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1. Introduction 

 

The unavailability of a subset of state variables of 

systems, for measurement imposes challenges for the design 

of controllers. The reason for the unavailability may be due 

to the lack of measurement system or sometimes these 

variables may not be accessible for measurement. This 

drives the need to develop a dynamical system called as 

observer or estimator, which uses the mathematical model 

of the system and, the system output to generate the state 

variables. Sometimes the states of the system will be 

generated to monitor the performance of the system. 

Kalman filter is a recursive linear estimator which 

successively calculates a minimum variance estimate of a 

state that evolves over time, on the basis of periodic 

observations that are linearly related to this state. The 

Kalman filter estimator minimizes the mean squared 

estimation error and is optimal with respect to a variety of 

important criteria, under specific assumptions about process 

and observation noise. The earlier implementation of the 

Kalman filter algorithm presented few drawbacks for 

practical implementation. Information filter is claimed to be 

the algebraic equivalent of Kalman filter. It is essentially a 

Kalman filter expressed in measures of information about 

state estimates and their associated covariance. The use of 

information filter for state estimation can be justified, for 

the case where the initial conditions of the states to be 

estimated are known poorly. There are no gain or 

innovation covariance matrices involved in information 

filter, and the maximum dimension of a matrix to be 

inverted is the state dimension. Information filter is 

computationally simpler and it is a more direct and, a natural 
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method of dealing with multisensory data fusion problems. 

It has a special advantage in decentralised sensor networks, 

because it provides a direct interpretation of node 

observation and contribution in terms of information, as 

reported in Mutambara (1999). 

The sliding mode observers are widely used due to the 

finite-time convergence, robustness with respect to 

uncertainties and the possibility of uncertainty estimation, 

as presented in Edwards and Spurgeon (1998) and Utkin 

(1992), and it is based on Variable Structure Control (VSC). 

VSC with the sliding mode is an established method for 

controlling uncertain dynamic systems. In spite of high 

accuracy and robustness with respect to various internal and 

external disturbances, VSC has a main drawback called 

chattering effect, which is a dangerous high-frequency 

vibration of the controlled system. The concept of VSC 

later was employed for applications including the problem 

of state estimation. The earliest work by Utkin (1992) 

utilizes a discontinuous switched component within an 

observer. 

A new distributed fusion filtering algorithm for linear 

multiple time-delayed systems, with multisensory 

distributed fusion filter formed by the summation of, Local 

Kalman Filters having Time Delays (LKFTDs) in both the 

system and measurement models, is proposed by Lee et al. 

(2012a, b). Nonlinear state estimation performed using 

unscented transformation with certain parts of classic 

Kalman filter, resulting in a comparatively higher accurate 

method is presented by Rao et al. (2009). An internal model 

based method to estimate the structural displacements and 

velocities under ambient excitation using only acceleration 

measurements, using the standard Kalman filtering 

technique, is proposed by Ma et al. (2014), it has been 

demonstrated and evaluated via numerical simulations on 

an eight-story lumped mass model and, experimental data 

of a three-story frame excited, by the ground accelerations 
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of actual earthquake records. Estimation of dynamic 

displacement with high accuracy by blending, high-

sampling rate acceleration data with low-sampling rate 

displacement measurement, using a two-stage Kalman 

estimator is presented in Kim et al. (2016). A new structural 

damage detection algorithm based on substructure approach 

using sequential extended Kalman estimator, from the 

degradation of the identified substructural element stiffness 

values, for large size structural systems with limited input 

and output measurements is proposed by Lei et al. (2013). 

An extension of classical Kalman filter for real time 

estimation of structural state and unknown inputs, without 

using collocated acceleration measurements is proposed by 

Lei et al. (2016). Further data fusion of acceleration and 

displacement or strain measurements is used to prevent the 

drifts in the identified structural state and unknown inputs 

in real time. 

An extension of the classical Kalman filter for real time 

joint estimation of structural states and the unknown inputs, 

by fusing the data of partially measured displacement and 

acceleration responses to prevent the drifts is proposed by 

Liu et al. (2016). A response estimation technique based on 

the Kalman state estimator applied for the structural health 

monitoring of a simply-supported beam, which successfully 

estimated the strain responses at unmeasured locations with 

the highest performance by fusing acceleration, strain and 

tilt, by minimizing the intrinsic measurement noise, under 

non-zero mean input excitations is presented by Palanisamy 

et al. (2015). A two-stage and two-step algorithm is 

proposed in Lei et al. (2015) for the identification of 

structural damage as well as unknown external excitations, 

where in stage-one, structural state vector and unknown 

structural parameters are recursively estimated by a two-

step Kalman estimator approach, with the unknown external 

excitations are estimated sequentially by least-squares 

estimation in stage-two. Here the number of unknown 

variables to be estimated in each step is reduced, which 

simplify the identification problem and reduces 

computational efforts significantly. Application of Kalman 

based estimators for the experimental evaluation of the 

closed loop performance of the reaching law based discrete 

sliding mode controller with Multisensor Data Fusion 

(MSDF) in real time, by controlling the first two vibrating 

modes of a piezo actuated structure is presented by 

Arunshankar et al. (2013). 

A robust H∞ sliding mode descriptor observer for 

simultaneous state and disturbance estimation of uncertain 

system is developed by Lee et al. (2012a). A sliding-mode 

observer where the switching terms are designed such that 

the faults are tracked and reconstructed from their 

respective sliding surfaces, with a feature to perform the 

fault reconstruction online along with the state estimation is 

proposed by Veluvolu and Soh (2011). A new approach 

which is based on the utilisation of a network of two 

interconnected sliding mode observers, with the first used 

for fault diagnosis and the second used for estimation of 

unknown inputs for fault diagnosis and estimation of 

unknown inputs, in a class of non-linear systems is 

presented by Sharma and Aldeen (2011). Sliding mode 

observer for generating the slosh states, which are otherwise 

difficult to measure is developed by Kurode et al. (2013). 

A sliding-mode controller equipped with a sliding-mode 

observer is synthesized and applied to a novel three-axis, 

four-wire optical pickup for the purpose of sensorless tilt 

compensation by Chao and Shen (2009). A higher order 

sliding mode observer for asymptotic identification of the 

full state vector and the vector of unknown inputs for 

MIMO nonlinear causal systems with unstable internal 

dynamics is proposed by Shtessel et al. (2010). To detect 

actuator faults, on a robot manipulator a higher order 

sliding-mode unknown input observer is proposed by 

Capisani et al. (2012). 

The main contribution of this paper is, it brings the 

inherent features, which talks about the computational and 

implementation issues of the Kalman based estimators and 

the sliding mode observers. The paper highlights the 

importance of process noise and measurement noise, which 

will affect the performance of the estimators, selection of 

initial values of the estimates and state covariance matrix, 

which may lead to computational complexity and 

estimation error. The information presented will be useful to 

select an estimator for generating the states of smart 

structure using appropriate estimator, for its health 

monitoring and control, for the given conditions. 

The structure of the paper is as follows. In Section 2 

review of observers used in this work is presented. Section 

3 presents the mathematical model of the smart structure 

system, whose states are to be estimated. Results and 

discussion are presented in Section 4. Conclusions are 

drawn in Section 5. 
 

 

2. Review of observers 
 

2.1 Kalman filter 
 

Consider a system described in linear form 
 

𝑥(𝑘 + 1) = 𝐴𝑥(𝑘) + 𝑤(𝑘) (1) 
 

where x(k) are states of interest at time k, A the state 

transition matrix from time (k) to (k+1), and w(k) the 

associated process noise modelled as an uncorrelated white 

sequence with 
 

𝐸[𝑤(𝑖)𝑤𝑇(𝑗)] = 𝛿𝑖𝑗𝑄(𝑖) (2) 
 

where Q(i) is process noise covariance matrix. 

The system is observed according to the linear equation 
 

𝑧(𝑘) = 𝐻𝑥(𝑘) + 𝑣(𝑘) (3) 
 

where z(k) is the vector of observations made at time k, H 

the observation matrix and v(k) the associated observation 

noise modelled as an uncorrelated white sequence with 
 

𝐸[𝑣(𝑖)𝑣𝑇(𝑗)] = 𝛿𝑖𝑗𝑅(𝑖) (4) 
 

where R(i) is measurement noise covariance matrix.Also 
 

𝐸[𝑣(𝑖)𝑤𝑇(𝑗)] = 0 (5) 

38



 

Investigations on state estimation of smart structure systems 

The state estimate and covariance estimate at time 𝑡𝑘 

�̂�(𝑘|𝑘) and 𝑃(𝑘|𝑘) as presented in Kalman (1960) are, 
 

State and covariance prediction 
 

�̂�(𝑘 + 1|𝑘) = 𝐴�̂�(𝑘|𝑘) + 𝑤(𝑘) (6) 

 

𝑃(𝑘 + 1|𝑘) = 𝐴𝑃(𝑘|𝑘)𝐴′ + 𝑄 (7) 
 

Measurement Prediction 
 

�̂�(𝑘 + 1|𝑘) = 𝐻�̂�(𝑘 + 1|𝑘) (8) 
 

Innovation Covariance 
 

𝑀(𝑘 + 1) = 𝐻𝑃(𝑘 + 1|𝑘)𝐻′+ 𝑅 (9) 
 

Measurement Residual 
 

𝑒(𝑘 + 1) = 𝑧(𝑘 + 1) − �̂�(𝑘 + 1|𝑘) (10) 
 

Filter Gain 
 

𝐾(𝑘 + 1) = 𝑃(𝑘 + 1|𝑘)𝐻′𝑀(𝑘 + 1)−1 (11) 
 

State and covariance updation 
 

𝑥(𝑘 + 1|𝑘 + 1) 
= 𝑥(𝑘 + 1|𝑘) + K(𝑘 + 1)𝑒(𝑘 + 1|𝑘) 

(12) 

 

𝑃(𝑘 + 1|𝑘 + 1) 
= 𝑃(𝑘 + 1|𝑘) − 𝐾(𝑘 + 1)𝐻′𝑃(𝑘 + 1|𝑘) 

(13) 

 

2.2 Information filter 
 

Information filter is essentially a Kalman filter 

expressed in terms of measures of information about the 

states of interest, rather than direct state estimates and their 

associated covariances as presented in Mutambara (1999). 

The two key information-analytic variables are information 

matrix �̂�(𝑖|𝑗)  and information state vector �̂�(𝑖|𝑗) , with 

information matrix being the inverse of state covariance 

matrix (P) 

𝑌(𝑖|𝑗) = 𝑃−1(𝑖|𝑗) (14) 
 

The information state vector is the product of the inverse 

of state covariance matrix and state estimate �̂�(𝑖|𝑗) 
 

�̑�(𝑖|𝑗) = 𝑃−1(𝑖|𝑗)�̂�(𝑖|𝑗) (15) 
 

The update equation for the information state vector 
 

�̂�(𝑘|𝑘) = �̂�(𝑘|𝑘 − 1) + 𝐻𝑇𝑅−1𝑧(𝑘) (16) 
 

The expression for information matrix associated with 

the above estimate is 
 

𝑌(𝑘|𝑘) = 𝑌(𝑘|𝑘 − 1) + 𝐻𝑇𝑅−1𝐻 (17) 
 

The information state contribution i(k) from an 

observation z(k), and its associated information matrix I(k) 

are 

𝑖(𝑘) = 𝐻𝑇𝑅−1𝑧(𝑘) (18) 

 

𝐼(𝑘) = 𝐻𝑇𝑅−1𝐻 (19) 

 

The information propagation coefficient 𝐿(𝑘|𝑘 − 1) , 

which is independent of the observation made is given by 

 

𝐿(𝑘|𝑘 − 1) = 𝑌(𝑘|𝑘 − 1)𝐴𝑌−1(𝑘 − 1|𝑘 − 1) (20) 
 

Prediction 
 

�̑�(𝑘|𝑘 − 1) = 𝐿(𝑘|𝑘 − 1)�̑�(𝑘 − 1|𝑘 − 1) (21) 

 

𝑌(𝑘|𝑘 − 1) = [𝐴𝑌−1(𝑘 − 1|𝑘 − 1)𝐴𝑇 + 𝑄(𝑘)]−1 (22) 
 

Estimation 

 

�̑�(𝑘|𝑘) = �̑�(𝑘|𝑘 − 1) + 𝑖(𝑘) (23) 

 

𝑌(𝑘|𝑘) = 𝑌(𝑘|𝑘 − 1) + 𝐼(𝑘) (24) 

 

2.3 Utkin observer 
 

Consider a linear system described by 
 

�̇�(𝑡) = 𝐴𝑥(𝑡) + 𝐵𝑢(𝑡) (25) 

 

𝑦(𝑡) = 𝐶𝑥(𝑡) (26) 
 

Where 𝐴 ∈ ℜ𝑛×𝑛, 𝐵 ∈ ℜ𝑛×𝑚, 𝐶 ∈ ℜ𝑝𝑥𝑛 an 𝑝 ≥ 𝑚 . 

Assume that the matrices B and C are of full rank and pair 

(A,C) is observable, as given in Edwards and Spurgeon 

(1998) and, Utkin (1992). Since the outputs are to be 

considered, it is logical to effect a change of coordinates, so 

that the output appear as components of the states. One 

possibility is to consider the transformation 𝒙 ↦ 𝑻𝒄𝒙 

where 
 

𝑇𝑐 = [𝑁𝑐
𝑇

0
] (27) 

 

With the columns of 𝑁𝑐 ∈ 𝑅𝑛×(𝑛−𝑝)span the null space 

of C. This transformation is nonsingular, and with respect to 

this new coordinate system, the new output distribution 

matrix is 

𝐶𝑇𝑐
−1 = [0 𝐼𝑃] (28) 

 

Where p is the number of output from the system and 

𝑛is the order of the system, with 
 

𝑇𝑐 A𝑇𝑐
−1 = [

𝐴11 𝐴12

𝐴21 𝐴22
] (29) 

 

𝑇𝑐𝐵 = [
𝐵1

𝐵2
] (30) 

 

The nominal system is 

 

�̇�1(𝑡) = 𝐴11𝑥1(𝑡) + 𝐴12𝑦(𝑡) + 𝐵1𝑢(𝑡) (31) 

 

𝑦(𝑡) = 𝐴21𝑥1(𝑡) + 𝐴22𝑦(𝑡) + 𝐵2𝑢(𝑡) (32) 
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𝑇𝑐𝑥 = [
𝑥1

𝑦
] (33) 

 

The observer proposed by Utkin has the form 

 

�̂̇�1(𝑡) = 𝐴11�̂�1(𝑡) + 𝐴12�̂�(𝑡) + 𝐵1𝑢(𝑡) + 𝐿𝑣 (34) 

 

�̂�(𝑡) = 𝐴21�̂�1(𝑡) + 𝐴22�̂�(𝑡) + 𝐵2𝑢(𝑡) − 𝑣 (35) 

 

Where (�̂�1, �̂�)  represent the state estimates for 

(𝑥1, 𝑦), 𝐿 ∈ 𝑅(𝑛−𝑝)×𝑝is a constant feedback gain matrix and, 

the discontinuous vector v is defined component wise by 

 

𝑣𝑖 = 𝑀𝑠𝑖𝑔𝑛( �̂�𝑖 − 𝑦𝑖) (36) 

 

Where 𝑀 ∈ 𝑅+. If the errors between the estimates and 

the true states are 𝑒1 = �̂�1 − 𝑥1  and 𝑒𝑦 = �̂� − 𝑦 , then 

from Eqs. (31)-(35) the following error system is obtained 

 

�̇�1(𝑡) = 𝐴11𝑒1(𝑡) + 𝐴12𝑒𝑦(𝑡) + 𝐿𝑣 (37) 

 

�̇�𝑦(𝑡) = 𝐴21𝑒1(𝑡) + 𝐴22𝑒𝑦(𝑡) − 𝑣 (38) 

 

Since the pair (𝐴, 𝐶) is observable, the pair (𝐴11, 𝐴21) 

is also observable. As a consequence, L can be chosen to 

make the spectrum of 𝐴11 + 𝐿𝐴21  lie in 𝐶_ . Define a 

further change of coordinates, dependent on L by 

 

�̃� = [
𝐼𝑛−𝑝

0

𝐿
𝐼𝑝

] (39) 

 

and let �̃�1 = 𝑒1 + 𝐿𝑦 . The error system with respect to the 

new coordinate is 

 

�̇̃�1(𝑡) = �̃�11�̃�1(𝑡) + �̃�12𝑒𝑦(𝑡) (40) 

 

�̇�𝑦(𝑡) = 𝐴21�̃�1(𝑡) + �̃�22𝑒𝑦(𝑡) − 𝑣 (41) 

 

Where �̃�11 = 𝐴11 + 𝐿𝐴21, �̃�12 = 𝐴12 + 𝐿𝐴22 − �̃�11𝐿 

and �̃�12 = 𝐴22 − 𝐴21𝐿. 

It follows from Eq. (41) that in the domain 

 

Ω = {(𝑒1, 𝑒𝑦): ‖𝐴21𝑒1‖ 

         +0.5𝜆𝑚𝑎𝑥(�̃�22 + �̃�22
𝑇 )‖𝑒𝑦‖ < 𝑀 − 𝜂} 

(42) 

 

Where 𝜂 < 𝑀  is some small positive scalar, the 

reachability condition is satisfied. 

 

𝑒𝑦
𝑇�̇�𝑦 < −𝜂‖𝑒𝑦‖ (43) 

 

Consequently, an ideal sliding motion will take place on 

the surface 
 

𝑆𝑜 = {(𝑒1, 𝑒𝑦): 𝑒𝑦 = 0} (44) 

 

It follows that after a finite time ts and, for all 

subsequent time, 𝑒𝑦 = 0and �̇�𝑦 = 0, Eq. (40) then reduces 

to 

�̇̃�1(𝑡) = �̃�11�̃�1(𝑡) (45) 

Which by choice of L, represents a stable system and so 

�̃�1 → 0 , consequently �̂�1 → 𝑥1 as 𝑡 → ∞ . Eq. (45) 

represents reduced order sliding mode dynamics. 

 

2.4 Higher order sliding mode observer 
 

An observer itself is a dynamical system, which is 

driven by a control input and, by the difference between the 

output of the observer and the output of the plant, called 

output error, which should ideally become zero. In sliding 

mode observer, the idea to generate a sliding mode on the 

subspace for which the output error is zero is applied, 

Edwards and Spurgeon (1998). Consider a nominal linear 

system given by 

 

�̇�(𝑡) = 𝐴𝑥(𝑡) + 𝐵𝑢(𝑡) + 𝐸𝑟(𝑡) 
𝑦(𝑡) = 𝐶𝑥(𝑡) 

(46) 

 

Where 𝐴 ∈ ℜ𝑛𝑥𝑛, 𝐵 ∈ ℜ𝑛𝑥𝑚, 𝐶 ∈ ℜ𝑝𝑥𝑛, 𝐸 ∈ ℜ𝑛𝑥𝑞  with 

q ≤ p ≤ n and, matrices C and E are of full rank, and it is 

assumed that only the signals u(t) and y(t) are available. The 

objective is to synthesize an observer to generate a state 

estimate �̂�(𝑡) and output estimate �̂�(𝑡) = 𝐶�̂�(𝑡), such that 

a sliding mode is attained in which the output error 

 

𝑒𝑦(𝑡) = �̂�(𝑡) − 𝑦(𝑡) (47) 

 

is forced to zero in finite time. The particular observer 

structure that will be considered can be written in the form 

 

�̇̂�(𝑡) = 𝐴�̂�(𝑡) + 𝐵𝑢(𝑡) − 𝐺𝑙𝑒𝑦(𝑡) + 𝐺𝑛𝑣 (48) 

 

where 𝐺𝑙 , 𝐺𝑛 ∈ ℜ𝑛𝑥𝑝 are appropriate gain matrices and, v 

represents a discontinuous switched component to induce a 

sliding motion. 

Considering the dynamical system given by Eq. (46), a 

sliding mode observer of the form given by Eq. (48), which 

rejects the uncertainty, will exist if and only if the nominal 

linear system, defined by the triple (A,E,C) satisfies: 

Rank(CE) = q, invariant zeros of the triple (A,E,C) must lie 

in 𝐶_. For a square system, where p = q, it should be noted 

that the above two conditions fundamentally require the 

triple (A,E,C) to be relative degree one and minimum phase. 

Under these assumptions, there exists a linear change of 

coordinates𝑥 ↦ 𝑇𝑥 such that in the new coordinate system 

 

�̇�1(𝑡) = 𝐴11𝑥1(𝑡) + 𝐴12𝑥2(𝑡) + 𝐵1𝑢(𝑡) 
�̇�2(𝑡) = 𝐴21𝑥1(𝑡) + 𝐴22𝑥2(𝑡) + 𝐵2𝑢(𝑡) + 𝐸𝑟(𝑡) 
𝑦(𝑡) = 𝑥2(𝑡) 

(49) 

 

Where 𝑥1 ∈ ℜ(𝑛−𝑝), 𝑥2 ∈ ℜ𝑝 and the matrix 𝐴11  has 

stable eigenvalues. The coordinate system above will be 

used as a platform for the design of a sliding mode observer. 

Consider a dynamical system of the form 

 

�̇̂�1(𝑡) = 𝐴11�̂�1(𝑡) + 𝐴12�̂�2(𝑡) + 𝐵1𝑢(𝑡) 

�̇̂�2(𝑡) = 𝐴21�̂�1(𝑡) + 𝐴22�̂�2(𝑡) + 𝐵2𝑢(𝑡) 
               −(𝐴22 − 𝐴22

𝑆 )𝑒𝑦(𝑡) + 𝑣 

�̂�(𝑡) = �̂�2(𝑡) 

(50) 
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where 𝐴22
𝑠  is a stable design matrix and the discontinuous 

vector v is defined by a higher order sliding mode control 

law, named as super-twisting controller, Rolink et al. 

(2006), which has the advantage of chattering attenuation. If 

the state estimation errors are defined as 𝑒1 = �̂�1 − 𝑥1 and 

𝑒2 = �̂�2 − 𝑥2then it is shown that 

 

�̇�1(𝑡) = 𝐴11𝑒1(𝑡) 
�̇�𝑦(𝑡) = 𝐴21𝑒1(𝑡) + 𝐴22

𝑆 𝑒𝑦(𝑡) + 𝑣 − 𝐸𝑟 
(51) 

 

Since in this situation ey = e2. The nonlinear error 

system given by Eq. (51) is quadratically stable and a 

sliding motion takes place forcing ey = 0 in finite time. The 

dynamical system given by Eq. (50) is thus regarded as an 

observer for the system given in Eq. (46). It follows that, 

after transformation of the system 

 

𝐺𝑙 = 𝑇−1 [
𝐴12

𝐴22 − 𝐴22
𝑠 ]      and     𝐺𝑛 = 𝑇−1 [

0
𝐼𝑝

] (52) 

 

Hence the observer given in Eq. (50) can be written in 

terms of the original coordinates in the form of Eq. (48). 

The review of super twisting controller is given in the 

following sub section. 

 

2.5 Super-twisting controller 
 

The Super-Twisting controller depends only on the 

actual value of the sliding variable, and it is effective only 

for chattering attenuation, as reported Pisano and Usai 

(2011). It however, does not require this output derivative to 

be measured, but it has been originally developed and 

analysed for systems with relative degree one with respect 

to the input, as presented in Khan et al. (2003), which is 

given by 

�̇� = 𝜑(𝑠, 𝑡) + 𝛾(𝑠, 𝑡)𝑢 (53) 

 

Where 0 < |𝜑(. )| ≤ 𝛷 and 0 < 𝛤𝑚 ≤ 𝛾(. ) ≤ 𝛤𝑀. The 

control law u(t) is a combination of two terms 

 

𝑢(𝑡) = 𝑢1(𝑡) + 𝑢2(𝑡) 

�̇�1(𝑡) = {
−𝑢 𝑖𝑓 |𝑢| > 1

−𝑊𝑠𝑖𝑔𝑛(𝑠) 𝑖𝑓 |𝑢| ≤ 1
 

𝑢2(𝑡) = {
−𝜆|𝑠0|𝜌𝑠𝑖𝑔𝑛(𝑠) 𝑖𝑓 |𝑠| > 𝑠0

−𝜆|𝑠|𝜌𝑠𝑖𝑔𝑛(𝑠) 𝑖𝑓 |𝑠| ≤ 𝑠0
 

(54) 

 

Where |𝑠| < 𝑠0.The trajectories of the controller ‘twist’ 

around the origin in the phase portrait of the sliding 

variable, the corresponding sufficient conditions for the 

finite time convergence to the sliding manifold are 

 

𝑊 >
𝛷

𝛤𝑚
 

𝜆2 ≥
4𝛷

𝛤𝑚
2

𝛤𝑀(𝑊 + 𝛷)

𝛤𝑚(𝑊 − 𝛷)
0 < 𝜌 ≤ 0.5

 
(55) 

 

This controller may be simplified when the controlled 

system is linearly dependent on control, u does not need to 

be bounded and 𝑠0 = ∞ 

𝑢 = −𝜆|𝜎|𝜌𝑠𝑖𝑔𝑛(𝑠) + 𝑢1 
�̇�1 = −𝑊𝑠𝑖𝑔𝑛(𝑠) 

(56) 

 

The super-twisting controller does not need any 

information on the time derivative of the sliding variable, 

which makes it less complex and can be easily realized in 

real time. The choice 𝜌 = 0.5 ensures that the maximal 

possible 2-sliding realization for real-sliding order 2 is 

achieved. 

 

 

3. Mathematical model of smart structure system 
 

The piezo actuated structure considered in this work is 

shown in Fig. 1, with its mathematical model taken from 

Arunshankar and Umapathy (2012). The smart structure is a 

cantilever beam made of aircraft grade aluminium, whose 

dimensions and properties are given in Table 1. 

Two piezo ceramic patches, which act as sensors are 

surface bonded on the bottom surface of the beam, one at a 

distance of 10 mm and the other at a distance of 105 mm 

from the fixed end. Another pair of piezo patches is surface 

bonded on the top surface of the beam, one at a distance of 

10 mm and another at a distance of 375 mm from the fixed 

end, to act as control and disturbance actuators respectively. 

Excitation input is applied to the structure through the 

 

 

 

Fig. 1 Schematic of the piezo actuated structure 

 

 

Table 1 Properties and dimensions of aluminum beam 

Length (m) 0.45 

Width (m) 0.0135 

Thickness (m) 0.001 

Young’s modulus (Gpa) 71 

Density (kg/m3) 2700 

First mode frequency (Hz) 5.5 

Second mode frequency (Hz) 30.4 
 

 

 

Table 2 Properties and dimensions of piezoceramic 

sensor/actuator 

Length (m) 0.0765 

Width (m) 0.0135 

Thickness (m) 0.0005 

Young’s modulus (Gpa) 47.62 

Density (kg/m3) 7500 

Piezoelectric strain constant (mV-1) -247×10-12 

Piezoelectric stress constant (VmN-1) -9×10-3 
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disturbance actuator. The dimensions and properties of 

piezo ceramic patches are given in Table 2. 

The unknown parameters of the smart structure 

dynamics are estimated using Recursive Least Squares 

(RLS) estimation algorithm, an online model identification 

technique. The smart structure is designed to demonstrate 

the performance of sliding mode controller, for controlling 

the vibration, as presented in Arunshankar et al. (2013). 

Since the structure is designed to perform vibration control, 

realizing the fact that the first few vibration modes play a 

vital role in structural dynamics, the model of the structure 

is selected to represent the dynamics of first two modes of 

vibration, which resulted in the smart structure to be 

represented as a fourth order linear time invariant model. 

The smart structure consists of two piezo sensors, the 

purpose of including the second sensor is to demonstrate the 

benefits of data fusion, which contributed for the 

improvement in the vibration control. 

To identify the unknown parameters of the structure, it 

is excited by a sinusoidal signal by sweeping the frequency 

in the range of (0-50 Hz), which is inclusive of the first two 

natural frequencies of the beam, through disturbance 

actuator and, a square wave signal as an input to the control 

actuator. With a sampling frequency of 200 Hz, the input – 

output data of the cantilever beam is collected, for 

identifying the model. The model thus obtained is validated 

by observing the convergence of identified parameters, 

matching between actual plant and model response, and 

closeness of the natural frequencies of the identified model 

with that of the experimentally measured one, using a data 

set that is different from the data used to calculate the 

model parameters. The continuous time state space model 

of the smart structure system thus obtained is 

 

�̇�(𝑡) = 𝐴𝑥(𝑡) + 𝐵𝑢(𝑡) + 𝐸𝑟(𝑡) 
𝑦(𝑡) = 𝐶𝑥(𝑡) 

(57) 

 

where A is the system matrix, B is control input vector, E 

the disturbance vector, C the output matrix, x is the state 

vector and y the system output. 
 

𝐴 = [

92.1084 64.5070 −39.8911 65.1749
−159.5286 14.3813 112.5734 −118.4229
116.4182 −111.6173 −15.247 160.9807
−63.1027  39.0227 −63.7560 −93.4438

] 

𝐵 = [

−0.5220
0.2457
−0.3766
0.7240

]    𝐸 = [

−0.0141
−0.0387
0.0421
0.0058

]      ⥂ 𝐶 = [1 0 0 0] 

 

The model is discretized for a sampling interval of 0.01 

sec. 
 

 

4. Results and discussion 
 
The performance of observers is evaluated through 

simulation. Excitation signal is a sinusoidal signal with 

amplitude of 10 Vpp, applied to the disturbance actuator. 

The frequency of the disturbance is maintained at 5.5 Hz for 

the first 3 secs, and maintained at 30.4 Hz, for the next 3 

secs, which is done to maintain the structure at first and 

second mode resonance. The response of four state 

variables X1, X2, X3 and X4 is shown in Fig. 2. 

Kalman filter is implemented, by selecting zero initial 

state vector, initial state error covariance matrix as 0.1×I4x4, 

process noise covariance Q as 1, and measurement noise 

covariance R as 0.001. States estimated by Kalman filter is 

shown in Fig. 3 and Kalman filter error is shown in Fig. 4. 

 

 

 

Fig. 2 Response of the system when excited by first and 

second mode frequency 
 

 

 

Fig. 3 States estimated using Kalman filter 
 

 

 

Fig. 4 Kalman filter error 
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Information filter is implemented, by selecting zero 

initial state vector, initial state error covariance matrix as 

I4x4, process noise covariance matrix Q as 0.1×I4x4, and 

measurement noise covariance R as 0.001. States estimated 

by information filter is shown in Fig. 5 and the information 

filter error is shown in Fig. 6. 
 

 

 

Fig. 5 States estimated using information filter 
 

 

 

Fig. 6 Information filter error 
 

 

 

Fig. 7 States estimated using Utkin observer 

Utkin observer is implemented, by selecting zero initial 

state vector, with M = 0.01 and L = 0.2. The states 

estimated by Utkin observer is shown in Fig. 7 and the 

Utkin observer error is shown in Fig. 8. 

Higher Order Sliding Mode observer is implemented, by 

selecting zero initial state vector, with m = 1, λ = 14, W = 4, 

ρ = 2000. The weight matrices Gl and Gn associated with 

the observer are given below. States estimated by Higher 

Order Sliding Mode observer is shown in Fig. 9 and the 

Higher order sliding mode observer error is shown in Fig. 

10. 
 

𝐺𝑙 = [

1.0004
−1.4260
1.1850

−0.9758

]         𝐺𝑛 = [

−0.0003906
0.00006040
−0.0002699
0.0001930

] 

 

In Kalman filter implementation, the process noise 

covariance matrix Q and the measurement noise covariance 

R are taken as tuning parameters for the performance of the 

filter, which are obtained by trial and error. The values of Q 

and R are to be otherwise determined by methods proposed 

by Mehra (1970), Yao et al. (2002), Wolin and Ho (1993), 

Zhou and Luecke (1995). Moreover performance of the 

Kalman filter depends upon the selection of initial state 
 

 

 

Fig. 8 Utkin observer error 
 

 

 

Fig. 9 States estimated using higher order sliding mode 

observer 
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Fig. 10 Higher order sliding mode observer error 

 

 

vector and the initial state covariance matrix. Selecting a 

very high initial state covariance matrix indicates that the 

filter is purposefully challenged with large initial errors, but 

in any case, the filter will perform well, which can be 

noticed by the estimation error reaching closer to zero, even 

though initial errors are larger. In this work, since the aim is 

to compare the performance of estimators, the elements of 

initial state covariance matrices are selected as smaller 

values. 

The advantage of information filter is that it is very easy 

to initialize. The value of the initial state vector can be 

taken as zero and the initial covariance matrix can be taken 

as unity matrix. Similar to Kalman filter the values of Q and 

R are taken as tuning parameters. The computational 

complexity involved in the information filer is less, since 

comparatively less number of matrix inversions is 

computed. It is easy to decentralize information filter, hence 

it can be applied for control of larger structural systems. 

Implementation of sliding mode observer does not 

require the values of process noise and measurement noise 

covariance. 

 

 

5. Conclusions 
 

This paper presents the application of Kalman filter 

based state estimation algorithms and sliding mode 

observers, for estimating the states of a smart structure 

system. The performance of these algorithms, when applied 

for estimating the states of fourth order linear time invariant 

model of a smart structure system are compared. 
 

● It is seen that the estimation error obtained with 

Kalman and information filter is lesser when 

compared with the estimation error obtained with 

Utkin observer. This is because of the switching 

action taking place in the sliding mode observer 

leads to chattering effect. 

● With the higher order sliding mode observer, since 

the chattering effect is reduced, the observer error is 

minimised. 
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