. 

The Pearson correlation coefficient is also referred to as 

Pearson product-moment correlation coefficient, equaling to 

the covariance of two variables divided by the product of 

their standard deviations, is formulated as below. 

 

𝜌(𝑋, 𝑌) =
𝐶𝑜𝑣(𝑋, 𝑌)

𝜎𝑥𝜎𝑦
 (11) 

 

where 𝜎𝑥, 𝜎𝑦 are standard deviations of variables x and y 

respectively, 𝐶𝑜𝑣(𝑋, 𝑌) is the covariance, which can be 

expressed by the mean 𝜇𝑥𝜇𝑦 and expectation function E as 

following. 
 

𝐶𝑜𝑣(𝑋, 𝑌) = 𝐸[(𝑋 − 𝜇𝑥)(𝑌 − 𝜇𝑦)] (12) 

 

Therefore, the Pearson correlation coefficient can be 

simplified as 

 

𝜌(𝑋, 𝑌) =
𝐸[𝑋𝑌] − 𝐸[𝑋]𝐸[𝑌]

√𝐸[𝑋2] − [𝐸[𝑋]]
2

√𝐸[𝑌2] − [𝐸[𝑌]]
2
 

(13) 

 

In addition to Pearson’s correlation coefficient, rank 

based correlation coefficients such as Spearman’s rho and 

Kendall’s tau are believed to be more accurate. They 

measure a different type of dependence, which is the 

association among the random variables rather than 

population correlation coefficient. The Spearman’s rho is 

equivalent to the Pearson correlation coefficient between 

the ranked variables. The Pearson’s correlation assesses 

linear relationships, while Spearman’s correlation assesses 

monotonic relationships no matter it is linear or not. The 

standard formula for calculating Spearman’s rho is given 

below. 

𝜌𝑠 = 1 −
6 ∑ 𝑑𝑖

2

𝑛(𝑛2 − 1)
 (14) 

 

where 𝑑𝑖  indicates the difference between the ranks of 

corresponding values 𝑋𝑖 , 𝑌𝑖 , 𝑛 is the number of 

observations. Another well-known rank based dependence 

measure is Kendall’s tau. The Kendall’s tau is a non-

parametric measure for concordance between random 

variables. A general formulation is given as following. 
 

𝜏 =
𝑁𝑐 − 𝑁𝑑

1

2
𝑛(𝑛 − 1)

 (15) 

 

where 𝑁𝑐 is the number of concordant, 𝑁𝑑 is number of 

discordant and 𝑛 stands for the number of observations. 
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In addition, Spearman’s rho and Kendall’s tau can also 

be expressed based on copula function parameters (Nelson 

2006). For example, the following equations can be used to 

relate the dependence measures with the copula functions 

 

𝜌𝑠(𝑋, 𝑌) = 12 ∬ 𝐶(𝑢, 𝑣)𝑑𝑢𝑑𝑣 − 3
[0,1]2

 (16) 

 

𝜏(𝑋, 𝑌) = 4 ∬ 𝐶(𝑢, 𝑣)𝑑𝐶(𝑢, 𝑣) − 1
[0,1]2

 (17) 

 

3.3 Copula-ARMA Model 
 

The combination of copula and ARMA model can be 

utilized in the time series data analysis. Copula-ARMA 

model is based on data characterization by both ARMA 

model and copula model. ARMA models are firstly created 

separate time series data, and then the dependences between 

different time series data can be captured by the copula 

function. The detailed procedures are elaborated in this 

section. 

In constructing the copula-ARMA model, the error 

terms of ARMA model should be calculated at the initial 

stage. Here, the error terms are simply estimated by the 

difference between the observed data y and its theoretical 

values ŷ. 
 

Error term (y) = y − �̂� (18) 

 

Copula models can then be applied to model the error 

terms from different time series data, e.g., 

𝐶 (Error term (x), Error term (y);  θ). Based on the 

selected copula, the corresponding copula parameter could 

then be utilized as an indicator for the statistical properties 

of the time series data. Moreover, as a reference, the 

stability of values in Kendall’s tau and Spearman’s rho 

between different time series data can also be employed as 

an indicator of dependences in the time series data. The 

changes in dependences could then be detected in the time 

series data through the use of these copula based 

dependence measure concepts. As for bridge structural 

health monitoring, the copula parameter computed from the 

residuals of ARMA model is supposed to show certain 

tendencies in the long term measurement as a result of 

bridge deterioration. 

 

3.4 Framework of Copula-ARMA damage 
detection method 

 

Following the given concept, the flowchart of copula-

ARMA approach for long-term measurement based bridge 

health monitoring is illustrated in Fig. 2. Generally 

speaking, it includes two major steps. 

 

Step 1: Data collection and structural modal 
analysis 

The initial step in the structural health monitoring is to 

extract the key structural information from the observed 

dynamic data. In this first step of the proposed framework, 

the long term measurement of the bridge including the 

 

Fig. 2 Flowchart of the copula-ARMA approach for long-

term bridge health monitoring 

 

 

accelerations and other types of dynamic data are gathered. 

This kind of data will serve as reference data for structural 

health monitoring in a future evaluation. Following the 

structural modal analysis provided in Section 2.1, the 

frequency and damping ratio of the bridge are estimated. 

Based on the results, the time series data for modal 

parameter from different observations (sensors) can be 

obtained. 

 
Step 2: Calculate the copula model parameter 

and evaluate the structural health 
condition 

The next step is to calculate the copula model parameter 

between different time series data. During this step, the 

copula model is fitted to the estimated residuals from each 

theoretical model as introduced in Section 3.3. Based on the 

data, a pair of modal parameter time series data can be 

utilized to compute the copula parameter. And its stability in 

the timeline would be considered as an indicator for the 

structural health monitoring. The value of copula 

parameters will be updated when new data is withdrawn 

from the measurement. 

In the present study, the first mode frequency and 

damping ratio is chosen for calculating the copula model 
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Fig. 3 The monitored girder bridge 
 

 

parameter. The reason is because many former works 

showed that these two modal parameters are the most 

important factors indicating the structural health conditions. 

Once the result of copula model parameter is estimated, it 

can be compared with the reference value to judge whether 

the structural condition is changed or not. In this sense, the 

value obtained in the reference data step serves as a 

comparison and the new updated data would represent the 

current structural condition. To demonstrate the proposed 

approach, a case study on a real bridge health monitoring is 

provided in the following sections. 
 

 

4. Case study – Short span girder bridge 
 

A seven-span plate-girder bridge with Gerber-system in 

Himeji constructed in 1960 is selected for the investigation 

 

 

 

 

in this study. It has a total span of 187 m and it experiences 

high traffic volume for more than 50 years. Fig. 3 shows a 

site picture of the target bridge and the monitored span. The 

bridge information is summarized in Table 1. The 

monitored bridge span is 16 m long, with sensors on 

specified locations as shown in Fig. 4. Four accelerometers 

(UA1, UA2, DA1 and DA2) and two thermometers (T5 and 

T6) measuring the ambient vibration and temperature are 

placed in the middle and the end of the bridge. The 

acceleration is recorded hourly and the sampling frequency 

is 200 Hz. The thermometer measures the temperature 

every half an hour. The whole monitoring system was 

started in August 2008 and keeps working until now. 

However, it suffers discontinuity of measurement in the past 

eight years which is resulted from hardware problems and 

other operational mistakes. 

In this study, the bridge dominant frequency and 

damping ratio are identified from original ambient vibration 

data measured at each sensor. In order to have an efficient 

analysis in the acceleration data, the size of moving time 

windows is set as 40.96 s as shown in Fig. 5. Average 

values of frequency and corresponding damping ratio 

within each hour are considered as the output and used to 

calculate the modal parameters. The calculated modal 

parameter values as shown in Fig. 6 shows that dominant 

frequency is identified around 4 Hz and thus is used for the 

damage detection. Therefore, the frequency around 4 Hz 

will be estimated from each sensor based on the proposed 

model. In order to make things clearer, the results of modal 

parameters are labeled based on the sensor numbers. For 
 

 

 

 

 

Table 1 Information of the girder bridge 

Construction year March 1960 

Bridge length L = 187.00 m 

Span length 
Hanging girder L1 = 16.00 m 

Anchoring girder L2 = 6.2 m + 28.4 m + 6.2 m 

Width W = 8.00 m 

Structural type 

Superstructure Steel girder-plate bridge with 7 spans 

Substructure 
Abutment Wall type abutment 

Pier Wall type pier 

Foundation Caisson 

Design load TL-20 
 

 

Fig. 4 Sensor locations in the monitored bridge span 
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instance, for the sensor DA1, frequency around 4 Hz and 10 

Hz, and its associated damping ratios are denoted as DA1f4, 

DA1f10, DA1d4 and DA1d10 respectively. 

Based on the long term record of measurement data, 

three time periods of data are extracted for the analysis. 

These include the follows: 
 

● Dataset #1 - from 2008.8.5 to 2009.5.22 (290 days), 

● Dataset #2 - from 2014.1.1 to 2014.7.23 (204 days), 

and 

● Dataset #3 - from 2014.9.4 to 2015.4.8 (217 days). 

 

 

 

 

 

 

5. Data analysis 
 

5.1 Basic statistical properties of reference data 
 

The statistical characteristics of the first year data are 

examined and served as the reference data. To demonstrate 

the use of copula approach in structural health monitoring 

for bivariate data, in this study, only sensor DA1 and DA2 

are been analyzed. The histograms of calculated frequencies 

based on these two sensors are shown in Fig. 7. These 

would serve as the fundamental references. Any 

 

Fig. 5 Time windows for identifying modal parameters 

 

Fig. 6 A sample of the output of one hour of acceleration data and dominant frequency 

  

Fig. 7 Histograms of DA1f4 and DA2f4 
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observations having deviations from these are believed to 

indicate some damages in the bridge structure. 

 

5.2 Time series analysis using ARMA model 
 

Based on the first year data (dataset #1), basic time 

series analysis including forecasting is conducted by the use 

of ARMA model. This is aimed to check the stationarity in 

the time series. If the prediction cannot be done very, it 

indicates a nonstationary time series. And perhaps, the 

adopted reference dataset should be changed. In this 

prediction, the expected value of a forecast point is obtained 

by taking every data observed before that time point. After 

the prediction, the forecast point moves on to the next, and 

the prediction process repeats until the end of time period. 

Taking the starting point of forecasting as an example, the 

31st analytical value is predicted by the ARMA model 

based on the first 30 data, and then the process moves on to 

forecast the 32nd point and so on. The plot of comparison 

between real data (red line) and forecast (blue line) is 

shown in Fig. 8. 

It is obvious that the forecasted data is comparable with 

the real data, which means the ARMA model does show 

good performance in time series analysis. The time series 

data is also considered to be stationary. However, when it 

comes to peak values, the error between the forecasted 

result and real data is quite large. This is as a consequence 

of the limitations due to the assumed linear dependences in 

 

 

 

 

ARMA model. Therefore, some improvements to the 

statistical model should be considered. Therefore, it is 

necessary to combine copula with the existing ARMA 

model in the structural damage detections. 

 

5.3 Copula-ARMA: detecting changes in modal 
parameter time series 

 

Before constructing a copula-ARMA model, the 

seasonal effect has to be removed. Without the time varying 

modeling, the value of copula parameter is expected to 

change with the time. However, due to data scarceness, the 

copula approach is difficult to be conducted. And in fact, 

the correlation between the modal parameters and 

temperature are quite small. For instance, the dependence 

between frequency DA1f4 and temperature is quite 

minimal. In this case, the Spearman’s rho equals to 0.077, 

while the Kendall’s tau equals to 0.054 which indicates a 

very weak dependency. 

Therefore, we consider to use regression method to 

remove the temperature influence to the reference data. A 

linear regression model between model parameter and 

temperature can be established as following. 

 

𝑓 = 𝛼𝑇 + 𝛽 (19) 

 

where f is the modal parameter, T is the temperature, 𝛼 is 

the regression coefficient and 𝛽 is a constant. 
 

 

 

Fig. 8 ARMA model based forecast for DA1f4 

  

Fig. 9 Elimination of temperature influence for DA1 
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Fig. 10 Elimination of temperature influence for DA2 

 

Fig. 11 Distribution fitting to DA1f4 residuals 

 

Fig. 12 Distribution fitting to DA2f4 residuals 
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After subtracting temperature effect 𝛼𝑇  from modal 

parameters, the output becomes a temperature-independent 

variable. For DA1f4 and DA2f4, the frequency data before 

and after removing temperature influence are depicted in 

Figs. 9 and 10. 

Based on the modified modal parameter time series data, 

the best fit ARMA models for two sensors are then 

obtained. The two ARMA models are given as follows. 

ARMA(5,2) is the best model for DA1f4 as shown in 

Eq. (20). 

 

𝑋𝑡 = 2.3473𝑋𝑡−1 − 1.5994𝑋t−2 + 0.2104𝑋t−3 
          −0.1593𝑋t−4 + 0.1877𝑋t−5 + 𝜀𝑡 
          −1.9264𝜀𝑡−1 + 0.9932𝜀𝑡−2 

(20) 

 

ARMA(2,3) is the best model for DA2f4 as shown in 

Eq. (21). 
 

 

 

 

 

 

 

𝑋𝑡 = 1.5334𝑋𝑡−1 − 0.5903𝑋t−2 + 𝜀𝑡 
          −0.9816𝜀𝑡−1 + 0.2365𝜀𝑡−2 + 0.0689𝜀𝑡−3 

(21) 

 

To check the quality of two models, residuals between 

these ARMA models and the original data are computed and 

plotted in Figs. 11 and 12. It can be seen the errors are quite 

small which implies an adequate fitting in the model. After 

the residuals are calculated, the copula model is applied for 

the residuals. In this study, the Gaussian copula is selected 

as the candidate model. The next step would then be 

investigating the variations of copula parameters with 

respect to time. And compare it with the reference data to 

see whether there is a statistical change or not. While 

calculating copula parameters, the window size is initially 

set as 20 hours. In order to compare all the statistical 

properties, the output from the continuous windows would 

include Spearman’s rho, Kendall’s tau, Pearson correlation 
 

 

 

 

 

 

 

 

Fig. 13 Kendall’s tau in assessed time series data 

 

Fig. 14 Pearson correlation coefficient in assessed time series data 

 

Fig. 15 Spearman’s rho in assessed time series data 
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coefficient, and parameter of Gaussian copula. These are 

shown in Figs. 13 to 16. For a better representation, the 

plots of copula parameter changes are aggregated into daily 

and weekly and shown in Figs. 17 and 18. The Gaussian 

 

 

 

 

 

 

 

 

copula parameter shows increasing tendency, although the 

amount is small. 

Both dataset #2 and dataset #3 are investigated by the 

same ARMA model constructed for dataset #1. The copula 

 

Fig. 16 Parameter of Gaussian copula hourly in assessed time series data 

 

Fig. 17 Daily change of Gaussian copula parameter 

 

Fig. 18 Weekly changes of Gaussian copula parameter 

 

Fig. 19 Copula parameter fluctuation with time 
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parameter for these periods are all estimated and plotted in 

Fig. 19. It is not obvious to tell the exact tendency by 

referring to timeline. The change in the parameter of copula 

is too little, although the parameter of copula does show 

 

 

 

 

 

 

 

 

some increasing tendency. 

However, there is an interesting founding in dataset #3, 

where an obvious peak value in modal parameter was 

detected. Therefore, to have a more detailed study over this 

 

Fig. 20 Copula parameter change with window size of 24 hours 

 

Fig. 21 Copula parameter change with window size of 48 hours 

 

Fig. 22 Copula parameter change with window size of 72 hours 

 

Fig. 23 Copula parameter change with window size of 96 hours 
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period, we changed the window size to 24, 48, 72, 96, 120, 

192, 240, 480 hours for a comparison study. The results are 

shown in Figs. 20 to 27. It can be seen the shorter the 

window size is, the more sensitive the parameter is with the 

 

 

 

 

 

 

 

 

peak value. On the other hand, when the window size 

becomes too large, the sensitivity of the copula parameter 

decreases. For dataset #3, a particular peak during New 

Year holidays is observed in the original frequency values. 

 

Fig. 24 Copula parameter change with window size of 120 hours 

 

Fig. 25 Copula parameter change with window size of 192 hours 

 

Fig. 26 Copula parameter change with window size of 240 hours 

 

Fig. 27 Copula parameter change with window size of 480 hours 
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This is the consequence of the sudden drop of traffic 

weight. Meanwhile, in the plot of copula parameter, an 

obvious decline is also observed in Fig. 27. The change in 

copula parameter is in association with the change in modal 

parameters. This further proves the applicability of copula 

parameter for indicating structural damages from the 

recorded time series data. 

One should note the use of the concept of copula in the 

evaluation of monitored data may have some limitations. 

First of all, the copula itself has a complicated formulation. 

If the data does not show very clear nonlinear dependences, 

the copula function may lose its feature in identifying the 

anomalous data. Second, the selection of candidate copula 

models is a challenging job. There is a huge number of 

copula families available in literature that could be adopted. 

The question of which type should fit the problem the best 

is not easy to be answered. Moreover, copula-ARMA is 

applicable only for modeling two time series data. For more 

time series data, the use of copula-ARMA may need 

extension or further development. The conclusions drawn 

from this study should be seen in the light of these 

limitations. 
 
 

6. Conclusions 
 

This study proposes a long term measurement based 

bridge structural health monitoring method by utilizing the 

fundamental Gaussian copula. In the case study, bivariate 

copula model is employed to check the changes in modal 

parameter time series data. Although the modal parameter 

time series data does not turn out to be an adequate 

indicator, the results showed that the change in frequencies 

from two sensors is able to be used as the structural health 

condition indicator through copula parameter. When proper 

window size is utilized for calculating copula parameters, 

the changes in copula model parameters can agree well with 

the change in modal parameters. Through use of long term 

measurement, it is possible to derive valuable information 

in order to increase the reliability of bridge structures. With 

appropriate linkage between data analysis and risk 

management, long term bridge vibration monitoring will 

facilitate engineers to extract more useful information for 

bridge inspection and optimal maintenance planning. 
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