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1. Introduction 

 

Fly ash (pulverized fuel ash) as a residue has been 

gained from the combustion of pulverized coal in furnaces 

of thermal power plant. One of the essential components of 

concrete is cement; however, producing every ton of cement 

leads to significant emission of CO2 into the atmosphere 

(Hewlett and Liska 2019, Li et al. 2019). Cement 

production only accounts for 7% of the total produced CO2 

in the world (Benhelal et al. 2013). Hence, partial 

replacement of cement in concrete with other pozzolans is a 

very efficient approach to reduce CO2. On the other hand, 

pozzolans can be obtained through waste materials 

remaining from the manufacturing process of different 

products. Therefore, the use of such pozzolans in concrete 

can address not only a solution to decrease the amount of 

CO2 but also a mean for the disposal of waste materials 
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(Nguyen et al. 2018, Nosrati et al. 2018). 
 

1.1 Fly ash 
 

Fly ash (FA), as sort of pozzolan powder, can be used 

for partial replacement of cement (Davis et al. 1937). FA 

not only increases the workability and integrity of concrete 

but also declines the adverse byproducts of cement 

production (Li and Zhao 2003). Although FA can improve 

the rheology of concrete mixture, the compressive strength 

and slump reduce (Antiohos et al. 2007). Generally, FA is 

obtained as a remnant of the pulverized coal combustion in 

furnaces of thermal power plants. The features of FA largely 

depend on the combustion processing through which the FA 

is obtained. FA gathered through dry processing is generally 

homogenous in particle size, whereas the FA obtained by 

wet processing is highly separated due to the lower 

sedimentation speed and more quantity of water (Ameri et 

al. 2015). 
 

1.2 Furnace slag 
 

Furnace slag is one of the cementitious materials which 
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Abstract.  Mineral admixtures have been widely used to produce concrete. Pozzolans have been utilized as partially replacement 

for Portland cement or blended cement in concrete based on the materials’ properties and the concrete’s desired effects. Several 

environmental problems associated with producing cement have led to partial replacement of cement with other pozzolans. Furnace 

slag and fly ash are two of the pozzolans which can be appropriately used as partial replacements for cement in concrete. However, 

replacing cement with these materials results in significant changes in the mechanical properties of concrete, more specifically, 

compressive strength. This paper aims to intelligently predict the compressive strength of concretes incorporating furnace slag and 

fly ash as partial replacements for cement. For this purpose, a database containing 1030 data sets with nine inputs (concrete mix 

design and age of concrete) and one output (the compressive strength) was collected. Instead of absolute values of inputs, their 

proportions were used. A hybrid artificial neural network-genetic algorithm (ANN-GA) was employed as a novel approach to 

conducting the study. The performance of the ANN-GA model is evaluated by another artificial neural network (ANN), which was 

developed and tuned via a conventional backpropagation (BP) algorithm. Results showed that not only an ANN-GA model can be 

developed and appropriately used for the compressive strength prediction of concrete but also it can lead to superior results in 

comparison with an ANN-BP model. 
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has a noticeable structural resemblance to cement (Gorai 

and Jana 2003). According to the precursor studies, furnace 

slag, as a partial replacement for cement, can increase the 

compressive strength and durability of concrete (Razak and 

Sajedi 2011, Shariati et al. 2020c). On the other hand, using 

furnace slag at a higher dosage can cause thermo-hygral 

damages and cracks, which adversely affect the strength 

and mechanical properties of concrete (Li and Zhao 2003, 

Naghipour et al. 2020). Furnace slag is a by-product of iron 

and steel production in furnaces. The composition of raw 

material in the process of iron production affects the 

chemical composition of furnace slag which leads to 

significant variations. Slag is decanted in the furnace by 

floating on top of the iron. Quick cooling of the molten slag 

converts it to non-crystalline ingredients with hydraulic 
characteristics (Bınıci et al. 2012). In order to raise the 

cementitious characteristics of slag, it can be crushed to 

reach the same fineness as an ordinary Portland cement 

(OPC) (Boukendakdji et al. 2012). 

 

1.3 Artificial Neural Networks (ANNs) and 
Evolutionary Algorithms (EAs) 

 

Artificial neural networks (ANNs) are intelligence tools 

which have been widely used in different applications such 

as function-approximation, classification, and time series 
prediction (Chan et al. 2011, Hinton et al. 2012, Esmaeili et 

al. 2014, Safa et al. 2016, Toghroli et al. 2016, Mansouri et 

al. 2017, Nguyen and Bui 2019, Sedghi et al. 2018, Shariati 

et al. 2019a, c, 2020a, Zhou et al. 2019). The most 

considerable advantage of the ANNs is their ability to map a 

set of inputs to outputs in high dimensional space of 
problem (Kaastra and Boyd 1996). The performance of the 

ANNs largely depends on the training process, which is 

involved. Training means that the weights and biases of the 

network are obtained which can lead to an acceptable 

estimation of the actual outputs of the problem. In order to 

train the ANNs, classic algorithms such as backpropagation 

(BP) algorithms are conventionally used. Although these 

algorithms show a high-speed and efficient performance in 

the training process of ANNs, they have the potential to get 

stuck in local extremums in some cases (Shariati et al. 

2019c). As another approach for the training of ANNs, 

evolutionary algorithms (EAs) such as genetic algorithm 

(GA), particle swarm optimization (PSO), and imperialist 

competitive algorithm (ICA) can be used. The global search 

feature of EAs can eliminate the deficiency of classic 

algorithms. Hence, these algorithms have been widely used 

to train the ANNs (Sonmez et al. 2006, Ho-Huu et al. 2016, 

Sadeghipour Chahnasir et al. 2018, Shariati et al. 2019c, d, 

2020b). 

According to the different applications of structural 

components, the compressive strength is the critical feature 

of the concrete. Therefore, the composite beams and floor 

systems that faced the axial and compressive forces should 

be investigated under several loading patterns. Besides, the 

compressive, tensile, and flexural strength of concrete can 

be evaluated while subjected to different experimental 

analyzes, and hence, different design parameters and 

loading scenarios can be estimated with respect to the 

highest risk. Also, the effectiveness of cementitious 

additives has been proved by precursor studies where the 

slag and fly ash represented the most significant role 

(Shariati et al. 2010, 2011, 2012a, b, c, d, 2013, 2014a, b, 

2015, 2016, 2017, Shariati 2013, Khorramian et al. 2015, 

2017, Shahabi et al. 2016a, b, Tahmasbi et al. 2016, 

Hosseinpour et al. 2018, Nasrollahi et al. 2018, Wei et al. 

2018, Davoodnabi et al. 2019). 

The compressive strength has been widely discussed and 

investigated in previous papers, and different concrete 

mixtures represented various structural behavior along with 

the experimental tests. Therefore, new mix proportions 

should be assessed under the compressive tests. Besides, 

using artificial intelligence, which has been proved to be a 

convenient approach for engineering applications, could be 

a wise solution to address the future necessities of 

experimental analyzes. Consequently, analytical algorithms 

could be performed on prior experimental studies to predict 

and evaluate the obtained results (Sinaei et al. 2012, 

Toghroli et al. 2014, 2018a, Hamdia et al. 2015, 

Mohammadhassani et al. 2015, Shao and Vesel 2015, 

Toghroli 2015, Mansouri et al. 2016, Le-Duc et al. 2016, 

Khorami et al. 2017a, Sari et al. 2018, Shao et al. 2018, 

2019, Shariat et al. 2018, Armaghani et al. 2020, Shariati et 

al. 2019b, Shi et al. 2019a, b, Trung et al. 2019, Xu et al. 

2019). 

The steel-concrete composite components have been 

proposed to mitigate the lack of mechanical properties, such 

as compressive strength. On the other hand, the composite 

systems have several types that should be investigated by 

the experimental and analytical tests. Generally, the 

compressive strength of concrete could affect the composite 

systems performance; hence each new concrete mixture 

should be investigated experimentally and analytically and 

then used in the composite constructions (Arabnejad 

Khanouki et al. 2011, Sinaei et al. 2011, Mohammadhassani 

et al. 2014a, b, Khanouki et al. 2016, Shah et al. 2016, 

Heydari and Shariati 2018, Luo et al. 2019, Xie et al. 2019). 

Since the pavement would tolerate the direct punch 

forces and static compressions, the compressive strength of 

pavement materials such as pervious concrete is one of the 

most fundamental features in pavement designs which 

should be enhanced by additive powders like slag and fly 
ash (Toghroli et al. 2017, 2018b, Bazzaz 2018, Bazzaz et al. 

2018). 

Concrete additives are applied to improve the 

mechanical and chemical properties of the concrete. 

However, the use of cementitious materials and pozzolans 

such as FA, slag, silica fume, metakaolin, perlite, and other 

additives have been carried out to develop the performance 

of concrete. Besides, FA and slag had a significant effect on 

the quality of concrete, especially the compressive strength 

(Arabnejad Khanouki et al. 2010, Abedini et al. 2017, 2019, 

Nosrati et al. 2018, Sajedi and Shariati 2019). In addition, 

various methods are currently used to evaluate the structural 

health monitoring; hence, constructions produced from 

concrete should be appropriately inspected during 
serviceability (Hamidian et al. 2012). 

Also, the concrete could be employed in steel-concrete 

composite systems. Although the dynamic behavior of 
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composite systems has been a concern for researchers, 

constructions produced from concrete can be investigated 

under seismic loading, especially after incorporation of the 

FA and slag with cement as the cement-replacement 

additive powders (Daie et al. 2011, Kazerani et al. 2014, 

Ghassemieh and Bahadori 2015, Bahadori and Ghassemieh 

2016, Najarkolaie et al. 2017, Zandi et al. 2018). 
 

1.4 Scope and objectives 
 

The purpose of this paper is to predict the compressive 

strength of concrete in which cement has been partially 

replaced with furnace slag and fly ash. Hence, rich data, 

including 1030 data sets were collected from literature, and 

an artificial neural network (ANN) was developed. The 

main feature of the gathered data is that it includes concrete 

specimens with a variety of ages (from one-day to one-

year). Also, it includes both specimens in which furnace 

slag and fly ash have been used separately and together. In 

contrast to most of the conventional developed ANNs which 

predict the compressive strength of concrete by considering 

absolute values of inputs, in this study, inputs were 

normalized, and their proportions were used. The developed 

ANN was trained by a genetic algorithm (GA) as an 

evolutionary algorithm (EA). The performance of the ANN-

GA model was assessed by another ANN, which was 

developed and trained via a conventional backpropagation 

(BP) algorithm. Finally, the results of the developed ANN-

GA and ANN-BP models were compared in terms of 

performance evaluation values. 
 

 

2. Methodology 
 

2.1 Artificial neural network (ANN) methodology 
 

ANNs are intelligence tools inspired by biological 

neural networks of humans and animals, which can 

conveniently learn patterns and predict results in high 

dimensional space of the problem (Naderpour et al. 2018, 

Safa et al. 2020). They can map a set of inputs to a set of 

outputs in a noisy and complex dataset. Multilayer 

perceptron (MLP) is a simple and reliable class of feed-

forward ANNs. A typical MLP network contains an input 

layer, one or several hidden layers, and an output layer 

(Alizamir and Sobhanardakani 2018). The Input layer takes 

 

 

the value of inputs and sends them to the available neurons 

in the hidden layer. Inside each neuron, a weighted sum of 

inputs is calculated, and this value, plus a value of bias is 

transformed by an activation function, as shown in Fig. 1. 

Then, the calculated value is transferred to the neurons in 

the next layer. 

This mathematical process can be formulated by 
 

𝑦𝑗 = 𝑓 (∑ 𝑤𝑖𝑗𝑥𝑖 + 𝑏𝑗

𝑁

𝑖=1
) (1) 

 

where 𝑥𝑖 and 𝑦𝑗 are the nodal values in the previous layer 

𝑖, and current layer 𝑗, respectively. 𝑤𝑖𝑗  and 𝑏𝑗  are also 

weights and biases of the network. 

The used activation (transfer) function in this 

investigation was hyperbolic tangen function. This function 

varies between -1 and 1 which is defined as follows 
 

𝑂𝑢𝑡𝑗 = 𝑓(𝑛𝑒𝑡) =
2

1 + 𝑒−2𝑥
− 1 (2) 

 

where 𝑓 is the output variable, and 𝑥 is the input variable. 

Neural networks should be trained to show efficient 

performance. Training means that the weights and biases of 

the network are determined such that the minimal error 

between targets (actual values) and outputs (network 

values) occurs. Hence, the training process of neural 

networks culminates in a minimization problem. 

Backpropagation (BP) algorithms are commonly used in 

order to train neural networks. Levenberg-Marquardt 

algorithm (LMA) is often the fastest BP algorithm in 

training; thus, LMA was used in this study as the BP 

algorithm. 
 

2.2 Genetic Algorithm (GA) 
 

One of the most practical techniques that are utilized in 

solving optimization problems is the Genetic algorithm 

(Nimtawat and Nanakorn 2009, Perera and Varona 2009, 

Kaya 2011, Vo-Van et al. 2017, Ziaei-Nia et al. 2018, 

Katebi et al. 2019, Khorami et al. 2017b). This technique 

has been inspired by the natural selection mechanism and 

biological species evolution (Holland 1992). In this 

technique, a cost function (fitness function) that should be 

minimized or maximized is described, then, in the available 

space of the problem, a population of solutions is created. 

 

 

 

Fig. 1 A typical neuron in ANN 
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Individuals of this population are represented as strings of 

chromosomes for each of which the cost function can be 

calculated. Based on the value of each individual, a percent 

of the best individuals is selected as parents to reproduce a 

new generation. Parents are combined through a process 

which is known as the crossover, and they reproduce 

offsprings. Some of the offsprings are mutated randomly to 

represent the actual biological evolution. Finally, in the next 

generation, the offsprings will play the role of new parents, 

and this procedure is repeated until the problem is 

converged, and the best value is obtained for the cost 

function. 
 

2.3 Artificial neural network-genetic algorithm 
(ANN-GA) 

 

The appropriate performance of ANN depends on the 

weights and biases, which are obtained through the training 

process. In the training process, the difference between 

actual values (targets) and predicted values (network 

values) are determined, and an algorithm tries to minimize 

this error by modifying the weights and biases of the neural 

network. As mentioned before, GA is an evolutionary 

algorithm that can solve minimization problems. Therefore, 

it can be used for determining the weights and biases of the 

ANN. The cost function (fitness function) of the 𝑖𝑡ℎ 

individual can be defined in the term of mean squared error 

(MSE) as follows 
 

𝑓(𝑤𝑖 , 𝑏𝑖) =
1

𝑆
∑ [∑ {𝑡𝑘𝑙 − 𝑝𝑘𝑙(𝑤𝑖 , 𝑏𝑖)}

𝑂

𝑙=1

2

]
𝑆

𝑘=1
 (3) 

 

where f is the cost (fitness) value, 𝑡kl is the target output; 𝑝kl 

 

 

is the predicted output based on 𝒘𝒊  (weights) and 𝒃𝒊 

(biases); 𝑆 is the number of training set samples; and, 𝑂 is 

the number of output neurons. Fig. 2 briefly shows a 

graphical flowchart of an ANN model which has been 

combined with GA. 
 

 

3. Data and preparation 
 

As mentioned before, a big data, including 1030 

datasets, was collected from literature for this study (Sarkar 

and Aitcin 1987, Langley et al. 1989, Gjorv et al. 1990, 

Naik and Ramme 1990, Swamy and Bouikni 1990, Hwang 

1991, Sivasundaram et al. 1991, Giaccio et al. 1992, 

Lessard et al. 1993, Lee 1994, Chung 1995, Chang et al. 

1996, Chang 1997). The details of the input variables are 

shown in Table 1. As can be seen, the prepared data for this 

study covers a favorable range of each variable with an 

appropriate frequency. 

Although absolute values of inputs have been 

commonly used in literature for developing ANNs which 

predict the compressive strength of concrete, it is more 

practical and reasonable to normalize the input variables. 

Hence, the new variable of Powder (P), including cement 

(C), Fly ash, furnace ash, was defined, and the inputs were 

normalized, as shown in Table 2. 

Since the problem of prediction is non-linear, and the 

presented activation function in Eq. (2) varies between -1 

and 1, it is better to normalize the data in the interval of -1 

and 1. For this purpose, a preprocessing and postprocessing 

were conducted on the input data of Table 2 by the 

following formulas. 

 

 
 

 

 

Fig. 2 Flowchart of a typical ANN-GA model 
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𝑋𝑖 =
𝑋𝑖𝑜 − 𝑋𝑚𝑖𝑛

𝑋𝑚𝑎𝑥 − 𝑋𝑚𝑖𝑛
× 2 − 1 (4) 

 

𝑌𝑖 =
𝑌𝑖𝑜 − 𝑌𝑚𝑖𝑛

𝑌𝑚𝑎𝑥 − 𝑌𝑚𝑖𝑛
× 2 − 1 (5) 

 

Where, 𝑋𝑖𝑜and 𝑋𝑖 are the ith component of each input 

vector before and after normalization, respectively 

and 𝑌𝑖𝑜and 𝑌𝑖 are the ith component of the output vector 

before and after normalization, respectively. 𝑋𝑚𝑖𝑛, 𝑋𝑚𝑎𝑥, 

𝑌𝑚𝑖𝑛, and 𝑌𝑚𝑎𝑥 are the minimum and maximum value of 

each input and output vector, respectively. 
 

 

4. Performance evaluation 
 
An ANN-BP and an ANN-GA model were developed in 

this study. In order to evaluate the performance of these 

models, 70% of the data were randomly selected for the 

training phase of the neural networks, and the remained 

30% were used for the testing phase. The performance of 

the network in these phases was evaluated by the root mean 

squared error (RMSE), mean squared error (MSE), 

determination coefficient (R2), and Pearson correlation 

coefficient (r). These parameters are defined as follows 

 

 

𝑀𝑆𝐸 =
∑ (𝑃𝑖 − 𝑂𝑖)

2𝑛
𝑖=1

𝑛
 (6) 

 

𝑅𝑀𝑆𝐸 = √
∑ (𝑃𝑖 − 𝑂𝑖)

2𝑛
𝑖=1

𝑛
 (7) 

 

𝑟 =
𝑛(∑ 𝑂𝑖 ⋅ 𝑃𝑖

𝑛
𝑖=1 ) − (∑ 𝑂𝑖

𝑛
𝑖=1 ) ⋅ (∑ 𝑃𝑖

𝑛
𝑖=1 )

√(𝑛 ∑ 𝑂𝑖
2𝑛

𝑖=1 − (∑ 𝑂𝑖
𝑛
𝑖=1 )2) ⋅ (𝑛 ∑ 𝑃𝑖

2𝑛
𝑖=1 − (∑ 𝑃𝑖

𝑛
𝑖=1 )2)

 
(8) 

 

𝑅2 =
[∑ (𝑂𝑖 − 𝑂𝑖) ⋅ (𝑃𝑖 − 𝑃𝑖)

𝑛
𝑖=1 ]

2

∑ (𝑂𝑖 − 𝑂𝑖) ⋅ ∑ (𝑃𝑖 − 𝑃𝑖)
𝑛
𝑖=1

𝑛
𝑖=1

 (9) 

 

Where 𝑃𝑖  and 𝑂𝑖  are the predicted and observed 

variables, and n is the total number of considered data. 
 

 

5. Models development 
 

5.1 ANN architecture 
 

The architecture of an ANN means, how many hidden 

layers and neurons are considered for developing the neural 

Table 1 Details of hpgthe input variables 

Variable Minimum Maximum Mean value Standard deviation 

C (kg/m3) 102 540 281.17 104.46 

FS (kg/m3) 0 359.4 73.90 86.24 

FA (kg/m3) 0 200.1 54.19 63.97 

W (kg/m3) 121.75 247 181.57 21.35 

SP (kg/m3) 0 32.2 6.20 5.97 

CAG (kg/m3) 801 1145 972.92 77.72 

FAG (kg/m3) 594 992.6 773.58 80.14 

Age (day) 1 365 45.66 63.14 

f’c (Mpa) 2.33 82.60 35.82 16.70 
 

*C = Cement, FS = Furnace Slag, FA = Fly Ash, W = Water, SP = Superplasticizer, FAG = Fine Aggregate, 

CAG = Coarse Aggregate, f’c = Compressive strength 

Table 2 Details of the input variables after normalization 

Variable Minimum Maximum Mean value Standard deviation 

W/C 0.27 1.88 0.75 0.31 

W/P 0.24 0.90 0.47 0.13 

C/P 0.26 1.00 0.69 0.21 

Fly Ash/P 0.00 0.55 0.14 0.17 

FURNACE SLAG/P 0.00 0.61 0.17 0.20 

FAG/P 1.06 4.23 2.01 0.60 

CAG/P 1.28 5.63 2.52 0.68 

SP/P (%) 0.00 5.66 1.45 1.34 

Age/365 0.0027 1.00 0.13 0.17 

f’c (Mpa) 2.33 82.60 35.82 16.71 
 

*C = Cement; FS = Furnace Slag; FA = Fly Ash; P = Powder: Cement (C) + Fly Ash (FA) + Furnace Slag (FS); 

W = Water; SP = Superplasticizer; FAG = Fine Aggregate; CAG = Coarse Aggregate; 

f’c = Compressive strength 

187



 

Mahdi Shariati et al. 

 

 

 

Fig. 3 Determining the architecture of the ANN based on 

the RMSE values 
 

 

network so that it leads to the best results. An appropriate 

approach for finding the architecture of an ANN is that 

different architectures are developed and for each of which, 

the performance of the network is evaluated. Finally, the 

architecture with the best performance is chosen. In this 

 

 

 

 

study, a single hidden layer architecture was considered, 

which generally leads to better results. The number of 

neurons in the hidden layer is determined by considering six 

models with different numbers of neurons. Each model was 

trained by the BP algorithm three times, and the mean 

values of results were recorded. Table 3 shows the adopted 

models and corresponding results. 

Fig. 3 shows the RMSE value of each mode in the 

training and testing phase. As can be seen in this figure, in 

model number 3 (i.e., a single hidden layer with nine 

neurons), the lowest value of RMSE and difference between 

the training and testing phases have been obtained. This 

means that in the number of nine neurons, the developed 

model is less likely to experience overfitting and it would 

have the best performance. Therefore, an ANN architecture 

with a single hidden layer having nine neurons (Fig. 4) was 

developed to be trained by both of the BP and GA 

algorithms. 
 

5.2 ANN-GA parameters 
 

ANN-GA parameters, including the percentage of cross-

over (Pc), the Percentage of mutation (Pm), and more 
 

 

Table 3 ANN models and the results of performance evaluation 

Model 

No. 

Number of 

neurons 

Training phase  Testing phase 

r R2 MSE RMSE  r R2 MSE RMSE 

1 5 0.924 0.854 40.386 6.342  0.908 0.825 50.071 7.059 

2 7 0.926 0.857 40.413 6.357  0.911 0.830 46.179 6.795 

3 9 0.933 0.871 35.256 5.931  0.927 0.859 41.933 6.476 

4 11 0.926 0.857 40.413 6.357  0.911 0.830 46.179 6.795 

5 13 0.928 0.861 38.918 6.216  0.895 0.802 55.193 7.424 

6 15 0.931 0.867 37.098 6.086  0.888 0.789 58.530 7.606 
 

 

Fig. 4 Considered ANN architecture 
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Fig. 5 Convergence rate diagram of ANN-GA 
 

 

importantly, the population size should be appropriately 

determined. A trail and error process is usually conducted in 

order to obtain these parameters. The same process was also 

accomplished in this study. Several times the ANN-GA 

model was run for different values of Pc and Pm, and the 

best performance was observed in Pc = 90% and Pm = 10%. 

The best population size is determined by different sizes in 
 

 

the range of 50-250, which were tried for the maximum 

number of generations (Ng) of 1000. 

The convergence rate of the ANN-GA model for 

different population sizes of 50, 100, 150, 200, and 250 in a 

log-log scale diagram is indicated in Fig. 5. It is clear that 

the best convergence rate and the lowest value of MSE have 

occurred in the population size of 150. Consequently, this 

population size was selected for the ANN-GA model. 
 

 

6. Results and discussion 
 

Two models, including an ANN-GA and another ANN-

BP model, were developed. The same architecture of a 

single hidden layer containing nine neurons was considered 

for both of the models. 70% of input data was devoted to 

the training phase, and 30% were employed in the testing 

phase. 

Fig. 6 shows the results of the ANN-BP model. Fig. 6(a) 

shows the training phase of this model. In this phase, the 

values of r, R2, MSE, and RMSE were obtained equal to 

0.945, 0.894, 30.153, 5,49. High values of r, R2, and low 

values of MSE, and RMSE demonstrate the appropriate 
 

 

  

(a) (b) 

 

(c) 

 

(d) 

Fig. 6 Results of the ANN-BP model: (a) scatter diagram of the training phase; (b) scatter diagram of the testing phase; 

(c) target evaluation in the training phase; (d) target evaluation in the testing phase 
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performance of the ANN-BP model in this phase. The 

obtained results of the ANN-BP in the testing phase are 

indicated in Fig. 6(b). In this phase, r, R2, MSE, and RMSE 

were determined equal to 0.921, 0.848, 40.564, and 6.369, 

respectively. The low difference of these parameters with 

the parameters in the training phase illustrates that no 

overfitting has occurred, and the developed model has been 

able to predict the targets accurately. The performance of 

the ANN-BP model in the testing and training phase is 

shown clearly in Figs. 6(c) and (d), respectively. As can be 

seen, the model has predicted targets accurately in most of 

the samples in both of the phases. 

The results of the ANN-GA model is shown in Fig. 7. In 

the training phase of this model (Fig. 7(a)), the values of r, 

 

 

 

 

R2, MSE, and RMSE were equal to 0.967, 0.936, 17.677, 

and 4.204, respectively. These values show the perfect 

performance of the ANN-GA model in the training phase. 

Fig. 7(b) shows the results of the ANN-GA in the testing 

phase. In this phase, r, R2, MSE, and RMSE were obtained 

equal to 0.951, 0.905, 27.067, and 5.203, respectively. The 

high values of r, R2, and the low values of MSE, and RMSE 

on the one hand, and the low difference between the 

evaluation parameters in the training and testing phases on 

the other hand, obviously show the excellent performance 

of the ANN-GA model. The accuracy of the ANN-GA in the 

prediction of the targets is shown more clearly in Fig. 7(c) 

and Fig. 7(d). 

Results of the ANN-BP and the ANN-GA models have 

 

 

 

 

  

(a) (b) 

 

(c) 

 

(d) 

Fig. 7 Results of the ANN-GA model: (a) scatter diagram of the training phase; (b) scatter diagram of the testing phase; 

(c) target evaluation in the training phase; (d) target evaluation in the testing phase 

Table 4 Results of the ANN-BP and the ANN-GA models 

Performance 
Training Testing 

r R2 MSE RMSE r R2 MSE RMSE 

ANN-BP 0.945 0.894 30.153 5.491 0.921 0.848 40.564 6.369 

ANN-GA 0.967 0.936 17.677 4.204 0.951 0.905 27.067 5.203 
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been also summarized in Table 4. As can be realized, using 

GA has been an efficient approach for training the ANN, 

and it has led to superior results. 
 
 

7. Conclusions 
 

Compressive strength prediction of concretes in which 

cement is partially replaced with other materials can be very 

challenging. Fly ash and furnace slag are two of the 

pozzolans which are widely used in concrete as partial 

replacements for cement. However, compressive strength 

prediction of concrete after utilization of these materials is a 

difficult concept. Hence, an artificial neural network (ANN) 

was developed and trained by both a conventional 

backpropagation (BP) algorithm and a genetic algorithm 

(GA). Also, instead of using absolute values of concrete 

mix design, the proportion of inputs was used. The obtained 

results can be summarized as follows: 
 

● Both of the ANN-BP and ANN-GA models showed a 

perfect performance in the compressive strength 

prediction, and they could reach to acceptable 

performance values. However, the performance of 

the ANN could experience some improvement by 

using GA in the training process. 

● The approach of considering proportions of inputs 

instead of absolute values was efficient so that the 

developed ANNs could be trained conveniently by 

both of the algorithms, and no difficulty was 

observed in the training process. 

● The age of concrete specimens was also considered 

as a variable. Since the developed ANNs showed 

perfect performances, it can be concluded that age 

can be appropriately considered as an input in the 

compressive strength prediction. 
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