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1. Introduction 

 

Continuous monitoring of key infrastructure (such as 

bridges, dams, offshore structures and building complexes) 

is increasing in demand for the integrity and safety of these 

structures. Structural health monitoring (SHM) technology 

emerged a few decades ago, and was essentially developed 

to serve this purpose. SHM integrates sensing technology, 

data acquisition and data processing to make meaningful 

assessment of the condition of structures. In fact, 

monitoring of bridges in real time has become a widely 

accepted practice worldwide today. An extensive review of 

the methods and applications of vibration-based SHM was 

given by Wei and Qiao (2011). 

Cable wired system is a natural choice to realize SHM 

technology. However, the cost of cable installation and the 

overwhelming demand of maintenance to sustain a reliably 

wired SHM system are prohibitive to the widespread use of 

SHM technology. Alternatively, wireless sensor networks 

(WSN) offer a low cost, manageable and yet scalable 

solution for SHM (Lynch et al. 2002, 2003, Xu et al. 2004, 

Lynch 2007). There are several such platforms currently 

available for researchers, one of which is the wireless smart 

sensor (WSS) platform developed by the Smart Structure 
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Technology Laboratory at the University of Illinois at 

Urbana-Champaign (Cho et al. 2010, Spencer et al. 2017). 

A Imote2 based WSS was deployed on the 2nd Jindo Bridge 

in South Korea, and claimed to be the world’s largest 

wireless sensor network for civil structure monitoring 

(Spencer et al. 2017). 

Due to the limited capacity of devices and resources on 

board of a smart sensor node, there are several issues that 

need to be better resolved before popularizing WSN-based 

SHM technology, among which are data synchronization for 

multi-channel sensing, data integrity due to packet loss in 

data transmission, data management of large data sets, and 

power management to minimize power consumption. These 

issues are especially true for the dynamic signal sensing. 

In recent years, compressive sensing (CS) has brought 

great impact to traditional signal sampling and processing 

(Donoho 2006, Candès 2006, Candès et al. 2006, Fornasier 

and Rauhut 2011), which was built upon the Shannon-

Nyquist sampling theory. The theory states that the number 

of samples required to reconstruct a signal without error is 

dictated by its bandwidth or the frequency range of interest. 

CS argues that it is possible to acquire far fewer samples 

than what is usually considered necessary, to reconstruct the 

signal accurately, and sometimes even exactly (Candès 

2006). If the signal has a sparse representation, i.e., when it 

is decomposed on some basis, only a few coefficients are 

non zeros, and most are zeros or nearly zeros, we can 

sample the signal in a compressed form. The compressed 

measurements are linear inner products of the signal and an 
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Abstract.  Compressive sensing (CS) is a newly developed data acquisition and processing technique that takes advantage of the 

sparse structure in signals. Normally signals in their primitive space or format are reconstructed from their compressed 

measurements for further treatments, such as modal analysis for vibration data. This approach causes problems such as leakage, loss 

of fidelity, etc., and the computation of reconstruction itself is costly as well. Therefore, it is appealing to directly work on the 

compressed data without prior reconstruction of the original data. In this paper, a direct approach for modal analysis of damped 

systems is proposed by decomposing the compressed measurements with an appropriate dictionary. The damped free vibration 

function is adopted to form atoms in the dictionary for the following sparse decomposition. Compared with the normally used 

Fourier bases, the damped free vibration function spans a space with both the frequency and damping as the control variables. In 

order to efficiently search the enormous two-dimension dictionary with frequency and damping as variables, a two-step strategy is 

implemented combined with the Orthogonal Matching Pursuit (OMP) to determine the optimal atom in the dictionary, which greatly 

reduces the computation of the sparse decomposition. The performance of the proposed method is demonstrated by a numerical and 

an experimental example, and advantages of the method are revealed by comparison with another such kind method using POD 

technique. 
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observation matrix, and the original signal can be recovered 

from the compressed measurements by pursuing the sparse 

solution using the l0 norm (Fornasier and Rauhut 2011). The 

number of compressed samples needed for recovery is 

about 10-20% of those under the Shannon-Nyquist 

sampling framework (Duan and Kang 2014). 

CS is believed to have great potential in structural health 

monitoring by addressing the above mentioned issues of 

WSN. The structural vibration signals are considered sparse 

when they are decomposed on the Fourier basis, or the 

wavelet basis. The sparsity reveals the vibration modes of 

the structure, which is the intrinsic dynamic property of the 

structure. Also, many problems in SHM, such as damage 

detection and modal updating, can be formulated as sparse 

recovery problems, as damages that exist in structures are 

sparse in nature. Applications of CS to vibration-based 

SHM have been presented in some literatures, and most 

research focus on data compression by CS. Bao et al. 

(2011) investigated the potential of CS for data compression 

of vibration data by reconstructing the signal both by 

wavelet and Fourier bases, and they compared the capacity 

of CS with tradition data compression methods. Mascarenas 

et al. (2013) designed and implemented a digital version of 

a compressed sensor. They collected compressed 

measurements by this sensor node and reconstructed 

original signal for detecting structural damage. Duan and 

Kang (2014) developed an improved recovery method by 

using the Polar interpolation in the Orthogonal Matching 

Pursuit (OMP) algorithm. This method improved the 

recovery accuracy of signals with increasing a little 

computation. Huang et al. (2016) proposed a Bayesian CS 

algorithm for the first time to reconstruct approximately 

sparse signals. Compared with other CS methods, the 

proposed algorithm showed superior performance in 

reconstruction robustness. Bao et al. (2017) developed a 

group sparse optimization algorithm to reconstruct the 

original data from incomplete measurements. They found 

that smaller reconstruction errors can be achieved using 

data from multiple sensors with the group sparse 

optimization method than using data from only single 

sensor. Pan et al. (2018) proposed a sparse recovery 

algorithm based on l1-homotopy with a learned dictionary, 

which was more accurate and easily-implemented for 

streaming acoustic emission signals compared to alternative 

techniques/dictionaries. 

Besides signal compression, CS has been introduced to 

deal with more problems in SHM. In application to WSN, 

CS is employed to recover lost data collected by WSN in 

the Shannon-Nyquist framework (Bao et al. 2013), and to 

reduce the volume of data and number of sensors in 

vibration monitoring (Ganesan et al. 2017). CS is further 

explored to reduce the power consumption of data 

acquisition in WSN (Bajwa et al. 2006, Feng et al. 2009, 

Ling and Tian 2010, O’Connor et al. 2014). The sparse 

recovery theory is also discussed for the structural damage 

detection and moving force identification (Zhou et al. 2013, 

2015, Wang and Hao 2015, Zhang and Xu 2016, Hou et al. 

2018). 

In the application of CS in SHM, normally signals are 

compressively sampled under the framework of CS, then 

transmitted to a central data repository, where the original 

data is reconstructed from the compressed measurements. 

Subsequent data processing, such as modal parameter 

identification from structural vibration signals is performed 

in the same way as done with the Shannon-Nyquist 

sampling data (Bao et al. 2011, 2013, 2017, Mascarenas et 

al. 2013, Duan and Kang 2014, Huang et al. 2016, Ganesan 

et al. 2017, Bajwa et al. 2006, Feng et al. 2009). One 

problem of this approach is that distortion always exists in 

the reconstructed signals, and it will jeopardize the 

subsequent data processing and modal analysis. Moreover, 

the computation for the signal reconstruction is costly due 

to the nonlinearity of the sparsity recovery problem. Park et 

al. (2014) proposed a new approach to estimate the 

structural mode shapes from the compressed samples 

without requiring a reconstruction of the vibration signals. 

They proposed three measurement schemes and showed 

that mode shapes can be estimated directly from the 

compressed measurements with sufficient accuracy by just 

performing SVD to the compressive samples (Park et al. 

2014). This procedure was interpreted as a POD technique 

(Park et al. 2015). 

In this paper a new method for modal data identification 

without reconstruction of the original data will be proposed. 

The fundamental idea is to design an appropriate dictionary 

on which the compressed measurements are decomposed. 

The damped free vibration function is employed as the basis 

of the dictionary, by which mode shapes, modal frequencies 

and modal damping ratio can be extracted. The dictionary is 

designed to be redundant to ensure the sparse feature of the 

recovered variables. The proposed method can be applied to 

damped systems, and deliver the best possible estimation of 

modal information no matter what sampling scheme is 

adopted. 

The rest of this paper is organized as follows: In section 

2, following the structural modal analysis theory, the sparse 

recovery problem of modal parameter identification with 

compressed measurements is formulated. In section 3, 

design of the dictionary is introduced, and an algorithm to 

solve the sparse problem of modal identification is 

proposed. In section 4, synthetic compressed signals from a 

numerical and an experimental example respectively are 

used to support our analysis and discussion. Finally, Section 

5 concludes this paper. 

 

 

2. Theoretical development 
 

The equation of motion of an unforced N-degree MDOF 

system is 

 
[𝑀]{�̈�(𝑡)} + [𝐶]{�̇�(𝑡)} + [𝐾]{𝑢(𝑡)} = {0(𝑡)} (1) 

 

where [𝑀] , [𝐶]  and [𝐾]  are respectively the 𝑁 × 𝑁 

symmetric mass, damping and stiffness matrices; {𝑢(𝑡)} is 

the vector of system displacements. Note that 
{𝑢(𝑡)}{𝑢1(𝑡), … , 𝑢𝑁(𝑡)}, and each {𝑢(𝑡)}(𝑖) = 𝑢𝑖(𝑡), 𝑖 ∈
1,… ,𝑁 are displacement responses, which can be viewed 

as signals observed at the ith sensor node. 

In case that [𝐶] is proportionally damped, the general 
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solution to Eq. (1) is 
 

{𝑢(𝑡)} = ∑{𝜓𝑛}𝐴𝑛𝑒
−𝜉𝑛𝜔𝑛𝑡 𝑠𝑖𝑛(𝜔𝑑,𝑛𝑡 + 𝜃𝑛)

𝑁

𝑛=1

 (2) 

 

where {𝜓𝑛}  is the normal mode shape, 𝐴𝑛  is the 

amplitude of the mode signal, 𝜉𝑛 is the modal damping 

ratio, 𝜔𝑛 and 𝜔𝑑,𝑛 are the undamped and damped natural 

modal frequencies of the system, respectively; and 𝜃𝑛 is 

the phases of modal coordinate vector. {𝜓𝑛}, 𝜉𝑛, 𝜔𝑛 and 

𝜔𝑑,𝑛 are determined by the characteristics of the system 

and unrelated to the system’s initial conditions. 

Firstly, reformulation of Eq. (2) by introducing the 

trigonometric function decomposition yields 
 

{𝑢(𝑡)} = ∑{𝜓𝑛}𝐴𝑛
′ 𝑒−𝜉𝑛𝜔𝑛𝑡 𝑠𝑖𝑛(𝜔𝑑,𝑛𝑡)

𝑁

𝑛=1

 

                 +∑{𝜓𝑛}𝐴𝑛
″ 𝑒−𝜉𝑛𝜔𝑛𝑡 𝑐𝑜𝑠(𝜔𝑑,𝑛𝑡)

𝑁

𝑛=1

 

(3) 

 

where 𝐴𝑛
′ = 𝐴𝑛 𝑐𝑜𝑠(𝜃𝑛), 𝐴𝑛

″ = 𝐴𝑛 𝑠𝑖𝑛(𝜃𝑛) Then Eq. (3) 

can be written in a matrix-vector multiplication form as 
 

{𝑢(𝑡)} = [𝛹][𝛤]{𝑆} (4) 

 
[𝛤] = [[𝛤 ′] [𝛤″]] (5) 

 
{𝑆} = {{𝑆′} {𝑆″}}𝑇 (6) 

 

where 
 

[𝛤′] = [

𝐴1
′ 0 ⋯ 0

0 𝐴2
′ ⋯ 0

⋮ ⋮ ⋱ ⋮
0 0 ⋯ 𝐴𝑁

′

] , 

[𝛤″] =

[
 
 
 
𝐴1
″ 0 ⋯ 0

0 𝐴2
″ ⋯ 0

⋮ ⋮ ⋱ ⋮
0 0 ⋯ 𝐴𝑁

″ ]
 
 
 

 

(7) 

 

{𝑆′} =

{
 
 

 
 𝑒

−𝜉1𝜔1𝑡 𝑠𝑖𝑛(𝜔𝑑,1𝑡)

𝑒−𝜉2𝜔2𝑡 𝑠𝑖𝑛(𝜔𝑑,2𝑡)

⋮
𝑒−𝜉𝑁𝜔𝑁𝑡 𝑠𝑖𝑛(𝜔𝑑,𝑁𝑡)}

 
 

 
 

, 

{𝑆″} =

{
 
 

 
 𝑒

−𝜉1𝜔1𝑡 𝑐𝑜𝑠(𝜔𝑑,1𝑡)

𝑒−𝜉2𝜔2𝑡 𝑐𝑜𝑠(𝜔𝑑,2𝑡)

⋮
𝑒−𝜉𝑁𝜔𝑁𝑡 𝑐𝑜𝑠(𝜔𝑑,𝑁𝑡)}

 
 

 
 

 

(8) 

 

[𝛹] = [{𝜓1} {𝜓2} ⋯ {𝜓𝑁}]  denotes the mode 

shape matrix, and each column {𝜓𝑛} is a modal vector of 

N elements; [𝛤′] and [𝛤″] are 𝑁 × 𝑁 diagonal matrices; 
{𝑆′} and {𝑆″} are 𝑁 × 1 modal coordinate vectors. 

Assuming that t is sampled at M distinct instants in time, 

𝑡 = 𝑡1, … , 𝑡𝑀(𝑀 ≫ 𝑁), then Eq. (4) with discrete times can 

be written in the following. 
 

[𝑈] = [𝛹][𝛤][𝑆] (9) 

 

[𝑆] = [[𝑆′] [𝑆″]]𝑇 (10) 

 

[𝑆′] = [

𝑠1
′(𝑡1) 𝑠1

′(𝑡2) ⋯ 𝑠1
′(𝑡𝑀)

𝑠2
′ (𝑡1) 𝑠2

′ (𝑡2) ⋯ 𝑠2
′ (𝑡𝑀)

⋮ ⋮ ⋱ ⋮
𝑠𝑁
′ (𝑡1) 𝑠𝑁

′ (𝑡2) ⋯ 𝑠𝑁
′ (𝑡𝑀)

] , 

[𝑆″] =

[
 
 
 
𝑠1
″(𝑡1) 𝑠1

″(𝑡2) ⋯ 𝑠1
″(𝑡𝑀)

𝑠2
″(𝑡1) 𝑠2

″(𝑡2) ⋯ 𝑠2
″(𝑡𝑀)

⋮ ⋮ ⋱ ⋮
𝑠𝑁
″ (𝑡1) 𝑠𝑁

″ (𝑡2) ⋯ 𝑠𝑁
″ (𝑡𝑀)]

 
 
 

 

(11) 

 

where [𝑆′] and [𝑆″] are 𝑁 ×𝑀  matrices with 𝑠𝑖
′(𝑡𝑗) =

𝑒−𝜉𝑖𝜔𝑖𝑡 𝑠𝑖𝑛(𝜔𝑑,𝑖𝑡𝑗), 𝑠𝑖
″(𝑡𝑗) = 𝑒

−𝜉𝑖𝜔𝑖𝑡 𝑐𝑜𝑠(𝜔𝑑,𝑖𝑡𝑗). 

For a compressive sampling approach, where Eq. (9) is 

multiplied by an observation matrix[𝛷], the compressed 

samples are obtained by 

 
[𝑌] = [𝑈][𝛷] = [𝛹][𝛤][𝑆][𝛷] (12) 

 

where [𝛷] is a 𝑀 × 𝐿 random matrix (𝑀 ≫ 𝐿, 𝐿 is the 

length of compressed measurements); [𝑌]  is the 

compressed measurement matrix. 

Park et al. (2014) have shown that with some sampling 

strategies that is different from the Shannon-Nyquist 

sampling, rows of the [𝑆] in Eq. (9) or [𝑆][𝛷] in Eq. (12) 

are nearly orthogonal, and thus modal vectors can be 

estimated by computing SVD of [𝑈] in Eq. (9) or [𝑌] in 

Eq. (12). 

As shown in Eqs. (2) and (9), the response of the system 
[𝑈] is a linear combination of the modal coordinate vectors 

in [𝑆]. Inspired by the idea of sparse decomposition, if we 

can establish a dictionary [𝐷], which contain the modal 

coordinate vectors in [𝑆], then [𝑈] can be decomposed as 
 

[𝑈] = [ϒ][𝐷] (13) 
 

Similarly, with the compressed measurements in Eq. 

(12), [𝑌] can be decomposed as 
 

[𝑌] = [ϒ][𝐷][𝛷] (14) 
 

In Eqs. (13)-(14) , [ϒ] is a 𝑁 × 𝐽 coefficient matrix, 
[𝐷] is a 𝐽 × 𝑀 matrix of dictionary, and each row of [𝐷] 
is an atom. If [𝐷] is designed to be redundant, i.e. 𝐽 ≫
2𝑁, and all rows of [𝑆] are contained in [𝐷], then [ϒ] is 

sparse, which means that [ϒ] will have at most 2N nonzero 

column vectors. Then the mode shapes, i.e., [𝛹][𝛤] as a 

whole, can be extracted from those nonzero column vectors 

of [ϒ], and the at most 2N atoms in [𝐷], which correspond 

to the 2N nonzero column vectors in [ϒ], are used to 

estimate the modal frequencies and damping in [𝑆]. The 

remaining problem is how to design an appropriate 

redundant dictionary [𝐷]. 
 

 

3. Dictionary and sparse decomposition algorithm 
 

3.1 Design of redundant dictionary 
 

The modal coordinates in {𝑆′} and {𝑆″} are damped 
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free vibration functions, and they are used as the bases for 

the design of the dictionary matrix [𝐷]. Let’s rephrase the 

modal coordinates in {𝑆′}  and {𝑆″}  as 𝑒
−𝑎𝑏𝑡

√1−𝑎2 𝑠𝑖𝑛( 𝑏𝑡) 

and 𝑒
−𝑎𝑏𝑡

√1−𝑎2 𝑐𝑜𝑠( 𝑏𝑡), respectively, where the parameters a, 

b represent the damping ratio and the damped natural 

frequency, respectively. 

Discretization of the damped natural frequency, 

𝑏𝑙(𝑙 ∈ 1, … , 𝑝)  and the damping coefficient, 𝑎𝑚(𝑚 ∈
1,… , 𝑞) gives atoms of the dictionary as follows 

 

𝑑𝑙,𝑚
′ = 𝑒

−𝑎𝑚𝑏𝑙𝑡

√1−𝑎𝑚
2

𝑠𝑖𝑛( 𝑏𝑙𝑡) 

and     𝑑𝑙,𝑚
″ = 𝑒

−𝑎𝑚𝑏𝑙𝑡

√1−𝑎𝑚
2

𝑐𝑜𝑠( 𝑏𝑙𝑡) 

(15) 

 

Therefore, the dictionary is formatted as {𝐷} =
{{𝐷′} {𝐷″}}𝑇, where the two component vectors are 

 

{𝐷′} =

{
 
 
 

 
 
 
𝑑𝑙=1,𝑚=1
′

⋮
𝑑𝑙=1,𝑚=𝑞
′

} 𝑙 = 1

⋮
𝑑𝑙=𝑝,𝑚=1
′

⋮
𝑑𝑙=𝑝,𝑚=𝑞
′

} 𝑙 = 𝑝

}
 
 
 

 
 
 

, 

{𝐷″} =

{
 
 
 

 
 
 
𝑑𝑙=1,𝑚=1
″

⋮
𝑑𝑙=1,𝑚=𝑞
″

} 𝑙 = 1

⋮
𝑑𝑙=𝑝,𝑚=1
″

⋮
𝑑𝑙=𝑝,𝑚=𝑞
″

} 𝑙 = 𝑝

}
 
 
 

 
 
 

 

(16) 

 

There are altogether 2(𝑝 × 𝑞) atoms in the dictionary. 

Note that the atoms in Eq. (16) are functions of time t. Time 

t is then sampled at M distinct points, 𝑡 = 𝑡1, … , 𝑡𝑀, and a 

dictionary matrix [𝐷] = [[𝐷′] [𝐷″]]𝑇 is then obtained, in 

which [𝐷′]  and [𝐷″]  are both of (𝑝 × 𝑞) × 𝑀 

dimension. 

In Eq. (15) 𝑏𝑙(𝑙 ∈ 1,… , 𝑝) is designed to sample from 
[𝜔𝑑𝑚𝑖𝑛, 𝜔𝑑𝑚𝑎𝑥], where 𝜔𝑑𝑚𝑖𝑛 and 𝜔𝑑𝑚𝑎𝑥 are the lowest 

and highest possible damped frequencies, respectively, and 

𝑎𝑚(𝑚 ∈ 1,… , 𝑞)  is usually sampled from [0, 𝜉𝑚𝑎𝑥] , 

where 𝜉𝑚𝑎𝑥 is the maximum possible damping ratio. These 

bounds are determined by experience or range of interest. 

By increasing the number of discretization points of 𝑏 

and𝑎, the number of atoms in dictionary [𝐷′] and [𝐷″] 
increases, and usually 𝑝 × 𝑞 ≫ 𝑁  is required, which in 

return enhances the sparsity of the variables to be sought, 

and reduces the leakage and improves accuracy of the 

identification of the modal parameters. But be aware of that 

increased redundancy of the dictionary also leads to 

increased coherence among the atoms in the dictionary 

(Rauhut et al. 2008), which will reduce the efficiency of the 

recovery algorithms employed to solve the sparse 

optimization problem. 

 

3.2 Combination of OMP and two-step search 
strategy 

 

With the redundant dictionary defined in Eq. (16), the 

compressed measurement matrix [𝑌] is decomposed as 

shown in Eq. (14). [ϒ] being column sparse, it has at most 

2N nonzero column vectors. We then use matrix [ϒ̂] to 

approximate the nonzero columns in [ϒ], and matrix [�̂�] 

to approximate the at most 2N atoms in [𝐷]corresponding 

to the nonzero columns in [ϒ̂]. Thus, an approximation of 

[𝑌] is made as 
 

[𝑌] ≈ [ϒ̂][�̂�][𝛷] (17) 

 

To find the optimum [ϒ̂] and the corresponding [�̂�], 

the following optimization problem is to be solved 

 

𝑚𝑖𝑛‖[𝑌] − [ϒ̂][�̂�][𝛷]‖
2
 

subjct to  [�̂�]
2𝑁×𝑀

∈ [
[𝐷′]

[𝐷″]
]
2(𝑝×𝑞)×𝑀

 
(18) 

 

Considering the 2(𝑝 × 𝑞)  number of atoms in the 

dictionary [𝐷], it needs tremendous computation to search 

for the optimal atoms in the dictionary. The Orthogonal 

Matching Pursuit (OMP), one of the most powerful 

algorithm to compute the sparse representations with the 

least complexity (Liu and Temlyakov 2012) is to be used to 

solve the above optimization problem. The OMP algorithm 

has an iteration scheme, and within each iteration, we 

propose a two-step strategy to determine the optimal atoms. 

Firstly, fixing 𝑚 = 1, the optimal atom with 𝑏𝑙(𝑙 ∈

1,… , 𝑝) is chosen from the subset dictionary of [𝐷] with 

𝑑𝑙={1,…,𝑝},𝑚=1
′  and 𝑑𝑙={1,…,𝑝},𝑚=1

″ . This subset dictionary has 

all atoms with the same damping ratio 𝑎𝑚=1 . This is 

actually to pick up the atom with the best matched 

undamped frequency if 𝑎𝑚=1 = 0. 

Secondly, fixing 𝑙 = 𝑙, the optimal atom with 𝑎�̂� =
(�̂� ∈ 1,… , 𝑞) is chosen from the subset dictionary of [𝐷] 
with 𝑑𝑙=𝑙,𝑚={1,…,𝑞}

′  and 𝑑𝑙=𝑙,𝑚={1,…,𝑞}
″ . This subset 

dictionary has all atoms with the same frequency 𝑏𝑙=𝑙. This 

is to search the atom with the best matched damping ratio. 

The two-step searching strategy is illustrated in Fig. 1, 

followed by the pseudo codes of the algorithm. This 

strategy greatly reduces the computation load in the sparse 

decomposition. Finally, within each loop, two optimal 

atoms 𝑑𝑙=𝑙,𝑚=�̂�
′  and 𝑑𝑙=𝑙,𝑚=�̂�

″  are searched out, and their 

parameters 𝑏𝑙 and 𝑎�̂� are the optimal estimate of damped 

natural frequency and damping ratio respectively, according 

to the functions of atoms in Eq. (15). 

The damping ratios of any order of modes always fall 

into a small positive range near zero, but the frequencies of 

structures may vary widely for different structures and order 

of modes. Therefore, in the above two-step searching 

strategy, we can conveniently fix the damping ratio at zero 

first, and search for the undamped frequency of the 

structures; and then given the optimal frequency, we further 

search for the optimal damping ratio. But if the order of 

searching is reversed, it would be hard for us to set an 
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appropriate initial value for the frequency, which may cause 

greater dependence of the searching results on the initially 

picked value. 

Pseudo code of the algorithm 
 

Input : [𝑌],  [𝐷′],  [𝐷″], and [𝛷] 

Output: [ϒ̂] and [�̂�] 

Initialization: [ϒ̂] = [∅], [�̂�] = [∅], {𝑍} = ∅, [𝑅] = [𝑌] 
For i = 1 to N (N is the number of degree of the system) 

(a) Form the subset dictionaries [𝐷′]𝑚=1 and [𝐷″]𝑚=1 by 

picking up 𝑑𝑙={1,…,𝑝},𝑚=1
′  and 𝑑𝑙={1,…,𝑝},𝑚=1

″  

(b) Search for the optimal atoms 𝑑𝑙=𝑙,𝑚=1
′  and 𝑑𝑙=𝑙,𝑚=1

″  

by solving the following problem, 

 

𝑎𝑟𝑔𝑚𝑎𝑥 (‖𝑑𝑙,𝑚=1
′ [𝛷][𝑅]𝑇‖

2
+ ‖𝑑𝑙,𝑚=1

″ [𝛷][𝑅]𝑇‖
2
) 

 

subject to 𝑑𝑙,𝑚=1
′ ∈ [𝐷′]𝑚=1, 𝑑𝑙,𝑚=1

″ ∈ [𝐷″]𝑚=1 , 𝑙 ∉ {𝑍} 

(c) Form the subset dictionaries [𝐷′]𝑙=𝑙 and [𝐷″]𝑙=𝑙 by 

picking up 𝑑𝑙=𝑙,𝑚={1,…,𝑞}
′  and 𝑑𝑙=𝑙,𝑚={1,…,𝑞}

″  

(d) Search for the optimal atoms 𝑑𝑙=𝑙,𝑚=�̂�
′  and 𝑑𝑙=𝑙,𝑚=�̂�

″  

by solving the following problem, 

 

𝑎𝑟𝑔𝑚𝑎𝑥 (‖𝑑𝑙=𝑙,𝑚
′ [𝛷][𝑅]𝑇‖

2
+ ‖𝑑𝑙=𝑙,𝑚

″ [𝛷][𝑅]𝑇‖
2
) 

 

subject to 𝑑𝑙=𝑙,𝑚
′ ∈ [𝐷′]𝑙=𝑙, 𝑑𝑙=𝑙,𝑚

″ ∈ [𝐷″]𝑙=𝑙 

(e) Let [�̂�] = [[�̂�]
𝑇

𝑑′𝑇𝑙=𝑙,𝑚=�̂� 𝑑″𝑇𝑙=𝑙,𝑚=�̂�]
𝑇
,{𝑍} =

{𝑍, 𝑙} 

(f) [ϒ̂] =
[𝑅]

([�̂�][𝛷])
, [𝑅] = [𝑅] − [ϒ̂][�̂�] 

End 
 

 

4. Illustrative examples 
 
4.1 Numerical experiment 
 

In this section, the performance of the proposed method 

is tested by a numerical experiment. The synthetically 

compressed measurement data set is acquired from a simple 

4-degree-of-freedom damped system under free vibration as 

shown in Fig. 2. 

 

 

 

Fig. 2 A simple 4-degree-of-freedom damped system 

 

 

The linear spring-damper elements are used to connect 

the adjacent pairs of masses. For simplicity’s sake, the 

spring stiffness is set equal, 𝑘1 = 𝑘2 = 𝑘3 = 𝑘4 = 𝑘5 =
1000𝑁/𝑚. The stiffness matrix [𝐾] of the above system is 

 

[𝐾] = [

𝑘1 + 𝑘2 −𝑘2 0 0
−𝑘2 𝑘2 + 𝑘3 −𝑘3 0
0 −𝑘3 𝑘3 + 𝑘4 −𝑘4
0 0 −𝑘4 𝑘4 + 𝑘5

] 

                   = [

2 −1 0 0
−1 2 −1 0
0 −1 2 −1
0 0 −1 2

] × 1000𝑁/𝑚. 

 

All lumped masses of this system are set equal to 1kg, 

and then the mass matrix [𝑀]  is an identity matrix. 

Proportional damping is considered, [𝐶] = 𝛽[𝐾] + 0.1[𝑀]. 
Different damping levels are assumed by setting 𝛽 = 0, 

0.001 and 0.002. 

Matrices [𝛹] , {𝑆′}  and {𝑆″}  are acquired from the 

analytical model described above. The diagonal matrix [𝛤′] 
and [𝛤″] are determined by the initial condition of a given 

system, which in this example are set as follows 
 

[𝛤 ′] = [𝛤″] = [

1 0 0 0
0 0.8 0 0
0 0 0.6 0
0 0 0 0.4

] 

 

The free responses of the system are numerically 

generated by Eq. (4). The response matrix [𝑈] is formed 

by sampling {𝑢(𝑡)} at 500 distinct points at time t = 0.00, 

0.04, 0.08,…, 19.96s. The compressed measurements are 

synthesized by multiplying the data matrix [𝑈] with a 

random matrix [𝛷]. Here we use a Bernoulli random 

matrix, of which the element is either 1 or -1. The number 

of compressed measurements L defines the number of row 

 

Fig. 1 Two-step searching strategy 
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of [𝛷], and it is set to be 1/2, 1/5, and 1/10 respectively, of 

the number of the original discrete time data, which is 500 

in this case, and compression rates of 2, 5 and 10 are thus 

achieved, respectively. 

A redundant dictionary is needed to decompose the 

compressed measurements. According the compressive 

sensing theory, to ensure sparsity of the recovered 

parameter, a redundant dictionary is necessary. But more 

redundancy means more coherence among atoms in the 

 

 

dictionary, which weakens the restricted isometry property 

(RIP) of the compressed matrix, and reduces the 

effectiveness the sparse recovery algorithms (Eldar and 

Kutyniok 2012). On the contrary, less redundancy of the 

dictionary means coarse discretization of the control 

variables, which reduces the sparsity and increases leakage 

of the recovery variables. A tradeoff has to be made. 

Increased coherence between atoms with increasing number 

of discretization of frequency and damping ratio is shown in 

Table 1 Estimated modal parameters of the 4 DOFs system by SD and POD 

𝛽 
1Compression 

Rate Mode MAC(SD) MAC(POD) 
Damped frequency by SD (Hz) Damping ratio by SD(%) Computing time (s) 

1Exact estimated 2Exact estimated SD POD 

0 

2 

1 0.9999 0.8760 3.11 3.11 0.26 0.21 

79.1 1.1 
2 0.9999 0.6312 5.92 5.92 0.13 0.12 

3 0.9999 0.7550 8.14 8.15 0.10 0.10 

4 0.9996 0.9729 9.57 9.57 0.08 0.06 

5 

1 0.9948 0.9087  3.10  0.39 

79.2 0.8 
2 0.9999 0.8477  5.92  0.15 

3 0.9997 0.7781  8.14  0.11 

4 1.0000 0.8594  9.56  0.09 

10 

1 0.9997 0.8256  3.10  0.24 

79.3 0.7 
2 0.9997 0.6280  5.91  0.14 

3 0.9999 0.9593  8.15  0.11 

4 0.9994 0.7722  9.57  0.08 

0.001 

2 

1 1.0000 0.9982 3.11 3.12 1.23 1.19 

77.1 1.1 
2 0.9998 0.9782 5.92 5.91 1.99 2.06 

3 1.0000 0.8769 8.14 8.16 2.66 1.92 

4 0.9998 0.8968 9.57 9.58 3.09 2.80 

5 

1 0.9999 0.9909  3.10  1.27 

77.2 0.8 
2 1.0000 0.9263  5.89  2.22 

3 0.9999 0.6817  8.12  1.76 

4 0.9996 0.7246  9.49  3.00 

10 

1 0.9994 0.9909  3.10  1.27 

76.3 0.7 
2 0.9976 0.9263  5.93  1.78 

3 0.9371 0.6817  8.30  6.21 

4 0.9938 0.7246  9.43  2.10 

0.002 

2 

1 0.9999 0.9968 3.11 3.12 2.21 1.99 

77.9 1.1 
2 0.9968 0.9814 5.92 5.90 3.85 4.04 

3 0.9908 0.8164 8.14 8.12 5.21 2.41 

4 0.9960 0.8305 9.57 9.32 6.10 6.97 

5 

1 0.9996 0.9998  3.11  2.11 

76.6 0.8 
2 0.9993 0.9721  5.85  4.10 

3 0.9948 0.7724  8.10  2.35 

4 0.9956 0.7924  9.37  5.23 

10 

1 0.9980 0.9970  3.11  2.42 

77.9 0.7 
2 0.9700 0.7780  5.94  4.87 

3 0.9835 0.6336  8.24  3.43 

4 0.9761 0.7717  10.72  10.00 
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Fig. 3. Discritization points of 2501 for both variables are 

chosen for the design of the dictionary in this example. 

A redundant dictionary is established by the method 

developed in section 3.1. The damped frequency range is 

set to be [0-12.5] Hz, and this range is discretized uniformly 

at 2501 distinct points, {𝑏1 = 0, 𝑏2 = 0.005, . . . , 𝑏2501 =
12.5} Hz. The damping ratio range is set to be [0-0.5], and 

the range is discretized at 2501 uniform distinct points, 
{𝑎1 = 0, 𝑎2 = 0.0002, . . . , 𝑎2501 = 0.5} . The quantization 

error is 0.005 Hz for the frequency and 0.0002 for the 

damping ratio, which are believed to be sufficient. 

With the above discretization scheme, a dictionary with 

2 × 2501 × 2501 atoms is generated, which is used to 

decompose the compressed measurements by the OMP 

algorithm with the proposed two-step search strategy. It is 

worth emphasizing that, with the proposed searching 

strategy, the optimal atoms are selected from a sub 

dictionary with 2 × (2501 + 2501) atoms in each loop, 

which remarkably reduces the computational time. 

The modal frequencies, modal damping and mode 

shapes are then identified from the selected atoms. The 

sparse decomposition method developed in this paper is 

denoted as SD in the following part. For comparison 

purpose, the Proper Orthogonal Decomposition (POD) 

(Park et al. 2014) is also used to estimate the mode shapes. 

The accuracy of the mode shapes estimated by the SD and 

POD is evaluated by the modal assurance criterion (MAC) 

 

𝑀𝐴𝐶 =
({�̂�𝑖}

𝑇
{𝜓𝑖})

2

({�̂�𝑖}
𝑇
{�̂�𝑖}) ({𝜓𝑖}

𝑇{𝜓𝑖})
 (19) 

 

where {�̂�𝑖} and {𝜓𝑖} denote the estimated and theoretical 

values of the ith mode shape vector, respectively. The 

comparison of the accuracy of the estimated mode shapes 

by SD and POD are shown in Table 1, and the analytical 

and identified frequencies and damping ratios are also given 

in the table. 

The results in Table 1 show that, without reconstruction 

of the original signals, the sparse decomposition method 

accurately identifies the modal frequencies and modal shape 

vectors from the compressed measurements for the three 

compression ratio cases. Comparing with the POD 

 

 

technique, the SD technique attains a better estimate of 

model shape vectors in every compression ratio and 

damping case. However, damping identification is more 

challenging, especially for heavy damped systems. 

Computation time of the SD method is less than 80 seconds 

for each run of simulation on PC with CPU i3-4170 3.70 

Ghz and memory 8 G bytes, showing that SD is more 

computational intensive than POD. 

As we study a method that identify the modal 

parameters from the compressed measurements directly, 

without a prior reconstruction of the time history of signals, 

to be fair, we only compare the performance of the 

proposed SD method with the method of its kind, namely, 

the POD technique proposed by Park et al. (2014, 2015). 

The computational time of the POD technique and the SD 

method, shown in Table 1 indicates that a better recovery of 

modal data by SD over the POD is achieved at the cost of 

more computation. 

On the other hand, if we choose to recover the time 

history signal first, and then do modal analysis using 

conventional methods in time domain, such as ITD, or 

methods in frequency domain, such as FDD, it is shown that 

distortion of the reconstructed signals jeopardizes the 

subsequent modal analysis, which renders the modal 

analysis results sensitive to the quality of the reconstructed 

signals and noises level. Moreover, the computation for the 

time history signal reconstruction itself is costly due to the 

nonlinear nature of the sparsity recovery problem. 

In order to investigate the noise effect of the signal on 

the modal data recovery by the proposed method, two noise 

levels of 20% and 40% are considered in the simulated 

vibration signals. White noise is assumed, and the noise 

percentage is the RMS of the noise over that of the signal. 

The results of the case with 𝛽 = 0.001 and compression 

rate 10 are shown in Table 2, which indicates that the 

performance of the proposed method is fairly good even in 

a very noisy environment. 
 

4.2 Model experiment 
 

A hammer-hit test of a three-story structure model in the 

laboratory was conducted to confirm the effectiveness of 

the proposed method. The structure was made up of 

aluminum with three rigid plates supported by four 

 

Fig. 3 Coherence of atoms in dictionary 

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0.95

1

pq

C
o

h
er

en
ce

500
500

1000
1000

1500
1500

2000
2000

2500
2500

3000
3000

3500
3500

4000
4000

4500
4500

5000
5000

129



 

Jie Kang and Zhongdong Duan 

Table 2 Performance of SD with different noise percentage 

Noise 

percentage 
Mode MAC 

Damped 

frequency(Hz) 

Damping 

ratio(%) 

0% 

1 0.9994 3.10 1.27 

2 0.9976 5.93 1.78 

3 0.9371 8.30 6.21 

4 0.9938 9.43 2.10 

20% 

1 0.9964 3.11 1.82 

2 0.9894 5.93 1.30 

3 0.9723 8.12 2.11 

4 0.9935 9.71 2.30 

40% 

1 0.9977 3.11 2.02 

2 0.9971 5.95 1.98 

3 0.9816 8.13 2.66 

4 -- -- -- 
 

 

 

 

Fig. 4 The 3-story structure model and layout of sensors 
 

 

rectangular columns at each corner, connected by bolts. The 

structure is based on a rigid plate, which is anchored to the 

ground by bolts. Three uniaxial accelerometers were 

deployed on each floor to acquire the X-direction 

accelerations, as shown in Fig. 4. The impact load of the 

hammer was imposed on the third floor along the X-

direction, and the vibration signals in the X-direction were 
 

 

 

 

Fig. 5 X-axial accelerations collected from the structure 

model before compression 
 

 

collected with a sampling frequency of 51.2 Hz. The 

sampling duration was 19.53 seconds for 1000 data points. 

Three examples of acceleration histories are shown in Fig. 

5. 

The experiment data is firstly used to estimate modal 

parameters of the structure by the Ibrahim Time Domain 

(ITD) method, results of which are taken as benchmarks 

shown in the Table 3. Then compressed measurements are 

obtained by multiplying the collected data with a random 

matrix. Compressed data length of 100 and 50 is 

considered, and the compression ratios are 10 and 20, 

respectively. 

A redundant dictionary is created for the sparse recovery 

of modal parameters. The range of frequency is [0-25.6]Hz 

with an interval  of  0.005  Hz,  i .e. ,  {𝑏1 = 0, 𝑏2 =
0.005, . . . , 𝑏5121 = 25.600} Hz; and the range of damping 

ratio is [0-0.5] with an interval of 0.0001, i.e., {𝑎1 =
0, 𝑎2 = 0.0001, . . . , 𝑎5001 = 0.5}. Modal frequencies and 

damping ratios estimated by the SD using the compressed 

measurements are shown in Table 3. Table 3 also shows the 

MACs of the mode shapes estimated from the compressed 

measurements by the POD and SD, respectively, with 
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Sensor 3

Table 3 Estimated modal parameters of the structure model by SD, POD and ITD 

Compression 

rate 
Mode MAC(SD) MAC(POD) 

Damped frequency(Hz) Damping ratio(%) 

*ITD SD *ITD SD 

10 

1 0.9967 0.9717 4.98 5.02 1.20 1.44 

2 0.9978 0.9657 13.95 13.99 0.76 0.96 

3 0.9999 0.9397 20.82 20.83 0.18 0.23 

20 

1 0.9957 0.9681  5.02  1.10 

2 0.9976 0.9408  14.00  1.30 

3 0.9898 0.9243  20.83  0.42 
 

*ITD: “ITD” is obtained by the original time-domain data, and are regardless of the compression rate 
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modal shape vectors identified by ITD as the benchmarks to 

compute MACs using Eq. (22). 

The experiment results show that the identified modal 

frequencies from the compressed measurements match very 

well with those identified by ITD from the uncompressed 

signals. It also confirms that the SD technique performs 

better in identification of modal shape vectors over the POD 

technique. As for the damping identification, SD results are 

fairly consistent with those by ITD for this light damping 

structure. 
 

 

5. Conclusions 
 

A structural modal parameter identification method with 

compressed measurements is proposed in this research. 

Based on the formulation of free vibration of linear 

structures, a sparse decomposition problem is formulated to 

perform modal analysis directly on the compressively 

measured responses of structures without a prior 

reconstruction of the original data. By introducing the 

damped free vibration function as the basis for the design of 

the dictionary, a redundant dictionary with frequency and 

damping ratio as the control variables is designed. An 

efficient two-step search strategy to search the optimal 

atoms in the dictionary is put forward. Combined with the 

Orthogonal Matching Pursuit (OMP) algorithm, the sparse 

decomposition problem is solved, and modal parameters are 

extracted. Both the numerical and the experimental 

examples show that the proposed SD technique successfully 

recovers the modal frequencies, modal shape vectors and 

modal damping ratios with good accuracy. The SD 

technique outperforms the POD technique for the cases 

tested, and it extends the application of this category of 

methods from the undamped system to the damped one. 

However, it remains a problem to extract modal parameters 

from compressed measurements in the prevailing ambient 

vibration conditions. 
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Modal parameter identification with compressed samples by sparse decomposition using the free vibration function as dictionary 

Nomenclature 
 

𝑁 number of degree of a system 

[𝑀] mass matrix 

[𝐶] damping matrix 

[𝐾] stiffness matrices 

[𝛹] mode shape matrix 

{𝜓𝑖} the 𝑖th mode shape vector 

{�̂�𝑖} the estimated𝑖thmode shape vector 

{𝑢(𝑡)} vector of displacement 

𝜉𝑖 the 𝑖th modal damping ratio 

𝜔𝑖 the 𝑖th undamped natural frequency 

𝜔𝑑,𝑖 the 𝑖th damped natural frequency 

𝜃𝑖 
the phase of the 𝑖th modal coordinate 

vector 

𝐴𝑖 amplitude of the 𝑖th mode signal 

𝐴𝑖
′, 𝐴𝑖

″ 
factorized amplitude of the 𝑖th mode 

signal 

[𝛤] amplitude matrix 

[𝛤′], [𝛤″] subdivided amplitude matrices 

{𝑆} modal coordinate matrix 

{𝑆′}, {𝑆″} subdivided modal coordinate matrix 

[𝑈] matrix of system displacements 

[𝑌] compressed measurement matrix 

[𝛷] observation matrix 

𝐿 the length of compressed measurements 

𝑀 number of discrete time instant 

[𝐷] dictionary for decomposition 

[�̂�] submatrix of [𝐷] 

{𝐷} 
dictionary designed based on damped free 

vibration functions 

{𝐷′}, {𝐷″} submatrices of {𝐷} 

𝑑𝑙,𝑚
′ , 𝑑𝑙,𝑚

″  atms in {𝐷′} and {𝐷″} 

𝑑𝑙=𝑙,𝑚=�̂�
′ , 

𝑑𝑙=𝑙,𝑚=�̂�
″  

atoms searched out by OMP 

𝜔𝑑𝑚𝑖𝑛, 

𝜔𝑑𝑚𝑎𝑥 

the lowest and highest possible damped 

frequencies 

𝜉𝑚𝑎𝑥 the maximum possible damping ratio 

[ϒ] coefficient matrix 

[ϒ̂] submatrix of [ϒ] 

𝑠𝑖
′(𝑡𝑗), 𝑠𝑖

″(𝑡𝑗) the 𝑖th modal coordinate at time 𝑡𝑗 

𝐽 number of atom in [𝐷] 

𝑎 parameter for representing damping ratio 

 

 

𝑎𝑚 discretized damping coefficient 

𝑏 
parameter for representing damped natural 

frequency 

𝑏𝑙 discretized damped natural frequency 

𝑡 time 
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