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1. Introduction 

 

Bridge structures are the intrinsic components of 

transportation infrastructure network. Nowadays these 

structures are increasingly subject to degradation due to 

aging, environment and overload. Periodic monitoring of 

bridge is, therefore essential to maintain strategy since it 

can provide early warning if the inspected bridge becomes 

unsafe. Traditionally, bridge maintenance has mostly relied 

to visual inspection approaches which are highly dependent 

on staff member experience and subjective determine. 

These approaches can only detect bridge damage when it is 

visible. A number of bridges collapsed catastrophically such 

as I-35W Mississippi River bridge, whereas, they had been 

visually inspected just before the disaster. Thus, Chupanit 

and Phromsorn (2012) suggested that the visual inspection 

alone may not be sufficient to assess the bridge health 

condition. 

The last decades, the bridge structural health monitoring 

(SHM) has developed dramatically which rely on the 

automatic detection of anomalous structural behavior. One 

of the most popular SHM approaches assess bridge 

condition via extracting dynamic properties of the bridge 
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such as natural frequency, damping ratio, and mode shapes 

from dynamic response of structures for non-destructive 

damage assessment (Carden 2004, Malekjafarian et al. 

2015). In these SHM systems using vibration data from the 

structure are referred to as the direct approach, which 

requires a larger number of sensors installed on bridge 

structures (Carden 2004). These SHM techniques have 

following drawbacks: expensive, time-consuming and even 

dangerous (Malekjafarian et al. 2015). From another 

perspective, the implementation of SHM for short and 

medium span bridges is not widespread, which represent a 

large portion of the bridge inventory of the road network 

(Malekjafarian et al. 2015). Therefore, there is a necessity 

to find a less expensive SHM method that can be applied to 

a wide range of bridges. 

Recently, the indirect approach or what has been known 

as ‘drive-by bridge inspection’ is becoming an intriguing 

topic in the application of bridge SHM technique. This 

indirect approach extracts bridge dynamic properties from 

dynamic response of a passing vehicle over the bridge, 

which is first proposed by Yang and Lin (2005), Yang and 

Chang (2009a). The authors derived a closed-form solution 

of vehicle response, where a vehicle is modeled as a sprung 

mass and a bridge as a simple support beam. It has shown 

that the vehicle response contains the vibration components 

dominated by the natural frequency of bridge, and that has 

been demonstrated by the numerical simulation with VBI 

model (Wang et al. 2016). The feasibility of extracting 

natural frequency of bridge from a passing vehicle in 
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practice has been experimentally verified by Lin and Yang 

(2005), Yang and Chang (2009b). 

Following the idea of the indirect approach, González et 

al. (2012), Keenahan et al. (2013) theoretically investigated 

the method of extracting related bridge damping from 

vehicle history. González et al. (2012) pointed out that the 

damping value of bridge can be calculated by the minimum 

road profile estimation error from two axles with a half car 

model. Keenahan et al. (2013) presented that the damping 

change in the bridge can be detected when the axle 

accelerations of the trailer are subtracted from one another. 

They pointed out that this method is more effective for 

monitoring damping in short bridges. 

On the other hand, a number of methods for 

constructing mode shape of the bridge based on such 

indirect approach were proposed (Zhang et al. 2012, 

Malekjafarian and Obrien 2014, Oshima et al. 2014, Yang 

et al. 2014, Obrien and Malekjafarian 2016, Malekjafarian 

and Obrien 2017, Tan et al. 2019). Yang et al. (2014) 

theoretically constructed bridge modal shape from a passing 

vehicle over the bridge through applying HT combined with 

band-pass filter technique. They pointed out that such 

indirect measurements from the instrumented vehicle can 

provide a better screening for the bridge degrees of freedom 

(DOF) than the direct measurements from a sensor mounted 

on the bridge structure. Zhang et al. (2012) developed a 

simple approach to approximately extract bridge mode 

shape squares from the passing vehicle response and 

proposed a new damage index based on this extraction of 

mode shape, which is more sensitive to structural damage. 

The validity of this proposed method has been demonstrated 

by numerical simulations and simple experiments in the lab. 

Furthermore, signal processing tool such as wavelet 

transform and HT are increasingly applied on the “drive by” 

bridge SHM (Cunha et al. 2014, Yang and Chang 2009a, 

Nguyen and Tran 2010, Hester and González 2012, 

Khorram et al. 2012, McGetrick and Kim 2013, Mahato et 

al. 2017, Obrien et al. 2017, Tan et al. 2017a, b). On 

account of their high sensitivity for discontinuity of signal, 

they are mostly used to localize the structural damage 

location. In addition, HT can assist to extract higher mode 

frequency or modal shape of the bridge from the vehicle 

response. 

The natural frequency of bridges as one of the most 

basic vibration parameters reflecting bridges dynamic 

characteristic, it was constantly referred as a damage index 

to estimate bridge condition (Deng and Cai 2009). In the 

application of tradition bridge SHM, a published review 

paper (Carden 2004) presented that there were 65 

publications working on the detection of structural damage 

through frequency drops. However, rarely studies were 

focused on this point in the application of “drive-by” bridge 

SHM. One of the main reasons is that the higher vehicle 

velocity leads to short data of vehicle responses, resulting in 

low frequency resolution when applied with FFT. 

Consequently, the identification accuracy of bridge 

frequency is poor. Tan et al. (2017b) developed a wavelet-

based approach to identify bridge frequency without 

restricting to frequency resolution and can be used to detect 

the frequency drop caused by structural damage. However, 

it has shown that with the increase in vehicle velocity, the 

identification accuracy will decrease either. Studies have 

pointed out that the higher vehicle velocity has a strong 

negative influence on the recognition of bridge frequency in 

“drive-by” bridge SHM. 

This paper will introduce a new bridge frequency 

extracting approach from a passing vehicle based on HT 

combined with band-pass filter technique. At first, in order 

to highlight the dynamic VBI response, a closed-form 

solution of vehicle response is adopted in the analytical 

study. In this regard, the bridge is modeled as a simply 

supported beam and vehicle as a sprung mass. Deriving this 

closed-form solution with HT combined with the band-pass 

filter, formulation representing the bridge frequency is 

divided. In addition, the vehicle velocity parameter is 

investigated and it can be removed from this formulation to 

improve identification accuracy. Then, a numerical VBI 

model with a quarter car model is adopted to demonstrate 

the proposed approach. Finally, to further investigate the 

fidelity of the proposed approach, cases studies are 

investigated, including vehicle velocity, signal noise, and 

road roughness profile. 
 

 

2. Hilbert Transform 
 

In this section, a brief introduction of HT is presented. 

Mathematically, given a real-valued mono-component 

function of s(t), the Hilbert transform of s(t) is defined as 

(Huang 2014) 
 

�̂�(𝑡) = 𝐻(𝑠(𝑡)) =
1

𝜋
𝑃𝑉 ∫

𝑠(𝜏)

𝑡 − 𝜏

+∞

−∞

𝑑𝜏 (1) 

 

where PV denotes the Cauchy principal value. Practically, it 

defines the HT as the convolution of s(t) with the kernel 

function 1/πt. Therefore, �̂�(𝑡) is referred as the orthogonal 

projection of s(t). Using these two orthogonal component, 

the analytic signal z(t) can be constructed in the form 
 

𝑧(𝑡) = 𝑠(𝑡) + 𝑖�̂�(𝑡) = 𝐴(𝑡)𝑒𝑖𝜃(𝑡) (2) 
 

where 
 

𝐴(𝑡) = √𝑠2(𝑡) + �̂�2(𝑡), (3) 

 

𝜃(𝑡) = 𝑎𝑟𝑐𝑡𝑎𝑛 (
�̂�(𝑡)

𝑠(𝑡)
) (4) 

 

In above equation, the time-dependent functions of A(t) 

and θ(t) are the instantaneous amplitude function and 

instantaneous phase function, respectively, of the original 

function s(t). Using vector representations in complex 

plane, A(t) and θ(t) can be obtained easily. 
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Fig. 1 Numerical model of VBI 
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3. Formulation of the analytical theory 
 

In order to highlight the major dynamic characteristics 

of the coupled VBI system, a simplified numerical model 

will be adopted, as given in Fig. 1. The vehicle is simply 

simulated as a lumped mass mv, supported by a spring of 

stiffness kv and passing with constant speed v across a 

simply supported beam of length L. This beam is assumed 

to be of the Bernoulli–Euler type with constant cross 

section and ideal smooth pavement. Through neglecting the 

damping effects of both bridge and vehicle, the equations of 

motion for the bridge and vehicle can be written as follows 

 

�̅��̈� + 𝐸𝐼𝑢”“ = 𝑓𝑐(𝑡)𝛿(𝑥 − 𝑣𝑡) (5) 

 

𝑚𝑣�̈� + 𝑘𝑣(𝑞𝑣 − 𝑢|𝑥=𝑣𝑡) = 0 (6) 

 

where �̅�  denotes the bridge mass per unit length, 𝐸 

young elastic modulus, 𝐼  moment of inertia, 

𝑢(𝑥, 𝑡) vertical displacement of beam, and qv(t) vertical 

displacement of the vehicle, measured from the static 

equilibrium position, and a dot and a prime represent the 

derivative with relative to time t and longitudinal coordinate 

x of the beam, respectively. The contact force between 

beam and vehicle 𝑓𝑐(𝑡) can be expressed as 

 

𝑓𝑐(𝑡) = −𝑚𝑣𝑔 + 𝑘𝑣(𝑞𝑣 − 𝑢|𝑥=𝑣𝑡) (7) 

 

where g represents the gravitational acceleration. 

Using the modal superposition method, the solution of 

the bridge displacement response 𝑢(𝑥, 𝑡) in Eq. (5) can be 

expressed in term of modal shapes sin (𝑛𝜋𝑥/𝐿)  and 

generalized coordinates 𝑞𝑏,𝑛(𝑡) 

 

𝑢(𝑥, 𝑡) = ∑ 𝑠𝑖𝑛
𝑛𝜋𝑥

𝐿

∞

𝑛=1

𝑞𝑏,𝑛(𝑡) (8) 

 

Accordingly, one can obtain the solution of the 

displacement of the test vehicle in Eq. (6) as following 

(Yang and Lin 2005, Yang and Chang 2009a, Yang et al. 

2014) 
 

𝑞𝑣(𝑡) = ∑ {𝐴1,𝑛 cos (
(𝑛 − 1)𝜋𝑣

𝐿
) 𝑡

∞

𝑛=1

 

               +𝐴2,𝑛 cos (
(𝑛 + 1)𝜋𝑣

𝐿
) 𝑡 + 𝐴3,𝑛 cos(𝜔𝑣𝑡) 

               +𝐴4,𝑛 cos (𝜔𝑏,𝑛 −
𝑛𝜋𝑣

𝐿
) 𝑡 

               +𝐴5,𝑛 cos (𝜔𝑏,𝑛 +
𝑛𝜋𝑣

𝐿
) 𝑡)} 

(9) 

 

where the coefficient of 𝐴4,𝑛 and 𝐴5,𝑛 are 

 

𝐴4,𝑛 =
−𝑆𝑛∆𝑠𝑡,𝑛𝜔𝑣

2

2(1 − 𝑆𝑛
2) (𝜔𝑣 − 𝜔𝑏,𝑛 +

𝑛𝜋𝑣

𝐿
) (𝜔𝑣 + 𝜔𝑏,𝑛 −

𝑛𝜋𝑣

𝐿
)
 (10) 

 

𝐴5,𝑛 =
𝑆𝑛∆𝑠𝑡,𝑛𝜔𝑣

2

2(1 − 𝑆𝑛
2)(𝜔𝑣 + 𝜔𝑏,𝑛 +

𝑛𝜋𝑣

𝐿
)(𝜔𝑣 − 𝜔𝑏,𝑛 −

𝑛𝜋𝑣

𝐿
)
 (11) 

and the bridge frequency 𝜔𝑏,𝑛 , vehicle frequency 𝜔𝑣 , 

velocity parameter 𝑆𝑛, and vehicle-induced static deflection 

∆𝑠𝑡,𝑛 of the beam, of the n-th mode are defined as 
 

𝜔𝑏,𝑛 = (
𝜋𝑣

𝐿
)2√

𝐸𝐼

�̅�
,          𝜔𝑣 = √

𝑘𝑣

𝑚𝑣
             

𝑆𝑛 =
𝑛𝜋𝑣

𝐿𝜔𝑏,𝑛
,                      ∆𝑠𝑡,𝑛=

−2𝜔𝑣𝑔𝐿3

𝑛4𝜋4𝐸𝐼
 

(12) 

 

Similar to the coefficient of 𝐴4,𝑛 and 𝐴5,𝑛 in Eqs. (10)-

(11), 𝐴1,𝑛  𝐴2,𝑛  and 𝐴3,𝑛  are time irrelevant coefficients 

determined by parameters of  𝜔𝑣 ,  𝜔𝑏,𝑛 ,  ∆𝑠𝑡,𝑛 and  𝑆𝑛 . 

However, it won’t be presented herein since it is not of 

concern in this study. 

Therefore, taking twice derivative of the vehicle 

displacement response, one can obtain the vehicle 

acceleration response 
 

�̈�𝑣(𝑡) = ∑ {�̿�1,𝑛 cos (
(𝑛 − 1)𝜋𝑣

𝐿
) 𝑡

∞

𝑛=1

 

               +�̿�2,𝑛 cos (
(𝑛 + 1)𝜋𝑣

𝐿
) 𝑡 + �̿�3,𝑛 cos(𝜔𝑣𝑡) 

               +�̿�4,𝑛 cos (𝜔𝑏,𝑛 −
𝑛𝜋𝑣

𝐿
) 𝑡 

               +�̿�5,𝑛 cos (𝜔𝑏,𝑛 +
𝑛𝜋𝑣

𝐿
) 𝑡)} 

(16) 

 

with the coefficients of �̿�4,𝑛 and �̿�5,𝑛 as 

 
�̿�4,𝑛 = 

𝑆𝑛∆𝑠𝑡,𝑛𝜔𝑣
2

2(1 − 𝑆𝑛
2)(𝜔𝑣 − 𝜔𝑏,𝑛 +

𝑛𝜋𝑣

𝐿
)(𝜔𝑣 + 𝜔𝑏,𝑛 −

𝑛𝜋𝑣

𝐿
)

(𝜔𝑏,𝑛 −
𝑛𝜋𝑣

𝐿
)

2

 (17) 

 
�̿�5,𝑛 = 

−𝑆𝑛∆𝑠𝑡,𝑛𝜔𝑣
2

2(1 − 𝑆𝑛
2)(𝜔𝑣 + 𝜔𝑏,𝑛 +

𝑛𝜋𝑣

𝐿
)(𝜔𝑣 − 𝜔𝑏,𝑛 −

𝑛𝜋𝑣

𝐿
)

(𝜔𝑏,𝑛 +
𝑛𝜋𝑣

𝐿
)

2

 (18) 

 
Apparently, the vehicle acceleration response of Eq. (16) 

is dominated by five frequencies, i.e., two shifted driving 

frequencies  (𝑛 − 1)𝜋𝑣/𝐿  and  (n + 1)𝜋𝑣/𝐿 , vehicle 

frequency 𝜔𝑣, and two shifted bridge frequencies 𝜔𝑏,𝑛 −
𝑛𝜋𝑣/𝐿 and 𝜔𝑏,𝑛 + 𝑛𝜋𝑣/𝐿 . 

To extract the frequency of bridge from the vehicle 

acceleration response with this proposed HT approach, the 

component response corresponding to the bridge frequency 

of n-th mode should be singled out via an appropriate 

filtering technique. According to Eq. (16), the extracted 

component response 𝑅𝑏 associated with single frequency of 

bridge (n-th mode) is (Yang et al. 2014) 

 

𝑅𝑏(𝑡) = �̿�4,𝑛 cos (𝜔𝑏,𝑛 −
𝑛𝜋𝑣

𝐿
) 𝑡 

                +�̿�5,𝑛 cos (𝜔𝑏,𝑛 +
𝑛𝜋𝑣

𝐿
) 𝑡 

(19) 

 

The filtering signal of 𝑅𝑏 is a narrow-band time series 

and thus can be applied with HT to produce its transform 

pair 
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�̂�𝑏(𝑡) = 𝐻[(𝑅𝑏(𝑡))] 

            = �̿�4,𝑛 sin (𝜔𝑏,𝑛 −
𝑛𝜋𝑣

𝐿
) 𝑡 

                +�̿�5,𝑛 sin (𝜔𝑏,𝑛 +
𝑛𝜋𝑣

𝐿
) 𝑡 

(20) 

 

In general, the bridge frequency 𝜔𝑏,𝑛 is much greater 

than the driving frequency n 𝜋 v/L, especially at lower 

vehicle velocity. Accordingly, the coefficients �̿�4,𝑛 and 

�̿�5,𝑛 can reduce to 
 

�̿�4,𝑛 = (𝜔𝑏,𝑛)2
𝑆𝑛∆𝑠𝑡,𝑛𝜔𝑣

2

2(1 − 𝑆𝑛
2)(𝜔𝑣 − 𝜔𝑏,𝑛)(𝜔𝑣 + 𝜔𝑏,𝑛)

 (21) 

 

�̿�5,𝑛 = −(𝜔𝑏,𝑛)2
𝑆𝑛∆𝑠𝑡,𝑛𝜔𝑣

2

2(1 − 𝑆𝑛
2)(𝜔𝑣 − 𝜔𝑏,𝑛)(𝜔𝑣 + 𝜔𝑏,𝑛)

 (22) 

 

As Eqs. (21)- (22) shown, the two coefficients �̿�4,𝑛 and 

�̿�5,𝑛 are equal in magnitude, but opposite in sign, i.e., �̿�4,𝑛 

+�̿�5,𝑛 = 0. Accordingly, the bridge component response 

𝑅𝑏(𝑡) and its Hilbert transform �̂�𝑏(t) can be expressed as 
 

𝑅𝑏(𝑡) = −2�̿�4,𝑛 sin(𝜔𝑏,𝑛𝑡) sin (
𝑛𝜋𝑣

𝐿
𝑡) (23) 

 

�̂�𝑏(𝑡) = 2�̿�4,𝑛 cos(𝜔𝑏,𝑛𝑡) sin (
𝑛𝜋𝑣

𝐿
𝑡) (24) 

 

From the introduce of Hilbert transform aforementioned, 

the instantaneous amplitude history of 𝐴(𝑡)  can be 

obtained as 
 

𝐴(𝑡) = √𝑅𝑏
2(𝑡)+�̂�𝑏

2(𝑡) =  |2�̿�4,𝑛 ∙ sin (
𝑛𝜋𝑣

𝐿
𝑡)| 

          = 2|�̿�4,𝑛| ∙ |sin (
𝑛𝜋𝑣

𝐿
𝑡)| 

(25) 

 

Replacing 𝑥 with 𝑣𝑡 in Eq. (25) yields 
 

𝐴 (
𝑥

𝑣
) = 2|�̿�4,𝑛| ∙ |sin (

𝑛𝜋𝑥

𝐿
)| (26) 

 

This equation shows that the instantaneous amplitude 

history of 𝐴 (
𝑥

𝑣
)of the extracted component response is 

represented by the mode shape function sin (
𝑛𝜋𝑥

𝐿
) of the 

bridge (in absolute value) multiplied by a constant and 

time-irreverent coefficient 2|�̿�4,𝑛|, which is a function of 

the bridge frequency 𝜔𝑏,𝑛, vehicle frequency 𝜔𝑣, velocity 

parameter 𝑆𝑛, and vehicle-induced static deflection ∆𝑠𝑡,𝑛 

of the beam. It reveals that once the component response 

corresponding to the certain mode shape of the bridge can 

be extracted from the response of a passing vehicle when it 

passed over the bridge, its instantaneous amplitude history 

is representative of the corresponding mode of the bridge 

(Yang et al. 2014). 

On the other hand, the instantaneous phase 𝜃(𝑡)can be 

derived as 
 

𝜃(𝑡) = arctan (
�̂�𝑏(𝑡)

𝑅𝑏(𝑡)
) = arctan(−𝑐𝑜𝑡𝜔𝑏,𝑛𝑡) 

          = 𝜔𝑏,𝑛𝑡 −
𝜋

2
 

(27) 

Herein, it is demonstrated that the bridge frequency can 

be represented by the slope of instantaneous phase. 

However, this result has relied on the assumption of that the 

driving frequency n𝜋𝑣/𝐿 is much smaller than the bridge 

frequency. In fact, with the increase of vehicle velocity, the 

driving frequency cannot be neglected in comparison to the 

bridge frequency. Therefore, the following section will 

focus on presenting formula derivation considering this 

driving frequency. 

Set a ratio 𝛼 of �̿�5,𝑛 to �̿�4,𝑛 from Eqs. (17)-(18) and 

it can be expressed as 
 

𝛼 =
�̿�5,𝑛

�̿�4,𝑛

= −
(1 + 𝑆𝑛)2

(1 − 𝑆𝑛)2
∙

(1 − 𝜇𝑛
2(1 − 𝑆𝑛)2)

(1 − 𝜇𝑛
2(1 + 𝑆𝑛)2)

 (28) 

 

where 𝜇𝑛 is defined as the ratio of the n-th mode natural 

frequency of bridge 𝜔𝑏,𝑛 to the vehicle frequency 𝜔𝑣 
 

𝜇𝑛 =
𝜔𝑏,𝑛

𝜔𝑣
 (29) 

 

Then, the component response of 𝑅𝑏  and its Hilbert 

transform �̂�𝑏 can be expressed as 

 

𝑅𝑏 = �̿�4,𝑛 ∙ [(1 + 𝛼)cos(𝜔𝑏,𝑛𝑡)cos(𝑆𝑛𝜔𝑏,𝑛𝑡) 

           +(1 − 𝛼) sin(𝜔𝑏,𝑛𝑡) sin(𝑆𝑛𝜔𝑏,𝑛𝑡)] 
(30) 

 

�̂�𝑏 = �̿�4,𝑛 ∙ [(1 + 𝛼)sin(𝜔𝑏,𝑛𝑡)cos(𝑆𝑛𝜔𝑏,𝑛𝑡) 

           −(1 − 𝛼) cos(𝜔𝑏,𝑛𝑡) sin(𝑆𝑛𝜔𝑏,𝑛𝑡)] 
(31) 

 

In this way, the instantaneous phase 𝜃(𝑡) can be derived 

as 
 

𝜃(𝑡) = arctan (
�̂�𝑏(𝑡)

𝑅𝑏(𝑡)
) 

         = arctan (
tan(𝜔𝑏,𝑛𝑡) −

1−𝛼

1+𝛼
tan (𝑆𝑛𝜔𝑏,𝑛𝑡)

1 +
1−𝛼

1+𝛼
tan (𝑆𝑛𝜔𝑏,𝑛𝑡) tan(𝜔𝑏,𝑛𝑡)

)  

(32) 

 

Here assumes a time varying coefficient 𝛽(𝑡)  and 

make it content 
 

tan(𝛽(𝑡)) =
1 − 𝛼

1 + 𝛼
tan(𝑆𝑛𝜔𝑏,𝑛𝑡) (33) 

 

Therefore, the instantaneous phase 𝜃(𝑡) of Eq. (30) can 

be expressed as follows 

 

𝜃(𝑡) = 𝜔𝑏,𝑛𝑡 − 𝛽(𝑡) (34) 

 

Obviously, the Eq. (34) shows that the slope of the sum 

of instantaneous phase 𝜃(𝑡) and 𝛽(𝑡)  represents the 

bridge frequency. Comparing to the Eq. (27), it needs to 

calculate the term of 𝛽(𝑡), which is related to the vehicle 

velocity parameter 𝑆𝑛. 

Although the proposed HT based approach indicates that 

the slope of sum 𝜃(𝑡) + 𝛽(𝑡) is potential to extract the 

bridge nature frequencies from a passing vehicle removing 

vehicle speed effect, it is subject to two main challenges. 

One is imposed by the requirement of extracted component 
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response 𝑅𝑏 associated with single frequency of bridge (n-

th mode) from the passing vehicle acceleration history. For 

this point, it can carry out by feasible signal processing 

tools, such as singular spectrum and band-pass filters 

technique, and so on. In this regard, the bridge frequency 

actually has already been known in signal processing. But 

this is not contradictory to the present approach for 

improving extracting bridge frequency. Because this already 

known bridge frequency can obtain from applying FFT 

directly, wavelet analysis approach (Tan et al. 2017b) or 

other ways, which does not remove the effect of the driving 

frequency and therefore, is considered as a poor 

identification (marked as ω̅b here). This present approach 

aims to obtain highly accurate identification of a bridge 

frequency. Although poor identification of bridge frequency 

can be easily obtained, how to extract 𝑅𝑏 from the passing 

vehicle acceleration is still challengeable. Eq. (26) shows 

that the perfect extracted 𝑅𝑏  can obtain results of 

corresponding the mode shape of the bridge, which can 

instruct us to extract apposite 𝑅𝑏 from the axle responses. 

Another challenge is imposed by the calculation of 𝛽(𝑡), 

since it is related to the bridge frequencies as shown Eq. 

(33). The poor estimated frequency of a bridge ω̅b can be 

used instead. This section will investigate that how much 

the ω̅b influences on 𝛽(𝑡) as well as the final accuracy of 

the bridge frequency identification. According to Eq. (28), 

assume  𝜔𝑏 = 3.86𝐻𝑧 ,  𝜔𝑣 = 10.33𝐻𝑧  and 𝑆𝑛 = 0.1; a 

signal is created by 𝑠(𝑡) = cos(𝜔𝑏 − 𝑆𝑛𝜔𝑏) 𝑡 + 𝛼cos(𝜔𝑏 +
𝑆𝑛𝜔𝑏) 𝑡, where 𝛼 is calculated based on Eq. (28). In this 

case, the total effect time is 1.296s with time steps as 

0.002s. Then the HT based approach is applied to extract 

 

 

 

Fig. 2 𝛽(𝑡) plot calculations at different �̅�𝑏 

 

 

 

Fig. 3 The error of approximate slope of 𝛽(𝑡) 

𝜔𝑏 from signal 𝑠(𝑡). In this processing, 𝛽(𝑡) is calculated 

using the given frequency ω̅b, whose errors varies from -

40% to 40% with 10% increment. 

Fig. 2 shows the β(t) plots computed at different given 

frequency ω̅b with Sn = 0.1. Fig. 3 illustrates the error of 

approximate slope of these β(t) plots comparing to the 

theoretical one. As it has shown, the lower the given 

frequency ω̅b, the greater the error result, as well as to the 

greater ω̅b, although their errors are obviously lower than 

the lower given frequency ω̅b. It is no doubts that these 

errors of β(t) will result in the error to final  ωb 

identification as well. Fig. 4 shows the error of  ωb 

identification after applied the proposed HT approach. As 

expected, the HT based approach apparently and effectively 

improve the ωb  estimation. To further explain the 

feasibility of the proposed approach, the results of more 

cases analysis when 𝑆𝑛 = 0.01, 0.05, 0.15 and 0.20 are 

illustrated in Fig. 4 as well. It is worth to notice that the 

total effect time of signal will be changed corresponding to 

𝑆𝑛. For instance, when  𝑆𝑛 = 0.2, the length of total effect 

time is changed to 0.648s. From the Fig. 4, the higher 𝑆𝑛 

will magnify this estimated error, although all of the 

estimated frequencies have been dramatically improved 

after applied with the HT based approach in comparison to 

the given frequency ω̅b. Practically, the improved estimated 

frequency can be utilized as a newly given frequency ω̅b 

to recalculate β(t) and estimated frequency again and one 

can repeat these steps until the convergence of ωb. Fig. 5 

shows the cycle calculation results in the condition of the 

first given ω̅b = −40% ωb  with Sn  = 0.1. As it has 

shown, after enough cycles, the estimated frequency will be 

 

 

 

Fig. 4 Final estimated frequency error 

 

 

 

Fig. 5 Cycle calculation results 
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Fig. 6 The estimated frequency error after 5 loops 

calculation 

 

 

convergence and extremely close to theoretical one. Fig. 6 

shows all case studies result after five loops’ calculation. All 

of the errors are lower than 0.5%. 

It reaches the conclusion that the calculation of precise 

β(t) is not a challenge anymore conducted by the repeat 

computation. Once the single component response 𝑅𝑏 can 

be extracted precisely, the bridge frequency can be 

identified with high accuracy. Therefore, the proposed HT 

based approach to improve bridge frequency identification 

of a passing vehicle is summarized as follows: 

 

(1) Acquisition of the vehicle acceleration responses. 

(2) Obtaining the poor bridge frequencies ω̅b 

applying FFT directly, or wavelet analysis (Tan et 

al. 2017b), etc. 

(3) Extracting a series of single component response 

𝑅𝑏 at a series of band-pass filters with ω̅b. 

(4) Calculating instantaneous amplitude history 𝐴(𝑡) 

of HT at each 𝑅𝑏; simultaneously calculating the 

MAC (modal assurance criteria) between 𝐴(𝑡) 

and theoretical mode shape of the bridge. 

(5) Choosing the optimum 𝑅𝑏  who provides the 

maximum MAC. 

(6) Calculating the instantaneous phase 𝜃(𝑡) of HT at 

the obtained optimum 𝑅𝑏 and calculating the time-

varying coefficient 𝛽(𝑡). 

(7) Computing an improved bridge frequency with 

𝛽(𝑡)  and  𝜃(𝑡)  and using the improved bridge 

frequency to calculate the time-varying 

coefficient 𝛽(𝑡) again. 

(8) Repeating step (7) until the improved identified 

frequency convergence (convergence is the final 

bridge frequency identification). 

 

 

4. Case studies 
 
To verify the feasibility of the proposed approach on 

improving bridge frequency from a passing vehicle, a 

quarter-car of VBI model was adopted as shown in Fig. 7. 

The quarter-car travels with constant speed over the bridge. 

The vehicle is modeled as a quarter-car model crossing a 

50-m approach distance followed by a 20-m simply 

supported finite element (FE) bridge. The vehicle masses 

are represented by a sprung mass, ms, and un-sprung mass, 

ms

csks

ma
ka

us

ua

..

..

L
 

Fig. 7 The quarter car and bridge model 

 

 

Table 1 Vehicle and bridge properties 

Vehicle properties Bridge properties 

ms 14000 kg Span 20 m 

ks 200 kN/m Density 4800 kg/m3 

cs 10 kN s/m Width 4 m 

ma 700 kg Depth 0.8 m 

ka 2750 kN/m Modulus 2.75×1010 N/m2 

 

 

 

ma represents the vehicle axle mass and body mass 

respectively. The Degrees of Freedoms (DOFs) that 

correspond to the bouncing of the sprung and the axle 

masses are, us, and ua, respectively. All properties of VBI 

model is listed in Table 1 and based upon the work of 

Cebon (1999). The dynamic interaction between the vehicle 

and the bridge is implemented in MATLAB (Tan et al. 

2017a). The road surface profile is not considered in this 

simulation. Unless otherwise mentioned, the used scanning 

frequency is 500 Hz. The first two natural frequencies of 

bridge, fb is 2.171 Hz and 8.683 Hz respectively. The 

vehicle frequencies are 0.581 Hz and 10.333 Hz 

respectively. 

Fig. 8 illustrates the vehicle axle acceleration response 

for the VBI model mentioned above, where the vehicle 

velocity is 18m/s. As aforementioned in the analytical 

theory, this passing vehicle history contains the bridge 

frequency components. Therefore, the natural frequency of 

bridge can be extracted after FFT applying to the signal of 

Fig. 8. Fig. 9 illustrates the spectrum of the recorded 

response showing two distinctive peaks according to the 

frequency of 2.693 Hz and 9.874 Hz respectively, which 

represents the first two bridge natural frequencies of the 

bridge, respectively. Since the frequency resolution of FFT 

is low with short data at the condition of higher vehicle 

velocity. The spectrum of the test vehicle with FFT 
 

 

 

Fig. 8 The vehicle acceleration response 
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Fig. 9 Acceleration spectrum of vehicle acceleration history 
 

 

cannot point out the precious frequencies of bridges. With 

the increase in vehicle velocity, the frequency resolution of 

FFT will be worse. Thus, FFT can only provide a poor 

frequency identification for short data of the passing vehicle 

acceleration response. In addition, FFT cannot be used to 

detect the bridge frequency drop caused by bridge structure 

damages so as to assess bridge condition. The following 

section will utilize the proposed HT based approach to 

improve the extraction of the bridge frequencies. 
 

 

 

 

Generally, the maximum error applying FFT directly 

will be not greater than 2 times of the theoretical driving 

frequency (in this case: 𝑓𝑑 =
𝑣

𝐿
= 0.9𝐻𝑧) because both of 

the shift frequency and frequency resolution are equal to 𝑓𝑑. 

For example, in this case, the real first natural bridge 

frequency should be in the range of   𝑓𝑟1 = 2.693 −
2 × 0.9 = 0.893;  𝑓𝑟2 = 2.693 + 2 × 0.9 = 4.493. Then a 

zero-phase digital ‘Butterworth’ band-pass filter with a 

lower order as 6 is applied to the recorded acceleration 

response to extract the single modal component response. 

For this band-pass filter, the center frequency 𝑓𝑐𝑒𝑛𝑡𝑒𝑟 varies 

from 𝑓𝑟1 to 𝑓𝑟2, and the two-cut-off frequencies are  𝑓𝑐1 =
 𝑓𝑐𝑒𝑛𝑡𝑒𝑟 − 2 ×  𝑓𝑑 and 𝑓𝑐2 =  𝑓𝑐𝑒𝑛𝑡𝑒𝑟 + 2 ×  𝑓𝑑, respectively. 

Therefore, these band-pass filters are applied to extract 

the first two single component responses 𝑅𝑏1 and 𝑅𝑏2 of 

the bridge, and then these series of extracted 𝑅𝑏1 and 𝑅𝑏2 

are used to improve the bridge frequency ωb identification 

based on the aforementioned procedures. For this case, the 

results are illustrated in Fig. 10. As it has shown, when 

the  𝑓𝑐𝑒𝑛𝑡𝑒𝑟 = 2.8𝐻𝑧 ,  the corresponding 𝑅𝑏1  has the 

maximum MAC and obtains the final ωb = 2.16𝐻𝑧, which 

is extremely close to the theoretical one with regard to the 

first bridge frequency. Similarly, the 2nd bridge frequency 
 

 

 

 

  

(a) 1st bridge frequency (b) 2nd bridge frequency 

Fig. 10 Bridge frequencies identification at a series of band-pass filters 

 

Fig. 11 The improved 1st bridge frequency identification details; top left: single component Rb1 after band-pass filter; 

top right: the instantaneous phase θ(t); bottom left: the time varying coefficient β(t); bottom right: θ(t) + β(t) 
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has been improved apparently after applying the proposed 

approach. 

 

 

 

 

Figs. 11 and 12 show the details for improving the 

bridge frequency ωb identification based on HT approach. 
 

 

 

 

 

 

Fig. 12 The improved 2nd bridge frequency identification details; top left: single component Rb2 after band-pass filter; 

top right: the instantaneous phase θ(t); bottom left: the time varying coefficient β(t); bottom right :θ(t) + β(t) 

 

 

Fig. 13 The improved 1st bridge frequency identification at different vehicle speeds 
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As shown, these 𝜃(𝑡) plots are represented by a nearly 

straight line and their approximate slopes are calculated as 

2.39 and 9.55 respectively. These calculated slopes can be 

considered as bridge frequencies as Eq. (27) considering the 

vehicle velocity parameter effect. However, the errors are 

great comparing to the theoretical one. Actually, the 𝛽(𝑡) 

plots are represented by this vehicle speed effect and 

clearly, they cannot be ignored directly. From the Eq. (34), 

the slopes of plots of 𝜃(𝑡) + 𝛽(𝑡) represent the high 

accuracy identification of bridge frequency removing the 

 

 

 

 

effect of vehicle velocity effect and their approximate 

slopes are calculated as 2.16 and 8.56 respectively. 

 

4.1 Effect of vehicle speed 
 

In this case, the effect of the vehicle speed on improving 

the bridge frequency identification is studied for a series of 

vehicle speeds: 𝑣 from 6 to 30 m/s with incensement of 2 

m/s. Other parameters of VBI remain identical to that 

studied previously. By following the same procedure, the 

 

 

Fig. 14 The improved 2nd bridge frequency identification at different vehicle speeds 

Table 2 The improved bridge frequencies identification results at different vehicle speeds 

Velocities (m/s) 6 8 10 12 14 16 18 20 22 24 26 28 30 

1st 

HT (Hz) 2.18 2.19 2.15 2.14 2.15 2.08 2.16 2.29 2.14 2.13 1.70 2.58 1.70 

Error (%) 0.23 1.02 -0.78 -1.48 -0.75 -4.06 -0.48 5.68 -1.40 -1.71 -21.81 18.94 -21.46 

FFT (Hz) 2.10 2.40 2.50 2.40 2.09 2.40 2.69 2.00 2.20 2.39 2.59 1.39 1.50 

Error (%) -3.33 10.48 15.06 10.48 -3.49 10.39 24.06 -8.05 1.25 10.21 19.35 -35.84 -31.04 

2nd 

HT (Hz) 8.65 8.64 8.62 8.60 8.58 8.57 8.56 8.66 8.51 8.64 8.61 8.59 8.57 

Error (%) -0.34 -0.46 -0.69 -0.91 -1.16 -1.29 -1.45 -0.30 -1.97 -0.49 -0.83 -1.05 -1.30 

FFT (Hz) 8.99 9.19 8.99 8.99 9.08 9.58 9.87 9.98 9.89 9.57 10.36 9.75 10.48 

Error (%) 3.57 5.87 3.55 3.57 4.55 10.38 13.72 14.94 13.90 10.21 19.34 12.28 20.68 
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improved first two bridge frequencies can be extracted from 

a passing vehicle for each vehicle speed, as shown in Figs. 

13 and 14. Table 2 lists the final bridge frequencies 

identification values of ωb and results from HHT directly 

comparing to theoretical ones. 

In the above processing analysis, all of the poor bridge 

frequencies identification �̅�𝑏 are obtained from the FFT 

spectrum. As it has shown, the �̅�𝑏 have a greater error at 

higher vehicle speed. In Table 2, the maximum 

identification error of FFT is -35.84% for 1st bridge 

frequency and 20.68% for 2nd bridge frequency. Obviously, 

the proposed approach has improved the bridge frequencies 

from a passing vehicle in most the cases. The identification 

error is less than 1.97% for 2nd bridge frequency. It is 

observed that when the vehicle speed is not greater than 26 

m/s, the results of the improved 1st bridge frequencies are 

precious and error is less than 5.68%. In contrast, when the 

vehicle speed is equal to or greater than 26 m/s, the 

proposed HT based approach is not able to improve the 

bridge natural frequencies from the poor identification 

results with FFT. 
 

4.2 Effect of noise 
 

To further investigate the feasibility of this proposed 

method, the effect of noise are investigated. In order to 

simulate the polluted measurements, white noise is added to 

the simulated responses of the vehicle. The noise response 

is calculated as following formula 

 

�̈�𝑛𝑜𝑖𝑠𝑒 = �̈�𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒𝑑 + 𝐸𝑝𝑁𝑜𝑖𝑠𝑒𝜎(�̈�𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒𝑑) (35) 

 

where �̈�𝑛𝑜𝑖𝑠𝑒 is the polluted acceleration; 𝐸𝑝 is the noise 

level and 𝑁𝑜𝑖𝑠𝑒  is a standard normal distribution vector 

with zero mean value and unit standard deviation. 

�̈�𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒𝑑  is the calculated acceleration, and 

𝜎(�̈�𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒𝑑) is their standard deviations. 

The different levels of noise: 𝐸𝑝 = 0.05, 0.1, 0.15, 0.20 

and 0.25 are investigated in this study. By following the 

same procedure, all the results of the improved bridge 
 

 

frequencies are listed in Table 3. As it has shown, the 

proposed approach is not sensitive to noise, possibly 

because the procedure of band-pass filtering almost 

removes the effect of noise, as long as the FFT can get the 

generally accurate bridge frequencies �̅�𝑏. The result of the 

2nd bridge frequency is better than that of 1st. The maximum 

identification error is 8.87% for 1st bridge frequency (except 

for 26, 28 and 30 m/s) and 2.28% for 2nd bridge frequency 

(except for 30 m/s). 
 

4.3 Effect of surface roughness 
 

In this case, the effect of road surface roughness is 

investigated by letting the instrumented vehicle pass over 

the bridge with rough road profile. The road roughness 

profile is generated according to the PSD (power spectrum 

density) curve of “class A” (ISO 1995). 

Fig. 15 shows the original crossing vehicle acceleration 

history at velocity 18 m/s with road roughness and the 

corresponding frequencies extracted using FFT. As it has 

shown, at the “class A” road roughness profile, the FFT can 

still extract the bridge frequency and the first two bridge 

frequencies are recognized as 2.693 Hz and 9.874 Hz 

respectively. Similar to the effect of noise, the following 

band-pass filtering process can partially remove the 

component of response generated by the uneven road 

surface from the vehicle response. Therefore, the proposed 

approach can still improve the bridge frequency. The results 

are shown in Fig. 16. As expected, it provides the highly 

precious identification. When the road roughness condition 

is worse, the FFT may not extract the bridge frequency 

directly from a passing vehicle acceleration. The concept of 

subtracting signals from identical axles is a promising way 

to overcome it (González et al. 2012, Yang et al. 2012). 
 

 

5. Potential application and challenges 
 

As one of the most important parameters of bridges, 

frequencies can be used to detect structural damage through 

frequencies change (Carden 2004). In this study, bridge 
 

 

 

Table 3 The errors of improved bridge frequencies results at different levels of noise 

Velocity 

Noise    (m/s) 

level 

6 8 10 12 14 16 18 20 22 24 26 28 30 

1st 

0.05 0.22 0.97 -0.73 -1.42 -0.85 -4.02 -1.96 2.67 -1.30 0.00 -24.86 17.31 -21.39 

0.1 0.06 1.01 -0.45 -2.06 -0.81 -3.88 -2.31 5.78 0.93 0.34 -24.60 17.45 -22.44 

0.15 5.28 0.88 -0.71 -3.61 -0.62 4.68 -0.75 5.89 3.54 0.52 -20.97 16.94 -24.04 

0.2 -1.72 0.74 -2.58 -1.55 -2.72 -6.37 -0.53 5.31 -1.22 -4.69 -26.78 -63.09 -18.72 

0.25 2.75 1.22 -0.64 -3.52 8.87 -6.42 -2.14 5.85 -4.46 -4.35 -25.42 -55.91 -16.54 

2nd 

0.05 -0.34 -0.46 -0.69 -0.93 -1.16 -1.28 -1.46 -0.29 -1.97 -0.48 -0.85 -0.94 -1.38 

0.1 -0.33 -0.47 -0.69 -0.87 -1.16 -1.32 -1.46 -0.29 -2.00 -0.54 -0.78 -1.17 -1.52 

0.15 -0.35 -0.45 -0.67 -0.92 -1.17 -1.34 -0.14 -0.24 -2.09 -0.41 -0.89 -1.37 38.81 

0.2 -0.34 -0.48 -0.71 -0.94 -1.09 -1.23 -0.21 0.10 -2.21 -0.42 -0.58 -1.08 38.71 

0.25 -0.31 -0.48 -0.69 -0.95 -1.15 -1.29 -1.45 -0.56 -2.28 -0.32 -0.94 -1.38 38.78 
 

*Note: the errors are represented by percentage (%) comparing to theoretical ones 
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damage is simulated using the method proposed by Sinha et 

al. (2002), where the damage is assumed to be extended 

over a region of three times the beam depth. The element 

stiffness in this damage region varies from a minimum 

value at the exact crack location to full stiffness at the edge 

of the damaged area. The damage level is defined as a ratio 

of the depth of the crack to the depth of the intact bridge. 

For example, if the damage level is 0.2 or 20%, it means 

that the crack depth is 0.16 meters for a 0.8 meters deep 

bridge. 

The FFT method, as mentioned previously, could not be 

used to accurately identify the bridge frequency at higher 

speeds. This is due to the low frequency resolution 

 

 

 

 

 

 

associated with higher vehicle speeds. Therefore, and for 

the same reason, FFT cannot be used to monitor the shift in 

the bridge frequency due to structural damages. The 

frequency step of FFT will not pick up the minor changes 

happened to the bridge frequency due to structural damages. 

Therefore, the next section will focus only on using the HT 

based approach to track the change in the bridge frequency 

due to the existence of structural damages. 

In this case, the damage located at the 0.7 L (L = span 

length) of the bridge. The bridge is modeled three times, 

one as an intact bridge, and other two cases of different 

damage levels (e.g., 20% and 40%). By following the 

procedures mentioned above using the same band-pass 

  

(a) The vehicle acceleration response (b) Acceleration spectrum 

Fig. 15 The vehicle acceleration response and spectrum 

  

(a) 1st bridge frequency (b) 2nd bridge frequency 

Fig. 16 Bridge frequencies identification considering the road surface profile 

  

(a) Rb1 (b) Rb2 

Fig. 17 β(t) + θ(t) plots at different damage levels 
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Fig. 18 The 1st bridge frequency estimation at different 

bridge conditions 

*Note: fTI presents the 1st theoretical frequency of the intact bridge, 

fTD1 presents the 1st theoretical frequency of the damaged 

bridge at level 0.2, fTD2 presents the 1st theoretical 

frequency of the damaged bridge at level 0.4, fII presents 

the 1st identified frequency of the intact bridge, fID1 

presents the 1st identified frequency of the damaged bridge 

at level 0.2, fID2 presents the 1st identified frequency of 

the damaged bridge at level 0.4 
 

 

filter, Fig. 17 illustrates results of 𝛽(𝑡) + 𝜃(𝑡)  plots 

representing the final bridge identification. Herein, all 

parameters of the VBI model are kept same with the above 

and the vehicle velocity is 18 m/s. As it has shown, there is 

clear difference of slope in 𝛽(𝑡) + 𝜃(𝑡) plots in these three 

cases. With the increase of damage level, the slope in 

𝛽(𝑡) + 𝜃(𝑡)plots representing bridge frequency decreases, 

which can point out the drop of bridge natural frequency 

due to the structural damage. 

Similarly, different velocities (6 m/s, 8 m/s, 10 m/s, 12 

m/s and 14 m/s) are studied, and the results are illustrated in 

Figs. 18 and 19. In this study, other parameters of VBI 

remain identical to that studied previously. 

As they are shown, with the increment of damage level, 

the theoretical frequencies of bridge decrease (fTI > fTD1 > 

fTD2). Similarly, the identified frequencies of damaged 

bridge decrease as well (fII > fID1 > fID2). Although the 

improved bridge frequencies applying HT based approach 

are not exact to the theoretical ones, the drop of frequencies 

is clearly found. The error is less than 2.77% for the 1st 

bridge frequency and 1.16% for the 2nd bridge frequency. It 

has concluded that the proposed approach is not restricted 

to frequency resolution, which is able to point out the 

frequencies drop due to the structural damage. This may 

indicate a promising way to estimate bridge conditions. 

However, it is observed that the frequency changes are 

small/less than 0.1 Hz and 0.3 Hz, for 1st and 2nd mode 

shape respectively. The result is consistent with Chen et al. 

(1995) presented that the lower frequencies are not sensitive 

to structural damage, usually less than 5%. The higher 

modes have demonstrated to achieve improved 

identification results, but they are usually unavailable in the 

field (Salawu 1997). In practical, it is difficult to detect this 

kind of small change, because of the effect of environment, 

e.g. noise and temperature. Chen et al. (1995) showed that 

the environment can have a significant effect on the results, 

and can be as high as 5-10%. 

 

Fig. 19 The 2nd bridge frequency estimation at different 

bridge conditions 

*Note: fTI presents the 2nd theoretical frequency of the intact 

bridge, fTD1 presents the 2nd theoretical frequency of the 

damaged bridge at level 0.2, fTD2 presents the 2nd 

theoretical frequency of the damaged bridge at level 0.4, 

fII presents the 2nd identified frequency of the intact 

bridge, fID1 presents the 2nd identified frequency of the 

damaged bridge at level 0.2, fID2 presents the 2nd 

identified frequency of the damaged bridge at level 0.4 
 

 

6. Conclusions 
 

This paper introduces a new approach combined with 

HT and band-pass filter technique to improve the bridge 

natural frequency identification from a passing vehicle. The 

proposed approach improves the identified frequency 

iteratively, where the initial value can be achieved by 

applying FFT directly. In contrast to FFT, the proposed 

approach is not restricted to the frequency resolution. 

Hence, this paper preliminarily found that the proposed 

approach is able to detect the frequencies drop due to the 

bridge structural damage. In this regard, it is a promising 

way to estimate bridge conditions. However, the observed 

drop is very small in addition to the environment effect, 

which may limit the effectiveness of the proposed approach 

to structural damage detection. Nevertheless, it has shown 

improved identification of bridge frequencies over than 

FFT, without limitation to resolution. In addition, the 

proposed approach is not sensitive to vehicle velocity and 

signal noise. 
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