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1. Introduction 

 

Tuned mass dampers (TMDs), which typically comprise 

a mass, springs, and a dashpot, are one of the most 

traditional vibration control devices (Shi et al. 2018a). The 

primary structure is subjected to a reverse inertial force by 

the mass, and the vibration energy is dissipated through its 

dashpot. Compared to other dampers, because of the small 

size and minimal interference to the primary structure, 

TMDs are widely used in the vibration control of different 

structures. According to its application range, traditional 

TMDs can be either vertical or horizontal. Horizontal 

TMDs are typically used to protect tall buildings from wind 

loads and earthquake excitations (Nagarajaiah 2009), while 

vertical TMDs are typically applied in vibration control 

problems of footbridges and floor structures (Shi et al. 

2018a). As the control can be divided into passive, active, 

semi-active and hybrid controls, TMDs can also be divided 
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into passive, active, semi-active, and hybrid TMDs 

(Spencer and Nagarajaiah 2003, Wang et al. 2018). 

As no external power source is needed, passive TMDs 

have a wide range of engineering applications (Wang and 

Lin 2015, Lu et al. 2017). The pendulum TMD, whose 

frequency is dependent on the length of the pendulum, is 

typically used in horizontal vibration control of tall 

buildings. Numerous new types of pendulum TMDs have 

been proposed recently, including the adaptive passive 

PTMD (Roffel et al. 2011, Wang et al. 2019) and mass-

uncertain rolling-pendulum TMD (Emiliano and 

Almessandro 2009). To obtain effective control of passive 

TMDs, their parameters need to be well designed (Chung et 

al. 2013). However, passive TMDs are sensitive to the 

detuning effect and could not retune themselves, both of 

which would decrease their vibration control effect 

(Nagarajaiah and Sonmez 2007). Earthquake resistance is a 

critical aspect of structures; however, passive TMDs may 

not perform well in earthquake resistance (Sun et al. 2013, 

Domizio et al. 2015, Ramezani et al. 2017). 

Semi-active TMDs can vary their parameters in real-

time to improve the control effect, requiring a minimum of 

power to achieve this. Therefore, they are more 

maintainable, reliable, and stable than active TMDs 

(Casciati and Ubertini 2008, Sun 2018). Recently, numerous 
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Abstract.  In order to protect a structure over its full life cycle, a novel tuned mass damper (TMD), the so-called semi-active eddy 

current pendulum tuned mass damper (SAEC-PTMD), which can retune its frequency and damping ratio in real-time, is proposed in 

this study. The structural instantaneous frequency is identified through a Hilbert-Huang transformation (HHT), and the SAEC-

PTMD pendulum is adjusted through an HHT-based control algorithm. The eddy current damping parameters are discussed, and the 

relationship between effective damping coefficients and air gaps is fitted through a polynomial function. The semi-active eddy 

current damping can be adjusted in real-time by adjusting the air gap based on the linear-quadratic-Gaussian (LQG)-based control 

algorithm. To verify the vibration control effect of the SAEC-PTMD, an idealized linear primary structure equipped with an SAEC-

PTMD excited by harmonic excitations and near-fault pulse-like earthquake excitations is proposed as one of the two case studies. 

Under strong earthquakes, structures may go into the nonlinear state, while the Bouc-Wen model has a wild application in 

simulating the hysteretic characteristic. Therefore, in the other case study, a nonlinear primary structure based on the Bouc-Wen 

model is proposed. An optimal passive TMD is used for comparison and the detuning effect, which results from the cumulative 

damage to primary structures, is considered. The maximum and root-mean-square (RMS) values of structural acceleration and 

displacement time history response, structural acceleration, and displacement response spectra are used as evaluation indices. Power 

analyses for one earthquake excitation are presented as an example to further study the energy dissipation effect of an SAEC-

PTMD. The results indicate that an SAEC-PTMD performs better than an optimized passive TMD, both before and after damage 

occurs to the primary structure. 
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novel semi-active TMDs have been proposed (Nagarajaiah 

and Varadarajan 2005, Eason et al. 2013, Contreras et al. 

2014, Pasala and Nagarajaiah 2014, Lin et al. 2015, Dinh et 

al. 2016). Varadarajan and Nagarajaiah (2004) proposed a 

variable stiffness TMD using empirical mode 

decomposition/Hilbert transform to control the wind 

response of a building. The Hilbert-Huang transformation 

(HHT) was recently developed and has numerous 

applications in analyzing nonlinear and nonstationary 

signals (Shi et al. 2012). Sun and Nagarajaiah (2014) 

presented a semi-active TMD with variable damping and 

stiffness to control seismic responses. Although it was a 

significant contribution to the semi-active and earthquake 

engineering fields, power analyses were not presented in 

this study, and only a linear structure was considered. 

Eddy current damping is a type of damping resulting 

from the relative motion between permanent magnets and 

conductive plates (Lu et al. 2017). The Lorentz force in the 

conductive plate will restrict their relative motion, and the 

vibration energy of the damper will be dissipated by the 

heat of the conductive plate. Compared to a traditional 

TMD, the dashpot of the eddy current TMD provides eddy 

current damping instead of oil damping. Compared to oil 

damping, eddy current damping has numerous advantages, 

such as being suitable for assembly line production, 

environmentally friendly, economical, and easy adjustment 

of the damping ratio (Wang et al. 2012). Lu et al. (2018) 

proposed a shaking table test of a steel frame structure with 

an eddy current TMD. Shi et al. (2018b) proposed a vertical 

semi-active eddy current TMD with variable damping to 

control human-induced vibrations for footbridges. However, 

to date, there has been no research on studying a semi-

active eddy current TMD for horizontal vibration control of 

structures. 

For semi-active control, a linear system is usually used 

as a primary structure. However, some structures have 

nonlinear characteristics. Under strong earthquakes, 

structures will go into the nonlinear state. For most civil 

structures, the nonlinearity is characterized by hysteresis 

behaviour which can be represented by the Bouc-Wen 

model (Waubke and Kasess 2017, Maiti et al. 2018). 

However, there are still few researches about the passive 

and semi-active control of a nonlinear structure based on 

the Bouc-Wen model. 

A novel semi-active eddy current pendulum tuned mass 

damper (SAEC-PTMD) with variable frequency and 

damping is proposed in this study. The frequency of the 

SAEC-PTMD is retuned through a HHT-based control 

algorithm by adjusting the pendulum length, and its 

damping is adjusted in real-time through a linear-quadratic-

Gaussian (LQG)-based control algorithm. The effect of the 

SAEC-PTMD is verified through harmonic excitations and 

near-fault pulse-like earthquake excitations, for a linear and 

a nonlinear primary structure respectively. An optimal 

passive TMD is used for comparison, and its off-tune effect 

is considered when the structural natural frequency changed 

because of the cumulative damage. 

 

 

 

Fig. 1 SAEC-PTMD 

 

 

2. Mechanical and dynamic analysis of SAEC-
PTMD 
 

2.1 Mechanical description of SAEC-PTMD 
 

To satisfy the requirement of adjusting the pendulum 

and eddy current damping in real-time, a feasible schematic 

of an SAEC-PTMD is shown in Fig. 1. 

It can be seen in Fig. 1 that many permanent magnets 

are located on the left and right sides of the mass, with an 

air gap on either side of the mass, beyond which are 

conductive plates and extra steel plates. The SAEC-PTMD 

is used to control the structural vibration in a direction 

perpendicular to the paper; therefore, there are separate 

acceleration sensors on the mass and primary structure in 

this direction. A computer receives signals from the two 

acceleration sensors and controls the stepper motor to adjust 

the pendulum and actuator to adjust the air gap between the 

conductive plate and permanent magnets; this would adjust 

the eddy current damping according to the HHT-based 

control algorithm and LQG-based control algorithm, 

respectively. In this manner, the SAEC-PTMD could retune 

itself and adjust its damping ratio in real-time. 

 

2.2 Dynamic analysis of single-degree-of-freedom 
system coupled with SAEC-PTMD 

 

The two-degree-of-freedom dynamic system comprises 

a single-degree-of-freedom (SDOF) primary structure and 

an SAEC-PTMD. This dynamic system excited by the 

ground motion, 𝑢𝑔

..
, is shown in Fig. 2. 

The motion equations of Fig. 2(a) can be written as 

follows 

 

(
𝑚𝑝 0

0 𝑚𝑠
) (

𝑢
..

𝑝

𝑢
..

𝑠
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𝑢
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𝑠
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−𝑘(𝑡) 𝑘(𝑡)
) (
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𝑚𝑠
) 𝑢𝑔
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(1) 
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where 𝑚𝑝 and 𝑚𝑠 are the masses of the primary structure 

and SAEC-PTMD, respectively, 𝑐𝑝  and 𝑐(𝑡)  are the 

damping coefficients of the primary structure and SAEC-

PTMD, respectively, 𝑘𝑝  and 𝑘(𝑡)  are the stiffness 

coefficients of the primary structure and SAEC-PTMD, 

respectively, and 𝑢𝑝  and 𝑢𝑠  are the absolute 

displacements of the primary structure and SAEC-PTMD, 

respectively. The overdot indicates the derivative with 

respect to time. 

In Fig. 2(b), the Bouc-Wen hysteresis model is 

presented by the following equation 

 

𝑅𝑝 = 𝛼𝑘𝑝𝑢(𝑡) + (1 − 𝛼)𝑘𝑝𝑧(𝑡) (2) 

 

𝑧
.
(𝑡) = 𝐴𝑢

.
(𝑡) − 𝛾|𝑢

.
(𝑡)||𝑧(𝑡)|𝑛−1𝑧(𝑡) − 𝜃𝑢

.
(𝑡)|𝑧(𝑡)|𝑛 (3) 

 

where 𝑅𝑝 is the resilience of the primary structure, 𝛼 is 

the factor of linear resilience as a percentage of total 

resilience, 𝑧(𝑡)  and 𝑢(𝑡)  are the stress proportional 

displacement and relative displacement respectively. 𝐴, 𝛾, 

𝑛 and 𝜃 are hysteretic parameters of the Bouc-Wen model 

respectively. 

 

 

3. HHT-based control algorithm 
 

3.1 Hilbert-Huang transformation 
 

To identify the instantaneous frequency of the primary 

structure, HHT is used in this section. 

The HHT method has numerous applications in 

analyzing nonlinear and nonstationary signals and can be 

divided into two steps: empirical mode decomposition 

(EMD) whereby a complicated vibration signal can be 

turned into a series of intrinsic mode functions (IMFs) 

through EMD (Shi et al. 2012) and performing the Hilbert 

transform (HT) on each IMF component (Nagarajaiah 

2009). With HT, a vibration signal 𝑌(𝑡) for a real-valued 

function 𝑥(𝑡) can be written as follows 

 

𝑌(𝑡) = 𝑥(𝑡) + 𝑖𝑥
~

(𝑡) = 𝐴(𝑡)𝑒− 𝑖 𝜃(𝑡) (4) 

 

𝑥
~

(𝑡) = 𝐻𝑇[ 𝑥(𝑡)] =
1

𝜋
𝑃 ∫

𝑥(𝜏)

𝑡 − 𝜏

∞

−∞

𝑑𝜏 (5) 

 

 

 

𝐴(𝑡) = [𝑥2(𝑡) + 𝑥
~

2(𝑡)]
1

2 (6) 

 

𝜃(𝑡) = 𝑎𝑟𝑐𝑡𝑎𝑛 (
𝑥
~

(𝑡)

𝑥(𝑡)
) (7) 

 

where 𝑖 is the imaginary unit, 𝑥
~

(𝑡) is the HT of 𝑥(𝑡), 

𝐴(𝑡) and 𝜃(𝑡) are the amplitude and instantaneous phase 

angle of 𝑥(𝑡) respectively, and 𝑃 is the Cauchy principal 

component. 

The instantaneous frequency 𝑓(𝑡) is the time derivative 

of 𝜃(𝑡) and is shown below 

 

𝑓(𝑡) =
1

2𝜋

𝑑𝜃(𝑡)

dt
 (8) 

 

The vibration signal 𝑌(𝑡) of the primary structure is 

obtained from the acceleration sensor on the structure, and 

the computer calculates the instantaneous frequency 𝑓(𝑡) 

of 𝑌(𝑡). 

 

3.2 Variable frequency control algorithm 
 

When considering function restrictions of the 

components, including the primary structure, computer, and 

stepper motor, it is unreasonable to continuously retune the 

frequency of the SAEC-PTMD to the identified 

instantaneous frequency 𝑓(𝑡) . Therefore, a frequency 

adjustment range (𝑓𝑚𝑖𝑛,𝑓𝑚𝑎𝑥) should first be programmed 

into the computer. When 𝑓(𝑡) is greater than the preset 

maximum frequency, 𝑓𝑚𝑎𝑥 , or smaller than the preset 

minimum frequency, 𝑓𝑚𝑖𝑛, the stepper motor will retune the 

frequency of the SAEC-PTMD 𝑓𝑠(𝑡)  to the primary 

structural natural frequency 𝑓𝑝 ; otherwise, the stepper 

motor will retune the SAEC-PTMD to 𝑓(𝑡). 

Over the full life cycle of the primary structure, it could 

be subjected to numerous hazards and its stiffness would 

decrease because of the cumulative damage. This would 

result in the natural frequency also decreasing. To improve 

the control effect of the SAEC-PTMD and consider the 

frequency variation in the primary structure, after a given 

time (for instance one month), the computer will identify 

the structural natural frequency from the acceleration signal 

of the primary structure under ambient excitation. The 𝑓𝑝 

will be then updated to the new frequency. If the new 

  

(a) Linear primary system (b) Nonlinear primary system 

Fig. 2 SDOF system coupled with SAEC-PTMD under ground motion 
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identified natural frequency of the primary structure is 

greater than 𝑓𝑚𝑎𝑥  or smaller than 𝑓𝑚𝑖𝑛 , 𝑓𝑝  will be 

updated to 𝑓𝑚𝑎𝑥 or 𝑓𝑚𝑖𝑛. 

The relationship between the length of the pendulum, 

𝐿(𝑡) , and the frequency of the SAEC-PTMD, 𝑓𝑠(𝑡) , can 

be written as follows 

 

𝐿(𝑡) =
𝑔

4𝜋2𝑓𝑠(𝑡)2
 (9) 

 

From Eq. (9), the SAEC-PTMD can easily be retuned 

by controlling the stepper motor to adjust the pendulum 

length in real-time. 

 

 

4. LQG-based control algorithm 
 
In Fig. 1, a computer receives signals from two 

acceleration sensors and controls the actuator to adjust the 

air gap between the conductive plate and permanent 

magnets, which is the semi-active eddy current damping, 

according to LQG-based control algorithm. Therefore, in 

this section, the relationship between effective damping 

coefficients and the air gap will first be fitted with a 

polynomial function. The LQG-based control algorithm will 

then be introduced. 

 

4.1 Eddy current damping 
 

Eddy current damping is typically created by the relative 

motion between magnets and conductive plates. If the 

direction of movement of the conductive plates is 

perpendicular to the direction of the magnetic induction 

intensity, 𝜝𝒙 , the Lorentz force 𝑭𝒙  can be written as 

follows 

 

𝑭𝒙 = ∫𝐽
𝑉

× 𝑩𝒙𝑑𝑉 = ∫𝜎(𝑉 × 𝑩𝒙)
𝑉

× 𝑩𝒙𝑑𝑉 

      = −𝜎𝛿𝑆𝑩𝒙
2𝒗 

(10) 

 

where 𝐽 represents the electric current density, 𝑉 is the 

relative velocity of the magnet to the conductive plate, 𝜎 is 

the conductive coefficient of the conductive plate, 𝛿 is the 

thickness of the conductive plate, 𝑆 can be simplified as 

the area of the magnet projected onto the conductor plate, 

and 𝒗 is the relative velocity between the magnets and 

conductive plates. A linear damping coefficient, 𝑐𝑥, in this 

direction can then be written as 

 

𝑐𝑥 = 𝜎𝛿𝑆𝐵𝑥
2 (11) 

 

where 𝐵𝑥  is the magnetic induction intensity that is 

dependent on the adsorption positions of the magnets, 

material and thickness of the conductive plates, thickness of 

the extra steel plates, and air gap between the magnets and 

conductive plates, and, therefore, 𝐵𝑥  is difficult to 

determine. Consequently, the finite element (FE) model is 

built in Opera3D (Oxford, UK), an FE analysis software for 

electromagnetic fields. In the following case study, a 300 kg 

SDOF primary structure will be simulated and the TMD 

 

Fig. 3 Adsorption position of permanent magnets (mm) 
 

 

 

Fig. 4 FE model of SAEC-PTMD 

 

 

mass ratio will be set to approximately 1%. Therefore, the 

mass of the SAEC-PTMD is approximately 3 kg, and it is 

120-mm long, 30-mm wide, and 80-mm high. 

Permanent magnets comprise N35 (NdFeB) material, 

with diameter of 30 mm and height of 5 mm. The 

conductive plates are copper, 400-mm long, and 400-mm 

wide. Considering the size compatibility of the magnets and 

mass, there are six circular permanent magnets on either 

side of the mass, and their adsorption arrangement is shown 

in Fig. 3. Different adsorption positions would lead to 

different magnetic induction intensities, with one of the 

options presented in (Shi et al. 2018b). The FE model of the 

SAEC-PTMD in Opera 3D is shown in Fig. 4. 

The method to choose the combination of the thickness 

of copper plates and extra steel plates is the same as (Shi et 

al. 2018b). As a result, the chosen thickness of copper 

plates is 8 mm, and extra plates is 2 mm. When the mass is 

given a 30-mm/s horizontal velocity, 𝑣, the distribution of 

eddy current in the copper plate is shown in Fig. 5. 

Shi et al. (2018b) proposed the distribution of eddy 

current in the copper plate of a vertical eddy current TMD, 

with two large eddy currents in the upper and lower areas of 

the copper plate; in Fig. 5, there are two large eddy currents 

on the left- and right-hand sides of the copper plate. This is 

caused by the difference in the relative motion direction. 
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Fig. 5 Distribution cloud picture of electric current density 

(A/cm2) 

 

 

A detailed discussion of the loss of eddy current damping 

can be found elsewhere. 
 

4.2 Discussion on the effect of air gap 
 

The damping of the SAEC-PTMD is adjusted in real-

time by adjusting the air gap between the conductive plate 

and permanent magnets. Therefore, the relationship 

between effective damping coefficients and the air gap is 

discussed in this section. Air gaps from 1 mm are used, and 

the mass is given a 30-mm/s horizontal velocity. The 

resulting effective damping coefficients are presented in 

Table 1. 

The relationship between the effective damping 

coefficient of SAEC-PTMD, 𝑐𝑠(𝑥), and the air gap, 𝑥, is 

fitted through a polynomial function 
 

𝑐𝑠(𝑥) = −2.627 × 10−3𝑥3 + 0.176𝑥2 
                −4.022𝑥 + 33.950 

(12) 

 

The effective damping coefficient as a function of the 

air gap and the fitting curve are shown in Fig. 6, where it 

can be seen that the two curves are in good agreement. With 

this fitting function, the damping ratio of the SAEC-PTMD 

can be easily adjusted by adjusting the air gap in real-time. 
 

4.3 Variable damping control algorithm 
 

For actual civil engineering applications, the 

acceleration sensor is one of the most economical and 

 

 

 

 

Fig. 6 Effective damping coefficient as function of air gap 

and fitting curve 
 

 

practical sensors, and the displacement and velocity 

feedback can be integrated from the acceleration signal. The 

LQG control algorithm has a wide application in active 

control of civil structures. One of the advantages of LQG 

control is that it only needs acceleration signals and, 

consequently, the control devices can be simplified. The 

external force is assumed to be a zero-mean white noise 

process with Gaussian distribution and constant covariance. 

The Kalman filter is used as an observer to estimate full 

states of the dynamic system. 

As discussed above, a computer receives the two 

acceleration sensor signals and controls the actuator in real-

time that can adjust the air gap between the copper plates 

and the permanent magnets by attracting and repulsing the 

copper plates. The semi-active variable damping control 

algorithm is the LQG-based control algorithm. 

The active control force, 𝑢(𝑡) , is obtained through 

minimizing the following quadratic expression of the cost 

function (Shi et al. 2018b) 
 

𝐽𝑐 = lim
𝑇→∞

1

𝑇
∫[𝑈𝑇(𝑡)𝑄𝑈(𝑡) + 𝑢𝑇(𝑡)𝑅𝑢(𝑡)]𝑑𝑡

𝑇

0

 (13) 

 

where 𝐽𝑐 is the cost function, 𝑼(𝒕) is the state vector of 

the dynamic system, 𝑸 is a positive semi-definite 

weighting matrix, 𝑹 is a positive weighting matrix, and 𝑇 

is the total calculation time. After the trial, it is chosen that 

𝑸 = 105[𝐼] and 𝑹 = (
1

100
)[𝐼], where 𝐼  is an identity 

 

Table 1 Effective damping coefficient as function of air gap 

Case Air gap/mm 
Effective damping coefficient 

𝑐𝑒/(N·s/m) 
Case Air gap/mm 

Effective damping coefficient 

𝑐𝑒/(N·s/m) 

1 1 29.603 11 12 6.730 

2 2 27.298 12 14 5.377 

3 3 23.981 13 16 4.352 

4 4 20.541 14 18 3.570 

5 5 17.728 15 20 3.032 

6 6 15.186 16 22 2.532 

7 7 13.058 17 24 2.126 

8 8 11.287 18 26 1.787 

9 9 9.866 19 28 1.528 

10 10 8.706 20 30 1.298 
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matrix. 

As for the SAEC-PTMD, 𝑢(𝑡) is provided by the semi-

active eddy current damping, 𝑐(𝑡), which can be written as 

 

𝑐(𝑡) = 𝑢(𝑡)/𝑢
.

𝑠 (14) 

 

where 𝑢
.

𝑠 is the velocity of the SAEC-PTMD. 

Considering that the required control force calculated 

from the LQG algorithm could exceed the damping 

adjustment range that the SAEC-PTMD can accommodate, 

the following boundary is set 

 

𝑐(𝑡) = {

𝑐𝑚𝑎𝑥 𝑐𝑚𝑎𝑥 ≤ 𝑐(𝑡)               

𝑐(𝑡) 𝑐𝑚𝑎𝑥 > 𝑐(𝑡) > 𝑐𝑚𝑖𝑛

𝑐𝑚𝑖𝑛 𝑐𝑚𝑖𝑛 ≥ 𝑐(𝑡)               

 (15) 

 

where 𝑐𝑚𝑎𝑥  is the maximum of the variable damping 

coefficient, and 𝑐𝑚𝑖𝑛  is the minimum of the variable 

damping coefficient. In the following case study, 𝑐𝑚𝑎𝑥 is 

set as 29.6 N·s/m according to Table 1, and 𝑐𝑚𝑖𝑛 is set as 

0. 

It has been verified that no extra stiffness will be 

induced from eddy current damper at any working 

frequency of TMD (Wang et al. 2012), and it is said in (Lu 

et al. 2018) that the eddy current TMD is primarily used for 

adjusting the damping properties of the auxiliary mass; 

however, it is not providing stiffness tuning. Therefore, in 

the following, the electromagnetic field’s further nonlinear 

contribution to the stiffness of the pendulum is ignored. 

Besides, the dynamics of the stepper motor and the actuator 

for the conductive plate are ignored in the numerical 

simulation, and the time-delay effect is ignored either. 

 

 

5. Case study: Linear structure 
 

In this section, a linear primary structure, as proposed in 

Fig. 2(a), coupled with different TMDs will be considered. 

In the following simulations, the sample frequency is set to 

be 1000 Hz, and the retuning frequency of SAEC-PTMD is 

50 Hz. The pendulum is tuned to the average frequency of 

each cycle. 

A 300 kg SDOF primary structure, with a 1.0 Hz natural 

frequency and 2.0% damping ratio coupled with an SAEC- 

 

 

PTMD, will be simulated under harmonic excitations, white 

noise excitation, and earthquake excitations. The pendulum 

adjustment range of the SAEC-PTMD is set as (15.94 cm, 

35.94 cm), implying that the frequency adjustment range of 

SAEC-PTMD is 0.84–1.26 Hz. An optimal passive TMD is 

used for comparison and for the previous two types of 

excitation. The PTMD is optimized as follows (Den Hartog 

1985) 

𝑓𝑜𝑝𝑡 =
1

1 + 𝜇
 (16) 

 

𝜁𝑜𝑝𝑡 = √
3𝜇

8(1 + 𝜇)
 (17) 

 

As for earthquake excitations, the PTMD is optimized as 

follows (Sun and Nagarajaiah 2014) 
 

𝑓𝑜𝑝𝑡2 =
1

1 + 𝜇𝑝
(1 − 𝜁𝑝√

𝜇

1 + 𝜇
) (18) 

 

𝜁opt2 =
𝜁𝑝

1 + 𝜇
+ √

𝜇

1 + 𝜇
 (19) 

 

In Eqs. (16)-(19), the TMD mass ratio, 𝜇, is set as 1%. 

Therefore, according to Eqs. (16) and (17), for harmonic 

excitations and white noise excitation, the TMD optimal 

frequency ratio and damping ratio are 0.99% and 6.09%, 

respectively. According to Eqs. (18) and (19), for 

earthquake excitations, the TMD optimal frequency ratio 

and damping ratio are 0.99% and 11.93%, respectively. In 

order to consider the cumulative damage of primary 

structures and the detuning effect of the PTMD, the natural 

frequency of the primary structure is set as 0.90 Hz. 

Under white noise excitation, the 40-s-long acceleration 

signal of the primary structure coupled with an SAEC-

PTMD is analyzed through fast-Fourier transform (FFT). 

For actual applications, other means of frequency 

identification could have higher precision. The identified 

structural natural frequencies of the 1.0 Hz and 0.9 Hz 

structures are 0.99 Hz and 0.89 Hz, respectively. Because 

they are in the frequency adjustment range, the 𝑓𝑝  in 

section 3 will be updated accordingly. 

 

 

 

Table 2 Performance assessment for harmonic excitation simulations 

Simulation conditions No TMD PTMD 
SAEC-

PTMD 

Reduction (%) 

No TMD PTMD 

Maximum acceleration (m/s2) 
1.0 Hz harmonic excitation for 1.00 Hz structure 24.84 8.32 4.72 81.00 43.27 

0.9 Hz harmonic excitation for 0.9 Hz structure 24.74 13.43 5.23 78.86 61.06 

Maximum displacement (cm) 
1.0 Hz harmonic excitation for 1.0 Hz structure 62.84 20.98 11.90 81.06 43.28 

0.9 Hz harmonic excitation for 0.90 Hz structure 77.27 41.92 16.42 78.75 60.83 

Maximum acceleration dynamic 

amplification factor 

1.0 Hz structure 25.00 9.96 4.40 82.40 55.82 

0.9 Hz structure 25.00 17.67 4.79 80.84 72.89 

Maximum displacement dynamic 

amplification factor 

1.0 Hz structure 25.00 9.71 4.62 81.52 52.42 

0.9 Hz structure 25.00 18.49 5.00 80.00 72.96 
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5.1 Harmonic excitation comparison simulation 
 

The 1.0 Hz primary structure with no TMD, coupled 

with a PTMD/SAEC-PTMD is excited by a 1.0 Hz 

harmonic excitation, and the 0.9 Hz primary structure with 

no TMD, coupled with a PTMD/SAEC-PTMD, is excited 

by a 0.9 Hz harmonic excitation. The results are shown in 

Fig. 7 and Table 2. The maximum harmonic excitations are 

set as 1.0 m/s2. 

As can be seen from Fig. 7(a), after the first three 

seconds, the primary structure enters a steady vibration 

 

 

state, and the instantaneous frequency of the primary 

structure is steady at 1.0 Hz/0.9 Hz. It can be seen from Fig. 

7(b) that the damping coefficient of SAEC-PTMD varies in 

the adjustment range (0, 29.6 N·s/m). From Figs. 7(c)-(f) 

and Table 2, it can be concluded that the SAEC-PTMD 

performs significantly better than the no TMD and PTMD 

cases, and, when the PTMD is mistuned, the SAEC-PTMD 

could retune itself to restore the vibration control effect. It 

can be seen in Figs 7(g) and (h) that in several ranges that 

deviate from the resonance range, the dynamic 

amplification factors of PTMD are marginally greater than 

  

(a) Instantaneous frequency (b) Semi-active eddy current damping 
 

  

(c) Acceleration of 1.0 Hz structure under 1.0 Hz harmonic 

excitation 

(d) Acceleration of 0.9 Hz structure under 0.9 Hz 

harmonic excitation 
 

  

(e) Displacement of 1.0 Hz structure under 1.0 Hz 

harmonic excitation 

(f) Displacement of 0.9 Hz structure under 0.9 Hz 

harmonic excitation 
 

  

(g) Acceleration dynamic amplification factor under 

different-frequency harmonic excitations 

(h) Displacement dynamic amplification factor under 

different-frequency harmonic excitations 

Fig. 7 Comparisons of harmonic excitation condition 
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the no TMD case, both for the 1.0 Hz and 0.9 Hz structures. 

However, the SAEC-PTMD never has a negative effect. 

 

5.2 Earthquake excitation comparison simulation 
 

Four near-fault pulse-like earthquakes with different 

site-characteristic periods are chosen to examine the 

effectiveness of the SAEC-PTMD against PTMD. The data 

of the four selected earthquake excitations are presented in 

Table 3. The maximum values of the four earthquake 

excitations are set as 10.0 m/s2. 

The 1.0 Hz/0.9 Hz primary structures with no TMD, 

coupled with a PTMD/SAEC-PTMD, are excited by four 

earthquake excitations, and the results are presented in Fig. 

 

 

 

 

8 and Table 4. The structural acceleration and displacement 

response spectra under the four earthquake excitations are 

shown in Fig. 9. 

From Figs. 8 and 9, and Table 4, it can be concluded that 

for different earthquake excitations, the tendencies are 

different, but in general, the SAEC-PTMD performs better 

than PTMD, and the RMS reductions are greater than the 

maximum. The SAEC-PTMD could attenuate acceleration 

and displacement spectra over a wide range of periods 

compared to the no TMD and PTMD cases under all four 

earthquake excitations. 

To further study the performance of the SAEC-PTMD 

under earthquake excitations, structural responses under the 

Northridge earthquake excitation will be analyzed as an 

 

 

 

 

 

Table 3 The information of selected near-fault earthquake excitations 

No. Tp (s) Earthquake location Year Station name Magnitude Mechanism Rjb (km) Rrup (km) 

1 0.588 Northridge 1994 Pacoima Dam 6.69 Reverse 4.92 7.01 

2 1.092 Kobe, Japan 1995 KJMA 6.90 Strike slip 0.94 0.96 

3 1.568 Loma Prieta 1989 Los Gatos-Lexington Dam 6.93 Reverse oblique 3.22 5.02 

4 2.570 Chi-Chi, Taiwan 1999 CHY006 7.62 Reverse oblique 9.76 9.76 
 

  

(a) Instantaneous frequency (b) Semi-active eddy current damping 
 

  

(c) Acceleration of 1.0 Hz structure (d) Acceleration of 0.9 Hz structure 
 

  

(e) Displacement of 1.0 Hz structure (f) Displacement of 0.9 Hz structure 

Fig. 8 The comparisons of Northridge earthquake excitation condition 
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example below, from the perspective of energy dissipation. 

The comparisons of the hysteresis loops of PTMD and 

SAEC-PTMD in the 1.0 Hz/0.9 Hz structures under the 

Northridge earthquake excitation are shown in Fig. 10. 

It can be seen in Fig. 10 that the hysteresis loops of the 

SAEC-PTMD are greater than for the PTMD, and for the 

0.9 Hz structure, the hysteresis loops of SAEC-PTMD are 

significantly greater, implying that the SAEC-PTMD has a 

better energy dissipation capacity than the PTMD. The 

spikes in the hysteresis loops of the SAEC-PTMD are 

caused by rapid changes in the frequency and damping 

coefficients. The comparisons of the input energy and 

 

 

dissipated energy under the Northridge earthquake 

excitation are presented in Table 5. 

In Table 5, EI is the input energy of the earthquake, and 

ES is the energy dissipated by the PTMD/SAEC-PTMD. As 

can be seen from Table 5, the input energy of the primary 

structure with an SAEC-PTMD is the smallest for both the 

1.0 Hz and 0.9 Hz structures; however, the energy 

dissipated by the SAEC-PTMD is greater than that of the 

PTMD for both the 1.0 Hz and 0.9 Hz structures, which 

further illustrates the better control effect and energy 

dissipation capacity of the SAEC-PTMD. 
 

Table 4 Performance assessment for earthquake excitation simulations 

Northridge 

Acceleration (m/s2) Displacement (cm) 

Maximum RMS Maximum RMS 

1.0 Hz 

structure 

0.9 Hz 

structure 

1.0 Hz 

structure 

0.9 Hz 

structure 

1.0 Hz 

structure 

0.9 Hz 

structure 

1.0 Hz 

structure 

0.9 Hz 

structure 

No TMD 15.16 14.29 3.17 3.18 17.07 20.50 7.07 8.59 

PTMD 15.15 14.29 2.56 2.63 16.54 17.58 5.25 6.71 

SAEC-PTMD 14.91 14.13 2.42 2.26 16.48 16.70 4.83 5.20 

Reduction 

(%) 

No TMD 1.65 1.12 23.66 28.93 3.46 18.54 31.68 39.46 

PTMD 1.58 1.12 5.47 14.07 0.36 5.01 8.00 22.50 

Kobe, Japan 

Acceleration (m/s2) Displacement (cm) 

Maximum RMS Maximum RMS 

1.0 Hz 

structure 

0.9 Hz 

structure 

1.0 Hz 

structure 

0.9 Hz 

structure 

1.0 Hz 

structure 

0.9 Hz 

structure 

1.0 Hz 

structure 

0.9 Hz 

structure 

No TMD 24.82 19.50 5.03 2.68 52.45 49.94 12.18 6.95 

PTMD 24.28 19.25 3.67 2.50 51.22 48.38 8.48 6.47 

SAEC-PTMD 23.82 17.78 3.45 2.44 50.85 45.81 8.12 6.31 

Reduction 

(%) 

No TMD 4.03 8.82 31.41 8.96 3.05 8.27 33.33 9.21 

PTMD 1.89 7.64 5.99 2.40 0.72 5.31 4.25 2.47 

Loma Prieta 

Acceleration (m/s2) Displacement (cm) 

Maximum RMS Maximum RMS 

1.0 Hz 

structure 

0.9 Hz 

structure 

1.0 Hz 

structure 

0.9 Hz 

structure 

1.0 Hz 

structure 

0.9 Hz 

structure 

1.0 Hz 

structure 

0.9 Hz 

structure 

No TMD 38.01 35.70 6.33 6.42 92.87 99.20 15.95 19.63 

PTMD 33.40 32.82 4.68 5.04 82.73 91.79 11.82 15.58 

SAEC-PTMD 30.70 32.12 4.40 4.23 79.82 88.70 11.34 12.78 

Reduction 

(%) 

No TMD 19.23 10.03 30.49 34.11 14.05 10.58 28.90 34.90 

PTMD 8.08 2.13 5.98 16.07 3.52 3.37 4.06 17.97 

Chi-Chi, Taiwan 

Acceleration (m/s2) Displacement (cm) 

Maximum RMS Maximum RMS 

1.0 Hz 

structure 

0.9 Hz 

structure 

1.0 Hz 

structure 

0.9 Hz 

structure 

1.0 Hz 

structure 

0.9 Hz 

structure 

1.0 Hz 

structure 

0.9 Hz 

structure 

No TMD 31.52 30.86 5.64 5.89 79.36 81.11 14.19 18.21 

PTMD 28.42 27.92 4.17 4.82 72.25 71.92 10.62 15.19 

SAEC-PTMD 25.97 26.84 3.95 3.87 66.46 70.97 9.99 11.70 

Reduction 

(%) 

No TMD 17.61 13.03 29.96 34.30 16.26 12.50 29.60 35.75 

PTMD 8.62 3.87 5.28 19.71 8.01 1.32 5.93 22.98 
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6. Case study: Nonlinear structure 
 

As for the nonlinear primary structure, without loss of 

generality, in Eqs. (2) and (3), parameters 𝛼, 𝐴, 𝛾, 𝑛 and 

𝜃 are set to be 0.4, 0.5, 0.5, 3 and 1 respectively. Other 

parameters of the primary structure and TMDs are all the 

same as section 5. It should be noticed that in the following, 

in order to be consistent with section 5, “1.0 Hz structure” 

 

 

means that the frequency calculated from nonlinear primary 

structural linear stiffness coefficient and mass is 1.0 Hz, and 

the same as “0.9 Hz structure” 

 

6.1 Harmonic excitation comparison simulation 
 

The dynamic responses of a nonlinear structure are not 

only related to the frequency of external excitation, but also 

    

(a) Structural acceleration response spectra under Northrid

geearthquake 

(b) Structural displacement response spectra under 

Northridge earthquake 
 

    

(c) Structural acceleration response spectra under Kobe 

earthquake 

(d) Structural displacement response spectra under Kobe 

earthquake 
 

    

(e) Structural acceleration response spectra under Loma 

Prieta earthquake 

(f) Structural displacement response spectra under Loma 

Prieta earthquake 
 

    

(g) Structural acceleration response spectra under Chi-Chi 

earthquake 

(h) Structural displacement response spectra under Chi-

Chi earthquake 

Fig. 9 Structural acceleration and displacement response spectra under four selected earthquakes 

74



 

Semi-active eddy current pendulum tuned mass damper with variable frequency and damping 

 

 

 

 

 

 

 

 

  

(a) Force/displacement relationship of 1.0 Hz structure (b) Force/displacement relationship of 0.9 Hz structure 
 

  

(c) Force/velocity relationship of 1.0 Hz structure (d) Force/velocity relationship of 0.9 Hz structure 

Fig. 10 Comparisons of TMD hysteresis loops under Northridge ground motion 

Table 5 Performance assessment for dissipation of earthquake energy 

Northridge 
1.0 Hz structure 0.9 Hz structure 

No TMD PTMD SAEC-PTMD No TMD PTMD SAEC-PTMD 

EI (J) 1770.45 1563.89 1501.86 1753.91 1599.18 1474.04 

ES (J)  151.88 187.28  155.97 187.16 

ES/EI (%)  9.71 12.47  9.75 12.70 
 

  

(a) Instantaneous frequency (b) Semi-active eddy current damping 
 

  

(c) Acceleration of 1.0 Hz structure under 1.0 Hz harmonic 

excitation 

(d) Acceleration of 0.9 Hz structure under 0.9 Hz harmonic 

excitation 

Fig. 11 Comparisons of harmonic excitation condition of the nonlinear structure 
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the amplitude. Firstly, the maximum harmonic excitations 

are set as 10.0 m/s2. The 1.0 Hz primary structure with no 

TMD, coupled with a PTMD/SAEC-PTMD is excited by a 

1.0 Hz harmonic excitation, and the 0.9 Hz primary 

structure with no TMD, coupled with a PTMD/SAEC-

PTMD, is excited by a 0.9 Hz harmonic excitation. The 

results are shown in Fig. 11 and Table 6. 

Comparing of Figs. 7(a) and 11(a), it can be seen that 

for the linear primary structure, when it is excited by a 

harmonic excitation, the instantaneous frequency is nearly 

steady at a constant value. However, for the nonlinear 

primary structure, the instantaneous frequency is varied like 

a harmonic wave. Comparing of Figs. 7(g)-(h) and Figs. 

11(g)-(h), it is shown that dynamic response spectra of the 

nonlinear primary structure is smoother than the linear one. 

 

 

 

 

 

All in all, the SAEC-PTMD has the best vibration control 

effect and never performs a negative effect. 

To consider the influence comes from the harmonic 

excitation amplitude, excitation amplitude-excitation 

frequency-response amplitude spectrogram and the 

response amplitude as a function of excitation amplitude are 

shown in Fig. 12. 

As presented in Fig. 12, the dynamic responses 

increment of the primary structure is nonlinear. With the 

increment of the excitation amplitude, the dynamic response 

firstly grows rapidly, and after a smooth inflection, it grows 

slower. No matter under which amplitude of harmonic 

excitation, SAEC-PTMD always has the best response 

control effect. 

 

   

(e) Displacement of 1.0 Hz structure under 1.0 Hz harmonic 

excitation 

(f) Displacement of 0.9 Hz structure under 0.9 Hz harmonic 

excitation 
 

   

(g) Structural acceleration response spectra under Chi-Chi 

earthquake 

(h) Structural displacement response spectra under Chi-Chi 

earthquake 

Fig. 11 Continued 

Table 6 Performance assessment for harmonic excitation simulations of the nonlinear structure 

Simulation conditions No TMD PTMD 
SAEC-

PTMD 

Reduction (%) 

No TMD PTMD 

Maximum acceleration 

(m/s2) 

1.0 Hz harmonic excitation for 1.0 Hz structure 49.06 46.02 34.66 29.35 24.68 

0.9 Hz harmonic excitation for 0.9 Hz structure 42.92 41.37 32.41 24.49 21.66 

Maximum displacement 

(m) 

1.0 Hz harmonic excitation for 1.0 Hz structure 1.26 1.18 0.88 30.16 25.42 

0.9 Hz harmonic excitation for 0.9 Hz structure 1.36 1.31 1.02 25.00 22.14 

Maximum acceleration 

response (m/s2) 

1.0 Hz structure 49.06 46.06 37.43 23.71 18.74 

0.9 Hz structure 42.99 41.83 33.36 22.40 20.25 

Maximum displacement 

response (m) 

1.0 Hz structure 1.40 1.38 1.07 23.57 22.46 

0.9 Hz structure 1.58 1.60 1.08 31.65 32.50 
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6.2 Earthquake excitation comparison simulation 
 

To further study the performance of the SAEC-PTMD 

under earthquake excitations, the same as section 5, 

structural responses under the Northridge earthquake 

excitation will be analyzed as an example from the 

perspective of energy dissipation. The same earthquake 

 

 

excitations are chosen to examine the effectiveness of the 

SAEC-PTMD against PTMD, and the maximum values of 

the four earthquake excitations are also set as 10.0 m/s2. 

The time history comparison results are presented in Table 

7.  

Comparing of Tables 7 and 4, though the earthquake 

excitations are totally the same, because of the different  

  

(a) Acceleration spectrogram of the 1.0 Hz structure coupled

with an SAEC-PTMD 

(b) Acceleration spectrogram of the 0.9 Hz structure coupled 

with an SAEC-PTMD 
 

  

(c) Displacement spectrogram of the 1.0 Hz structure 

coupled with an SAEC-PTMD 

(d) Displacement spectrogram of the 0.9 Hz structure 

coupled with an SAEC-PTMD 
 

  

(e) Acceleration amplitude of 1.0 Hz structure under 1.0 Hz 

harmonic 

(f) Acceleration amplitude of 0.9 Hz structure under 0.9 Hz 

harmonic 
 

  

(g) Displacement amplitude of 1.0 Hz structure under 1.0 Hz 

harmonic 

(h) Displacement amplitude of 0.9 Hz structure under 0.9 Hz 

harmonic 

Fig. 12 Comparisons of nonlinear dynamic responses increment of the nonlinear structure 
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characteristic of the primary structure, dynamic responses 

are different. Similar conclusions can be obtained that for 

different earthquake excitations, the SAEC-PTMD performs 

better than PTMD, and the RMS reductions are greater than 

the maximum. The comparisons of the resilience loops of 

the 1.0 Hz/0.9 Hz structures under the Northridge 

earthquake excitation are shown in Fig. 13. 

It can be seen in Fig. 13 that all resilience loops have the 

shape of spindle, and under the control of SAEC-PTMD, 

the area of the structural resilience loop is the smallest. The 

comparisons of the input energy EI, dissipated energy by 

PTMD/SAEC-PTMD ES, and primary structural hysteretic 

 

 

energy EH under the Northridge earthquake excitation are 

presented in Table 8. 

It is shown in Table 8 that the input energy of the 

primary structure with an SAEC-PTMD is the smallest for 

both the 1.0 Hz and 0.9 Hz structures; however, the energy 

dissipation ratio ES/EI of the SAEC-PTMD is greater than 

that of the PTMD for both the 1.0 Hz and 0.9 Hz structures, 

which further illustrates the better control effect and energy 

dissipation capacity of the SAEC-PTMD. Meanwhile, the 

hysteretic energy of the primary structure with an SAEC-

PTMD is the smallest for both the 1.0 Hz and 0.9 Hz 

structures, and the hysteretic energy dissipation ratio EH/EI  

Table 7 Performance assessment for earthquake excitation simulations of the nonlinear structure 

Northridge 

Acceleration (m/s2) Displacement (cm) 

Maximum RMS Maximum RMS 

1.0 Hz 

structure 

0.9 Hz 

structure 

1.0 Hz 

structure 

0.9 Hz 

structure 

1.0 Hz 

structure 

0.9 Hz 

structure 

1.0 Hz 

structure 

0.9 Hz 

structure 

No TMD 14.97 14.15 3.15 3.16 17.12 20.49 7.09 8.58 

PTMD 14.93 14.14 2.56 2.66 16.71 18.01 5.35 6.89 

SAEC-PTMD 14.92 14.13 2.37 2.23 16.60 16.77 4.69 5.10 

Reduction 

(%) 

No TMD 0.33 0.14 24.76 29.43 3.04 18.16 33.85 40.56 

PTMD 0.07 0.07 7.42 16.17 0.66 6.89 12.34 25.98 

Kobe, Japan 

Acceleration (m/s2) Displacement (cm) 

Maximum RMS Maximum RMS 

1.0 Hz 

structure 

0.9 Hz 

structure 

1.0 Hz 

structure 

0.9 Hz 

structure 

1.0 Hz 

structure 

0.9 Hz 

structure 

1.0 Hz 

structure 

0.9 Hz 

structure 

No TMD 24.40 18.90 4.79 2.62 52.38 49.56 11.63 6.81 

PTMD 23.82 18.82 3.58 2.48 51.27 48.32 8.38 6.55 

SAEC-PTMD 23.60 18.61 3.43 2.40 50.74 47.30 7.98 6.37 

Reduction 

(%) 

No TMD 3.28 1.53 28.39 8.40 3.13 4.56 31.38 6.46 

PTMD 0.92 1.12 4.19 3.33 1.05 2.11 4.77 2.75 

Loma Prieta 

Acceleration (m/s2) Displacement (cm) 

Maximum RMS Maximum RMS 

1.0 Hz 

structure 

0.9 Hz 

structure 

1.0 Hz 

structure 

0.9 Hz 

structure 

1.0 Hz 

structure 

0.9 Hz 

structure 

1.0 Hz 

structure 

0.9 Hz 

structure 

No TMD 31.67 30.20 7.19 7.14 82.11 86.60 18.42 21.89 

PTMD 29.05 28.56 5.91 6.20 77.61 82.27 15.32 19.23 

SAEC-PTMD 28.43 27.63 5.68 5.47 74.05 78.24 15.00 16.91 

Reduction 

(%) 

No TMD 10.23 8.51 21.00 23.39 9.82 9.65 18.57 22.75 

PTMD 2.13 3.26 3.89 11.77 4.59 4.90 2.09 12.06 

Chi-Chi, Taiwan 

Acceleration (m/s2) Displacement (cm) 

Maximum RMS Maximum RMS 

1.0 Hz 

structure 

0.9 Hz 

structure 

1.0 Hz 

structure 

0.9 Hz 

structure 

1.0 Hz 

structure 

0.9 Hz 

structure 

1.0 Hz 

structure 

0.9 Hz 

structure 

No TMD 29.22 27.20 4.77 4.96 75.97 70.12 12.17 15.40 

PTMD 26.92 25.26 3.89 4.39 70.37 69.62 10.06 13.91 

SAEC-PTMD 24.97 23.95 3.64 3.67 65.47 68.71 9.52 11.54 

Reduction 

(%) 

No TMD 14.54 11.95 23.69 26.01 13.82 2.01 21.77 25.06 

PTMD 7.24 5.19 6.43 16.40 6.96 1.31 5.37 17.04 
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is also the smallest for both the 1.0 Hz and 0.9 Hz 

structures, which means that SAEC-PTMD can control the 

development of structural plasticity effectively and protect 

the safety of primary structure. 
 

 

7. Conclusions 
 

A novel TMD, the so-called SAEC-PTMD was 

proposed in this study for protecting civil structures over 

their full life cycle, which could retune its frequency and 

damping ratio in real-time. The pendulum of the SAEC-

PTMD is adjusted through an HHT-based control algorithm, 

and the semi-active eddy current damping is adjusted by 

adjusting the air gap between permanent magnets and 

conductive plates, based on the LQG-based control 

algorithm. The vibration control effect of the SAEC-PTMD 

was studied through numerical simulations under harmonic 

excitations and four earthquake excitations, for both SDOF 

linear primary structure and nonlinear primary structure 

based on the Bouc-Wen model. An optimal passive TMD 

was used for the comparison, and the detuning effect, which 

resulted from cumulative damage to the primary structure, 

was considered. 

The mechanisms of the SAEC-PTMD and the combined 

HHT-LQG algorithm were introduced in detail, and the air 

gap that would influence the eddy current damping was 

discussed in detail. According to a series of numerical 

simulations, the following conclusions were drawn: 
 

● In the case study, the maximum and RMS values of 

structural acceleration and displacement time history 

response, structural acceleration, and displacement 

response spectra were used as evaluation indices. 

The results indicated that the SAEC-PTMD 

 

 

 

 

performed better than the optimal passive TMD, 

both before and after the cumulative damage to 

primary structure for all of the abovementioned 

evaluation indices. 

● Power analyses for one earthquake excitation were 

proposed as an example to further study the energy 

dissipation capacity of SAEC-PTMDs. It was found 

that the SAEC-PTMD has a better energy dissipation 

capacity than the optimal passive TMD. 

● In strong earthquakes, the primary structures could 

enter the nonlinear state. The nonlinear primary 

structure was simulated based on the Bouc-Wen 

model. It was found that the SAEC-PTMD still has 

an excellent vibration control effect and can control 

the development of structural plasticity effectively 

and protect the safety of primary structure. 

● This study is focused on the concept of the SAEC-

PTMD, and its control effect is verified through 

numerical simulations. In further studies, the model 

of SAEC-PTMD will be built, and a shaking table 

test will be proposed to verify its feasibility and 

control effect. 

● Considering the proposed LQG variable damping 

control algorithm is mainly focused on a linear 

system, to obtain a better control effect, it is 

meaningful to propose a novel control algorithm 

which focuses on the earthquake protection of a 

nonlinear system in further studies. 
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(a) Force/displacement relationship of 1.0 Hz structure (b) Force/displacement relationship of 0.9 Hz structure 

Fig. 13 Comparisons of resilience loops under Northridge ground motion of the nonlinear structure 

Table 8 Performance assessment for earthquake energy dissipation of the nonlinear structure 

Northridge 
1.0 Hz structure 0.9 Hz structure 

No TMD PTMD SAEC-PTMD PTMD No TMD SAEC-PTMD 

EI (J) 1814.99 1619.18 1521.94 1790.06 1654.03 1480.54 

ES (J)  142.27 135.86  95.24 119.77 

EH (J) 563.64 331.88 276.34 550393 365.57 203.10 

ES/EI (%)  8.79 8.93  5.76 8.09 

EH/EI (%) 31.05 20.50 18.16 30.78 22.10 13.72 
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