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1. Introduction 

 

Compressors have very important roles in daily life. 

Small refrigerant compressors are used in air conditioners 

or refrigerators, where failure can have a big influence on 

the brand value of the product. Therefore, compressor 

manufacturers are paying much attention to fault diagnosis 

techniques to improve their brand value. 

 Various studies have been conducted on fault diagnosis 

and defect detection for compressors. Mathioudakis and 

Stamatis (1994) and Kim and Kim (2005) proposed 

methods of detecting defects in a compressor by using 

experimental data in varying operating conditions. Aretakis 

and Mathioudakis (1998) proposed a method of fault 

diagnosis by analyzing the signal pattern of the sound 

emission and casing vibration of a compressor. Elhaj et al. 

(2008) simulated the behavior of the valves of compressors 

and proposed a fault diagnosis technique based estimation 

of the cylinder pressure waveforms and instantaneous 

angular speed of the crankshaft. 

Cui et al. (2009) proposed a compressor fault diagnosis 

technique using the estimated entropy from the acceleration 

signal of a compressor. Zhu et al. (2010) and Jung and Koh 

(2014) proposed a fault diagnosis method for a 

reciprocating motion device using a wavelet transform. 

Althobiami and Ball (2014) proposed a fault diagnosis 

technique for a compressor using the wavelet of pressure 

 

Corresponding author, Ph.D., Professor, 

E-mail: wbjeong@pusan.ac.kr 
a Ph.D. Candidate 

 

 

and acceleration signals of industrial air compressors. Wang 

et al. (2015) estimated the behavior of a compressor valve 

from the radiated noise on the surface of a compressor and 

proposed a fault diagnosis based on the derived signals. 

Pichler et al. (2016) proposed a technique for the 

classification of compressor valve defects using a two-

dimensional autocorrelation of the radiated noise of a 

compressor while controlling the load. 

There are many studies on techniques for compressor 

fault diagnosis based on artificial neural networks (ANN) or 

big data. Yang et al. (2005) performed fault diagnosis using 

small refrigerant compressors using supported vector 

machine (SVM) and ANN. Zhou et al. (2006) performed 

fault diagnosis using ANN and entropy change of 

compressor vibration signal. Shen et al. (2014) and Fan et 

al. (2015) proposed fault diagnosis techniques in which a 

machine learns and classifies various signals from a 

compressor by using ANN. Qi et al. (2016, 2018), Tran et 

al. (2017) proposed pattern analysis methods for big data 

that analyze the vast amount of data from various 

compressor signals and find the pattern of fault signals. 

Ouadine et al. (2018) studied an optimization technique for 

compressor fault diagnosis using an artificial neural 

network and genetic algorithm. Loukopoulos et al. (2019) 

proposed a technique for predicting the potential failure of a 

compressor valve based on big data. However, most of 

these studies do not take into account the complex 

environment in an actual mass-production line for 

compressors since they use signals measured in a controlled 

laboratory environment. 

In general, the refrigerant pressure pulsation signal in 

the suction pipe is used to diagnose a potential failure or 

defect of a compressor for a refrigerator. The refrigerant 
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pressure pulsation is most affected by compressor failure, 

and techniques that use this signal are very intuitive and 

highly reliable. However, to measure the pulsation, it is 

necessary to stabilize the refrigerant after filling and sealing 

it in the compressor. It is difficult to apply this to a mass-

production line since additional work is required, such as 

inserting a pressure sensor into the piping. Therefore, many 

compressor manufacturers are conducting full-scale 

compressor inspections on mass-production lines using 

acceleration signals from the surface of a relatively easy-to-

measure compressor shell. 

However, in the case of the acceleration signal on the 

compressor shell surface, the behavior of the compressor’s 

suction valve and the structural characteristics of the 

compressor are simultaneously measured, which is not 

suitable for direct use in failure determination. Therefore, 

compressor manufacturers diagnose compressor defects 

using the amplitude change of the peak of a specific 

frequency band through signal processing. However, the 

remaining structural characteristics of the compressor are 

not removed, so the defect detection rate is not satisfactory. 

To solve these issues, Kim and Jeong (2019) proposed a 

defect detection technique using the transfer function 

between the refrigerant pressure pulsation and the shell 

surface acceleration in the suction pipe of the compressor 

using the Total Least-Squares (TLS) method. However, 

additional signal processing for raw data was required to 

estimate the variance of the measured signal in the previous 

paper. In order to overcome this difficulty, a new signal 

processing using the coherence function is presented in this 

paper. The coherence function can be easily obtained in 

signal measurement. 

In the present study, the relationship between the 

refrigerant pressure pulsation and the shell surface 

acceleration is expressed as a transfer function. The 

acceleration signal is weighted since it is easy to measure. A 

technique is proposed for minimizing the variance of the 

transfer function in the frequency domain and was 

confirmed by experiments. We also propose a defect 

classification method that is suitable for full-scale 

inspection of compressors in the mass production process 

and has excellent performance. 
 

 

2. Theory 
 

2.1 Frequency-weighted transfer function 
 

The opening and closing movements of the suction 

valve result in pressure pulsation of the refrigerant in the 

suction pipe and acceleration of the compressor shell 

surface. The pulsation signal is directly affected by the 

behavior of the suction valve, so it is advantageous for 

defect classification but is difficult to measure directly. 

However, the measured acceleration signal includes the 

structural characteristics of the compressor and the 

influence of pipe vibration and is easy to measure. 

Therefore, it is desirable to use the transfer function 

between the refrigerant pressure pulsation and shell 

acceleration to improve the defect classification 

performance of the shell acceleration signal. The schematic 

of acquired signals by suction valve movement are shown 

in Fig. 1. 

Let H(f) be the transfer function between the refrigerant 

pressure pulsation of the compressor piping (the input 

signal) and the acceleration of the compressor surface (the 

output signal). The true value of the pulsation applied to the 

delivery path is u(t), but the value p(t) measured by the 

pressure transducer contains input noise m(t). Similarly, the 

measured output value a(t) of the shell surface acceleration 

transducer at the output stage also includes output noise n(t) 

in the true value v(t). The relationship between the pulsation 

and acceleration is shown in Eq. (1) and Fig. 2 (Shin and 

Hammond 2008). 
 

𝑝(𝑡) = 𝑢(𝑡) + 𝑚(𝑡) 
𝑎(𝑡) = 𝑣(𝑡) + 𝑛(𝑡) 

(1) 

 

H1(f) and H2(f) are transfer functions that are widely 

used in industrial applications and are defined as follows. 

 

𝐻1(𝑓) =
𝑆𝑝𝑎(𝑓)

𝑆𝑝𝑝(𝑓)
 

𝐻2(𝑓) =
𝑆𝑎𝑎(𝑓)

𝑆𝑎𝑝(𝑓)
 

(2) 

 

Where Spa(f) is the cross-spectral density of a(t) and p(t), 

and Spp(f) and Saa(f) are auto-spectral density functions of 

a(t) and p(t). 

H1(f) converges to the true value Htrue(f) when there is 

only input noise, and H2(f) converges to the true value 

Htrue(f) when there is only output noise. The true transfer 

function Htrue(f) between H1(f) and H2(f) exists when there 

is noise in both the input and output, which can be 

represented as follows. 

 

𝐻1(𝑓) ≤ 𝐻𝑡𝑟𝑢𝑒(𝑓) ≤ 𝐻2(𝑓) (3) 

 

The coherence function is widely used as a measure of 

 

 

 

Fig. 1 Schematic of acquired signals by suction valve 

movement 

 

 

 

Fig. 2 Schematic of single input-output system with 

extraneous noise 
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the degree of correlation between input and output signals 

of a linear system in the frequency domain (Bendat and 

Piersol 1980) 
 

𝛾𝑝𝑎
2 (𝑓) =

|𝑆𝑝𝑎(𝑓)|
2

𝑆𝑝𝑝(𝑓)𝑆𝑎𝑎(𝑓)
,     0 ≤ 𝛾𝑝𝑎

2 (𝑓) ≤ 1 (4) 

 

The following relation holds between the power 

spectrum Spp(f) of the pulsation signal and the power 

spectrum Saa(f) of the acceleration signal. 
 

𝑆𝑝𝑝(𝑓) =
𝑆𝑎𝑎(𝑓)

|𝐻(𝑓)|2
 (5) 

 

Assuming that the estimated value of the transfer 

function |H(f)| is normally distributed with respect to the 

true value |Htrue(f)|, the probability density function p(|H(f)|) 

at which the transfer function |H(f)| is obtained is as 

follows. 

𝑝(|𝐻(𝑓)|) =
1

√2𝜋𝜎𝐻(𝑓)
𝑒

−
[|𝐻(𝑓)|−𝐸[|𝐻(𝑓)|]]

2

2𝜎𝐻
2 (𝑓)  (6) 

 

The value of |H(f)| is highly in reliable in a frequency 

band where the variance σH
2 (f) is small, but the reliability 

is low when the variance is large. Therefore, the transfer 

function for defect classification is defined as follows in 

consideration of the frequency weighting. 
 

𝑆𝑎𝑎.𝑤𝑒𝑖𝑔ℎ𝑡𝑒𝑑(𝑓) =
𝑆𝑎𝑎(𝑓)

1

𝜎𝐻
2 (𝑓)

|𝐻(𝑓)|2
 (7) 

 

Here, the transfer function H(f) means H1(f) or H2(f), 

and the estimation method of the variance σH
2 (f) is given 

in the next section. 
 

2.2 Estimation of the transfer function variance 
 

Fig. 2 shows the relations of P(f) = U(f) + M(f), V(f) H 

rue(f)U(f), and A(f) = V(f) + N(f). The input noise M(f) and 

the output noise N(f) are assumed to be uncorrelated with 

the signals U(f) and V(f). Thus, Sum(f), Svm(f), Sun(f), Sun(f), 

Svn(f), and Smn(f) are all zero (Shin and Hammond 2008). 

The value of the transfer function Hi(f) sampled at the i-

th measurement is a random variable and can be expressed 

as follows. 
 

𝐻𝑖(𝑓) =
𝑉(𝑓) + 𝑁𝑖(𝑓)

𝑈(𝑓) + 𝑀𝑖(𝑓)
 (8) 

 

Assuming that noise and signal are uncorrelated and 

M(f)/U(f) and N(f)/V(f) are sufficiently small, the 

ensemble-averaged value of H (f) can be expressed as 

follows. 
 

𝐸[𝐻(𝑓)] = lim
𝑁→∞

1

𝑁
∑𝐻𝑖(𝑓)

𝑁

𝑖=1

 

                 = lim
𝑁→∞

1

𝑁
∑

𝑉(𝑓)

𝑈(𝑓)

𝑁

𝑖=1

(1 +
𝑁𝑖(𝑓)

𝑉(𝑓)
)(

1 +
𝑀𝑖(𝑓)

𝑉(𝑓)
        

+higher order

) 

                 ≈ 𝐻𝑡𝑟𝑢𝑒(𝑓) 

(9) 

|Hi(f)|2 can be expressed as follows. 

 
𝐻𝑖

∗(𝑓)𝐻𝑖(𝑓) 

=
𝑉∗(𝑓)𝑉(𝑓) + 𝑉∗(𝑓)𝑁𝑖(𝑓) + 𝑁𝑖

∗(𝑓)𝑉(𝑓) + 𝑁𝑖
∗(𝑓)𝑁𝑖(𝑓)

𝑈∗(𝑓)𝑈(𝑓) + 𝑈∗(𝑓)𝑀𝑖(𝑓) + 𝑀𝑖
∗(𝑓)𝑈(𝑓) + 𝑀𝑖

∗(𝑓)𝑀𝑖(𝑓)
 
(10) 

 

The ensemble-averages value of |Hi(f)|2 can be 

expressed as follows. 
 

𝐸[|𝐻(𝑓)|2] = lim
𝑁→∞

1

𝑁
∑𝐻𝑖

∗(𝑓)𝐻𝑖(𝑓)

𝑁

𝑖=1

 

                      = lim
𝑁→∞

1

𝑁
∑

𝑉𝑖
∗(𝑓)𝑉(𝑓)𝑖

𝑈𝑖
∗(𝑓)𝑈𝑖(𝑓)

𝑁

𝑖=1

(
1 +

𝑁𝑖(𝑓)

𝑉(𝑓)
+

𝑁𝑖
∗(𝑓)

𝑉∗(𝑓)
+

𝑁𝑖
∗(𝑓)𝑁𝑖(𝑓)

𝑉∗(𝑓)𝑉(𝑓)

1 +
𝑀𝑖(𝑓)

𝑈(𝑓)
+

𝑀𝑖
∗(𝑓)

𝑈∗(𝑓)
+

𝑀𝑖
∗(𝑓)𝑀𝑖(𝑓)

𝑈∗(𝑓)𝑈(𝑓)

) 

                      = 𝐻𝑡𝑟𝑢𝑒
∗ (𝑓)𝐻𝑡𝑟𝑢𝑒(𝑓) lim

𝑁→∞

1

𝑁
∑[1 +

𝑁𝑖
∗(𝑓)𝑁𝑖(𝑓)

𝑉∗(𝑓)𝑉(𝑓)
]

𝑁

𝑖=1

 

                          

[
 
 
 
 1 − (

𝑀𝑖(𝑓)

𝑈(𝑓)
+

𝑀𝑖
∗(𝑓)

𝑈∗(𝑓)
+

𝑀𝑖
∗(𝑓)𝑀𝑖(𝑓)

𝑈∗(𝑓)𝑈(𝑓)
)                           

+ (
𝑀𝑖(𝑓)

𝑈(𝑓)
+

𝑀𝑖
∗(𝑓)

𝑈∗(𝑓)
+

𝑀𝑖
∗(𝑓)𝑀𝑖(𝑓)

𝑈∗(𝑓)𝑈(𝑓)
)

2

+ higher order
]
 
 
 
 

 

                      = 𝐻𝑡𝑟𝑢𝑒
∗ (𝑓)𝐻𝑡𝑟𝑢𝑒(𝑓) (1 +

𝑆𝑛𝑛(𝑓)

𝑆𝑣𝑣(𝑓)
)(1 −

𝑆𝑚𝑚(𝑓)

𝑆𝑢𝑢(𝑓)
 

                          + lim
𝑁→∞

1

𝑁
∑[(

𝑀𝑖(𝑓)

𝑈(𝑓)
+

𝑀𝑖
∗(𝑓)

𝑈∗(𝑓)
)

2

]

𝑁

𝑖=1

+ higher order) 

                      = 𝐻𝑡𝑟𝑢𝑒
∗ (𝑓)𝐻𝑡𝑟𝑢𝑒(𝑓) (1 +

𝑆𝑛𝑛(𝑓)

𝑆𝑣𝑣(𝑓)
)(1 −

𝑆𝑚𝑚(𝑓)

𝑆𝑢𝑢(𝑓)
 

                          + lim
𝑁→∞

1

𝑁
∑[

4(𝑀𝑅,𝑖
2 (𝑓)𝑈𝑅

2(𝑓) + 𝑀𝐼,𝑖
2 (𝑓)𝑈𝐼

2(𝑓))

(𝑈𝑅
2(𝑓) + 𝑈𝐼

2(𝑓))
]

𝑁

𝑖=1

 

                          +higher order) 

(11) 

 

The subscripts R and I represent the real and imaginary 

parts of a complex number. 

The spectrum of the input noise is denoted by M(f) = 

MR(f) + jMI(f), and the expected values of the real and 

imaginary parts of the random noise are stochastically the 

same. 

𝐸[𝑀𝑅
2(𝑓)] = 𝐸[𝑀𝐼

2(𝑓)] = 𝐸 [
1

2
𝑀∗(𝑓)𝑀(𝑓)] (12) 

 

Therefore, Eq. (11) can be expressed as follows. 

 

𝐸[|𝐻(𝑓)|2] = 𝐻𝑡𝑟𝑢𝑒
∗ (𝑓)𝐻𝑡𝑟𝑢𝑒(𝑓) (1 +

𝑆𝑛𝑛(𝑓)

𝑆𝑣𝑣(𝑓)
) (1 −

𝑆𝑚𝑚(𝑓)

𝑆𝑢𝑢(𝑓)
 

                          + lim
𝑁→∞

1

𝑁
∑(

[
2(𝑀𝑖

∗(𝑓)𝑀𝑖(𝑓)𝑈∗(𝑓)𝑈(𝑓))

(𝑈∗(𝑓)𝑈(𝑓))
2 ]

+higher order                         

)

𝑁

𝑖=1

 

                      ≈ 𝐻𝑡𝑟𝑢𝑒
∗ (𝑓)𝐻𝑡𝑟𝑢𝑒(𝑓) (1 +

𝑆𝑛𝑛(𝑓)

𝑆𝑣𝑣(𝑓)
) (1 +

𝑆𝑚𝑚(𝑓)

𝑆𝑢𝑢(𝑓)
) 

(13) 

 

Assuming the input noise m(t) is zero, the transfer 

function H1 is E[|H1(f)|2] = |Htrue(f)|2(1 + Snn(f)/Svv(f)), 

regardless of the magnitude of the signal-to-noise ratio 

(SNR). 

The transfer function H2 is assumed to have output noise 

n(t) = 0 and can be approximated as E[|H2(f)|2] ≈ |Htrue(f)|2(1 

+ Smm(f)/Suu(f)) when the SNR is sufficiently small. 

The coherence function of Eq. (4) can be expressed as 

follows. 
 

𝛾𝑝𝑎
2 (𝑓) =

|𝑆𝑝𝑎(𝑓)|
2

𝑆𝑝𝑝(𝑓)𝑆𝑎𝑎(𝑓)
=

|𝐻𝑡𝑟𝑢𝑒(𝑓)|
2
𝑆𝑢𝑢

2 (𝑓)

[𝑆𝑢𝑢(𝑓) + 𝑆𝑚𝑚(𝑓)][𝑆𝑣𝑣(𝑓) + 𝑆𝑛𝑛(𝑓)]
 

=
|𝐻𝑡𝑟𝑢𝑒(𝑓)|

2
𝑆𝑢𝑢

2 (𝑓)

𝑆𝑢𝑢(𝑓) (1 +
𝑆𝑚𝑚(𝑓)

𝑆𝑢𝑢(𝑓)
) 𝑆𝑣𝑣(𝑓) (1 +

𝑆𝑛𝑛(𝑓)

𝑆𝑣𝑣(𝑓)
)
 

(14) 

 

257



 

Yeon-Woo Kim and Weui-Bong Jeong 

 

 

=
|𝐻𝑡𝑟𝑢𝑒(𝑓)|

2

|𝐻𝑡𝑟𝑢𝑒(𝑓)|
2
(1 +

𝑆𝑚𝑚(𝑓)

𝑆𝑢𝑢(𝑓)
) (1 +

𝑆𝑛𝑛(𝑓)

𝑆𝑣𝑣(𝑓)
)

=
|𝐸[𝐻(𝑓)]|2

𝐸[|𝐻(𝑓)|2]
 (14) 

 

Thus, the variance σH
2 (f) of the estimate of H(f) can be 

expressed as the coherence function and the magnitude of 

the transfer function as follows. 
 

 

 

222

2
2

2

( ) ( ) ( )

1 ( )
( )

( )







 = −
  

−


H

pa

pa

f E H f E H f

f
E H f

f
 

(15) 

 

Therefore, the power spectrum of the frequency-

weighted acceleration signal using H(f) given in Eq. (7) is 

obtained as follows. 
 

𝑆𝑎𝑎,𝑤𝑒𝑖𝑔ℎ𝑡𝑒𝑑(𝑓) =
1 − 𝛾𝑝𝑎

2 (𝑓)

𝛾𝑝𝑎
2 (𝑓)

1

|𝐻(𝑓)|2
𝑆𝑎𝑎(𝑓) (16) 

 

2.3 Validation 
 

In Fig. 2, the true values of the transfer function and the 

input signal can be assumed to be H(f) = 1 and u(t) = 

sin(2πf0t), respectively. Therefore, the measured input 

signal and output signal can be represented by p(t) = 

sin(2πf0t) + m(t) and a(t) = sin(2πf0t) + n(t), respectively, 

where f0 = 6 Hz and m(t) and n(t) are normally distributed 

white noise. 

An example of a time signal with white noise is shown 

in Fig. 3(a). 

Figs. 3(b) and (c) show the transfer function and 

coherence function γpa
2  according to the average number 

of in f = f0 Hz. As the average number increases, the 

transfer function converges to the initial set value of 1 and 

γpa
2  converges to about 0.7024. Fig. 3(d) shows the 

variance of the transfer function according to the average 

number,  which converged to about 0.4237. The 

convergence value was found to match the value of E[Hi(f)] 

= 1 and γpa
2  = 0.7024 in the approximate expression of 

 

 

 

Fig. 4 Normalized deviation of transfer function versus 

coherence function 
 

 

σH
2 (f) in Eq. (15), which validates the proposed expression. 

The normalized deviation of the transfer function is a 

dimensionless form of Eq. (15) and expressed as follows. 
 

𝜎𝐻(𝑓)

|𝐸[𝐻(𝑓)]|
≈ √

1 − 𝛾𝑝𝑎
2 (𝑓)

𝛾𝑝𝑎
2 (𝑓)

 (17) 

 

Fig. 4 shows the normalized deviation of the transfer 

function σH/|E[H]| according to the magnitude of the 

coherence function γpa
2 . 

When γpa
2 (f0)→0, σH/E|[H(f0)]|→∞, and when 

γpa
2 (f0)→1, σH/|E[H(f0)]|→0. 

 

 

3. Application to defect classification of refrigerant 
compressor 
 

3.1 Experimental overview 
 

Experiments were carried out with actual compressors to 

verify the fault classification performance of the frequency-

weighted acceleration signal. In this study, a linear 

compressor with 34 kWh/month power consumption is 

applied. This compressor is usually used for the household 

refrigerator with 870 L capacity. The pressure pulsation of 

the refrigerant flowing into the pipe was measured by a 

pressure sensor that was inserted vertically into the 

  

(a) (b) 

  

(c) (d) 

Fig. 3 Validation of Eq. (15): (a) Time data with noise; (b) E[H(f0)] versus average number; (c) E[γ2(f0)] versus average 

number; (d) σH
2 (f0) versus average number 
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Table 1 Defect information of the compressor used in the 

experiment 

Defect No. Cause of defect 

Excess amount of noise 

compared to manufacturer’s 

standard value 

Defect 1 Defect on inner bearing 0.1 dB 

Defect 2 Defect on assembly 1.8 dB 

Defect 3 
Compressor’s internal 

pressure exceeded 
5.9 dB 

 

 

 

 

Fig. 5 Refrigerant supply system in anechoic chamber 

 

 

refrigerant suction pipe of the compressor. The acceleration 

of the shell surface was measured by an acceleration sensor 

that was attached to the center of the compressor. 

One normal compressor and three compressors with 

different defects were used in the experiment. The defective 

compressors were defective products that had been returned 

after actually being sold. Noise tests were conducted, which 

confirmed that the noise level of the defective compressor 

exceeded the noise specifications from the manufacturer. 

The cause of the defects and the amount of excess noise are 

listed in Table 1. 
 

 

The refrigerant circulation cycle of the refrigerator 

compressor differs according to the operating procedure and 

refrigerator settings. Therefore, even if the same 

compressor is used in the experiment, the results may vary 

with the operating conditions and the refrigerator model. To 

prevent this situation, the refrigerant supply system was 

installed in an anechoic chamber with vibration insulation, 

as shown Fig. 5. The refrigerant circulation cycle of the 

actual refrigerator was kept constant, the external vibration 

noise was minimized through the vibration insulation, and 

several compressors were tested under the same conditions. 

LMS Test.Lab equipment was used to obtain the 

experimental data. The pressure sensor was a KISTLER 

211B3 model, and the acceleration sensor was Bruel & 

Kjaer A397 model. The suction pipe refrigerant pressure 

pulsation and the compressor surface acceleration data were 

acquired for 60 seconds at intervals of 4.88×10-5 seconds. A 

compressor operating frequency of 80 Hz was applied, 

which is the actual value of the compressor model used in 

the experiment. 

Some of the experimental data obtained from the 

experiment are shown in Figs. 6 and 7. 

Figs. 6(a) and (b) show that the compressor’s operating 

frequency of 80 Hz is strongly measured in the pressure 

pulse signals of all products. Fig. 6(b) shows that the base 

level of the normal product is significantly lower than that 

of the defective products except for the peak in the entire 

frequency band. In addition, the peak of electric noise 

occurs at 60 Hz. Fig. 7(a) shows that a strong high-

frequency signal appears in the shell surface acceleration of 

all products. In Fig. 7(b), the electric noise found at 60 Hz 

in Fig. 6(b) is relatively weak. There is no large difference 

in the base level except for the peak in the entire frequency 

band. 

Figs. 6 and 7 show that both the refrigerant pressure 
 

 

 

 

(a) 

 

(b) 

Fig. 6 Pressure pulsation signal measured in the experiment: (a) Time domain data; (b) Frequency domain data 
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Fig. 8 Schematic of estimating the frequency-weighted 

acceleration signal 

 

 

 

 

pulsation signal and the shell surface acceleration signal 

generate a large peak at the operating frequency of 80 Hz 

and the harmonics. Furthermore, the refrigerant pressure 

pulsation signal shows that the signal characteristics of the 

defective product are distinct from that of the normal 

product. The refrigerant pressure pulsation signal has 

weaker electrical noise than the shell surface acceleration 

signal. 

 

 

 

 

(a) 

 

(b) 

Fig. 7 Shell acceleration signal measured in the experiment: (a) Time domain data; (b) Frequency domain data 

 

(a) 

 

(b) 

Fig. 9 Frequency-domain data estimated from the normal compressor: (a) Transfer function; (b) Coherence 
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3.2 Signal processing 
 

The signals measured from the normal compressor were 

used to estimate the transfer function and coherence 

between the refrigerant pressure pulsation signal and shell 

surface acceleration. The signal of a defective compressor is 

likely to change in the transfer function according to the 

type and level of the defect, so the transfer function and the 

coherence of the normal compressor are more suitable as 

references for signal processing. The coherence function 

was applied to the transfer function estimated from the 

normal compressor to add weight to each frequency. After 

that, the frequency-weighted acceleration signal was 

estimated from the shell surface acceleration measured from 

the defective compressors. The schematic of estimating the 

frequency-weighted acceleration signal is shown in Fig. 8. 

Fig. 9 shows a part of the transfer function and 

coherence estimated from the data of the normal 

compressor. In Figs. 9(a) and (b), the space between the 

transfer functions H1 and H2 (that is, the range of the actual 

transfer function) is relatively small in the frequency band 

where the coherence is relatively high. The frequency-

domain weight was applied to the transfer function using 

the coherence because the coherence is low at 60 Hz. As a 

result, the electric noise at 60 Hz can be sufficiently 

excluded. 

Fig. 10 shows a part of the frequency-weighted 

acceleration signal estimated by weighting the frequency 

domain of the transfer function from the compressor 

acceleration signal using Eq. (16). 

 

3.3 Results of defect classification performance 
 

Fisher’s discrimination ratio (FDR) was used as an 

indicator of the defective classification performance of the 

 

 

refrigerant compressors. FDR is useful for simple 

classifications using the variance and mean. The 

generalized FDR can be expressed as follows (Attoui et al. 

2017). 

FDRM_class = ∑∑
(𝜇𝑖 − 𝜇𝑗)

2

𝜎𝑖
2 + 𝜎𝑗

2

𝑀

𝑗≠𝑖

𝑀

𝑖

 (18) 

 

Where σ2 is the variance, μ is the mean, and M is the 

number of two or more clusters. 

FDR is inversely proportional to the sum of the 

variances in the cluster and is proportional to the distance 

between the clusters. This means that the FDR result in 

better classification of the clusters. The cluster in the 

discrimination technique consists of a group of 

representative statistical values of the signals to be 

discriminated. The proposed fault classification method was 

evaluated using the frequency center(FC), root-mean-

squared frequency (RMSF), and root-variance frequency 

(RVF). These features are widely used as representative 

statistical values in the frequency domain and can be 

expressed as follows (Lei et al. 2008). 
 

𝐹𝐶 =
∫𝑓𝑖 × 𝑠(𝑓𝑖)𝑑𝑓

∫ 𝑠(𝑓𝑖)𝑑𝑓
 (19) 

 

𝑅𝑀𝑆𝐹 = √
∫𝑓𝑖

2 × 𝑠(𝑓𝑖)𝑑𝑓

∫ 𝑠(𝑓𝑖)𝑑𝑓
 (20) 

 

𝑅𝑉𝐹 = √
∫(𝑓𝑖 − 𝐹𝐶)2 × 𝑠(𝑓𝑖)𝑑𝑓

∫ 𝑠(𝑓𝑖)𝑑𝑓
 (21) 

 

where s(fi) is the PSD function. 
 

 

 

 

(a) 

 

(b) 

Fig. 10 Frequency weighted acceleration data: (a) Using Transfer function H1(f); (b) Using transfer function H2(f) 
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Figs. 11 and 12 show the FC, RMSF, and RVF results 

obtained by dividing the refrigerant pressure pulsation 

signal and the surface acceleration signal for each type of 

compressor defect by 60 at intervals of 1 second. The 

vertical axes show the results of classification of the data 

measured from the normal compressor and the three kinds 

of defective compressors. The scale has no meaning. 

Fig. 11 shows that the signals of the normal compressor 

and the defective compressor are well classified by using 

the RMSF and RVF features. However, it is difficult to 

 

 

 

 

 

 

 

 

measure the pulsation signals in a mass-production line, in 

contrast to the shell surface acceleration. Fig. 12 shows the 

classification results of the frequency-domain indexes by 

directly using the acceleration. All the features are 

overlapped, and it is difficult to distinguish between the 

normal compressor and the defective compressor. 

Therefore, the frequency-domain indexes obtained by 

directly using the acceleration have almost no classification 

capability. In addition, the pressure pulsation signal has 

better classification performance than the shell surface  

   

(a) (b) (c) 

Fig. 11 Defect classification using only pulsating pressure: (a) FC; (b) RMSF; (c) RVF 

   

(a) (b) (c) 

Fig. 12 Defect classification using only shell acceleration: (a) FC; (b) RMSF; (c) RVF 

   

(a) (b) (c) 

Fig. 13 Defect classification using modified acceleration signal with H1(f): (a) FC; (b) RMSF; (c) RVF 

   

(a) (b) (c) 

Fig. 14 Defect classification using modified acceleration signal with H2(f): (a) FC; (b) RMSF; (c) RVF 
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Table 2 Fisher discrimination ratio of signals 

Signal FC RMSF RVF 

Pulsating pressure 13 138 206 

Shell acceleration 1 2 3 

Modified acceleration with H1(f) 287 296 89 

Modified acceleration with H2(f) 450 474 94 
 

 

 

acceleration signal. Therefore, a signal processing technique 

is required to use the easily measured acceleration signal. 

Figs. 13 and 14 show the results of the proposed 

classification method using the frequency-weighted 

acceleration signal. In Figs. 13(a) and (b), some data of the 

normal compressor and the two defective compressors 

overlap. In Fig. 13(c), some data of the two defective 

compressors overlap. Figs. 14(a) and (b) show that all the 

features are separated from each other. In Fig. 14(c), the 

data of the two defective compressors are partially 

overlapped. Compared with Fig. 12(c), the distinction is 

better. Fig. 14(c) shows a similar trend to the order of 

"Excess amount of noise compared to manufacturer’s 

standard value" in the Table 1. Fig. 11 shows that the 

tendency of placement order of the defect feature clusters is 

similar to that obtained with the classification results using 

the refrigerant pressure pulsation signal. Compared to Fig. 

14, better results were obtained in Fig. 13 by adding the 

frequency weighting to the transfer function H2, which 

minimizes the input noise of the system. 

In order to quantitatively evaluate these results, the FDR 

of each of the classification data was obtained, as shown in 

Table 2. The defect classification using the refrigerant 

pressure pulsation signal shows high FDR value in RMSF 

and RVF. In the case of FC, the FDR is lower than others 

because the area of the normal compressor and the defect 1 

compressor overlap considerably. 

The defect classification using the shell surface 

acceleration directly has very low value compared to that of 

the other features. This indicates that the shell surface 

acceleration is also difficult to classify in the FDR index. 

However, unfortunately, pressure signal is difficult to apply 

to the defect inspection on production line. Shell 

acceleration signal which is easy to measure should be used 

instead of pressure. 

Features using the frequency-weighted acceleration 

signal show higher value than the FDR of the surface 

acceleration overall. RVF shows relatively low FDR value 

compared with the classification using the refrigerant 

pressure pulsation signal, but it shows high FDR value with 

FC and RMSF. The best performance was obtained using 

RMSF with transfer function H2. 

 

 

4. Conclusions 
 

The pressure pulsation signal of refrigerant is very 

useful for the quality control of small refrigerant 

compressors for home use. However, measuring the 

pressure pulsation signal on a mass-production line takes a 

long time and is therefore not effective in performing a full 

inspection. In contrast, the acceleration signal on the shell 

surface of the compressor is comparatively easy to measure, 

but the signal containing the structural characteristics of the 

compressor is measured, so it is not suitable for use in 

determining the compressor defects. In order to solve these 

difficulties, this paper proposed a method of using the 

transfer function between the pressure pulse signal and the 

acceleration signal. We proposed a signal-processing 

procedure that improves the defect classification 

performance of the acceleration signal on the shell surface 

by weighting the frequency band using the coherence in the 

process of estimating the transfer function and weighting 

the frequency band close to the actual transfer function. The 

method was verified by experiments. 

When using raw data without signal processing, the 

pressure pulsation signal showed high defect classification 

performance with RVF. However, the defect classification 

performance was very low when directly using the shell 

surface acceleration. When applying the proposed signal 

processing, the defect classification performance was 

excellent in FC and RMSF overall. In particular, FDR 

exhibited the best defect classification performance with a 

value of 474 in the results obtained using transfer function 

H2 and RMSF. Using the RVF of the transfer function H2 

showed excellent results except for the fact that there was 

partial overlap between the results of the two defective 

compressors. 

The transfer function and the coherence between the 

pressure pulsation and the acceleration signal are measured 

only once in advance, and only the acceleration signal is 

measured in the mass-production line. Using the proposed 

signal processing method makes it easy to classify the 

compressor defects in a mass-production line and improve 

the reliability of the product. However, for practical 

applications, it may be necessary to accumulate more data 

for normal and faulty compressors. 
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