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1. Introduction 
 

It is essential to forecast wind speed for a variety of 

engineering tasks, including but not limited to the 

integration of wind energy into electricity grids, scheduling 

of a wind power system, and design of reliable structures 

(e.g., wind turbine, bridge, and building). Wind effects can 

cause destructive damage to infrastructure systems and 

significant human and economic losses (Ye et al. 2015a). It 

was reported that if the wind loading exceeds a certain 

value, the high-rise buildings and the long-span bridges, 

which have the characteristics of light mass, high flexibility 

and slight damping, may be seriously affected (Ye et al. 

2016a, Chen et al. 2014, Ye et al. 2012, Ni et al. 2012, Ni et 

al. 2010). To ensure reliable wind-resistant design, it is 

important to forecast wind speed to precisely assess the 

wind-induced effects in advance (Ye et al. 2017, Ye et al. 

2016b, Hocaoglu et al. 2007). 

Accurate forecasting of wind speed is challenging since 

it usually has the characteristics of random, nonlinear, and 

uncertainty. In the literature, a lot of methods have been 

explored to forecast wind speed. Physical models, 

conventional statistical models, and machine learning 

methods are commonly used for the wind speed forecasting 

(Lei et al. 2009). For the physical model, it uses physical or  
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meteorological information such as the temperature, 

pressure, and orography to evaluate the future speed, which 

depends on the known samples and fails to have long-term 

prediction (Landberg 1999). For the conventional statistical 

model, it uses historical wind speed data for training and its 

goal is to find the relationship between certain explanatory 

variable and future wind speed, which is difficult to develop 

(Khalid et al. 2012). For the machine learning method, it 

just uses time-series data (called training data) and is 

powerful to simulate complex nonlinear systems (Li et al. 

2009). Since more and more structures have installed or will 

install structural health monitoring (SHM) systems, the field 

measurements, which considers the real geographical 

environment, terrain roughness, structural shape, etc., 

provide reliable training data for machine learning methods 

(Ye et al. 2016c, Ye et al. 2015b, Ye et al. 2013). In this 

regard, the machine learning methods are being widely used 

in forecasting the wind speed. 

A lot of machine learning approaches have been 

developed to predict the wind speed, such as generalized 

regression neural network (GRNN), back propagation 

neural network (BPNN), extreme learning machine (ELM). 

Kumar et al. (2016) introduced GRNN for long-term wind 

speed prediction of major wind power potential states in 

Western Region of India. Lee et al. (2012) adopted the 

GRNN to predict wind speed obtained from Chiang Kai-

shek International Airport. Huang et al. (2017) utilized 

BPNN to predict the time series of wind-induced pressures 

on a building surface. Guo et al. (2011) established a wind 

speed forecasting method based on a BPNN. Liu et al. 

(2018) used ELM method to predict the wind speed data 

decomposed by wavelet packet and empirical mode method. 
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Lazarevska (2016) presented ELM method to model the 

wind speed on a short-term basis and the results show that 

the ELM method possesses the attributes of simplicity, good 

performance, and fast computation. The performance of the 

machine learning methods can be influenced by parameter 

setting, such as weight, threshold, learning rate. The 

parameter setting determined by people’s experience may 

undermine the prediction performance (Huang et al. 2010). 

In fact, most of the parameters involved in machine learning 

approaches can be automatically determined by effective 

optimization algorithms. 

A variety of optimization algorithms could be employed 

to improve the accuracy of the machine learning methods, 

such as cross validation (CV), genetic algorithm (GA), 

particle swarm optimization (PSO). Wang et al. (2018) 

determined the optimal spread factor which is the key 

parameter of the GRNN by CV method. Jiang et al. (2016) 

proposed a GRNN with K-fold CV method for predicting 

the displacement of landslide. Kassa et al. (2016) used the 

GA to optimize the weights and biases of BPNN by the 

modeling dataset. Xu et al. (2011) presented a wind power 

prediction model based on GA-BPNN which is shown to 

outperform the conventional BPNN. Han et al. (2013) used 

the PSO algorithm to determine the weights and thresholds 

of ELM and found that the PSO-ELM had better global 

approximation performance and generalization capability. 

Yang et al. (2014) proposed a modified ensemble of ELM 

based on PSO and it was shown that the modified method 

owned better convergence performance than some classical 

ELMs. In view of the above, the proper optimization 

algorithms can improve the accuracy of the machine 

learning methods in the wind forecasting. Since different 

machine learning methods have their own forecasting 

advantages, combination of different optimization 

algorithms should be considered. Finite mixture (FM) 

method is an effective tool to combine different methods 

(Ye et al. 2016d, McLachlan et al. 2000). Thus, the hybrid 

machine learning approach implemented by FM is also used 

for wind speed forecasting. 

In this study, three machine learning approaches 

(GRNN, BPNN, and ELM) are adopted for wind speed 

forecasting. Furthermore, the optimization algorithm-

assisted machine learning methods (CV-GRNN, GA-

BPNN, and PSO-ELM) as well as the hybrid one (i.e., FM 

method) are developed for improving the forecasting 

performance. For the optimization algorithm-assisted 

approaches, the analytical fitness functions are derived. For 

the FM method, the analytical expressions for calculating 

the weights are derived. Finally, the effectiveness of these 

considered machine learning methods in wind speed 

forecasting are fully investigated by one-year field 

monitoring data, and their performance is comprehensively 

compared as well. The rest of paper is organized as follows. 

In Section 2, the GRNN, BPNN and ELM methods are 

described for wind speed forecasting. Section 3 details 

optimization algorithms, FM method as well as model 

assessment. In Section 4, the instrumented bridge is briefly 

introduced and wind filed measurements are demonstrated. 

The results of wind speed forecasting by the machine 

learning methods are given in Section 5. Finally, Section 6 

ends with some conclusions drawn from this study. 

 

 

2. Machine learning approaches 
 

2.1 GRNN approach 
 

Generalized regression neural network (GRNN) is a 

powerful regression tool with a dynamic network structure 

(Specht 1993). Structure of GRNN includes input layer, 

pattern layer, summation layer and output layer (Heimes et 

al. 1998). Generally, the GRNN is used for the estimation 

of continuous variables using nonlinear regression analysis 

(Cigizoglu 2005). Base on this definition, the dependent 

variable Y, which is network output, involves in an 

independent X, which is network input. The f(x,y) represents 

the known joint continuous probability density function 

(PDF) of x and y. X is a particular measured value of the 

random variable x. The conditional mean of y given X can 

be expressed by (Specht 1991) 
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However, when the f(x,y) is not known, it can be estimated 

from sample observations of X and Y (Specht 1991) 
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where Xi and Yi is the sample observation of the random 

variables x and y; m is the dimension of the random variable 

x; n is the number of samples; and σ is the smoothing 

parameter. By simplifying the Eqs. (1) and (2), we have 
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It can be known from Eq. (3) that the GRNN has only 

one smoothing parameter σ that needs to be determined, 

which is a core parameter in using GRNN for forecasting 

(Specht 1992). The prediction accuracy of GRNN is 

determined by the value of smoothing parameter σ. On the 

one hand, when the value of σ is larger, the estimated value 

of the f(x,y) is smoother, which becomes a multivariate 

Gauss function. On the other hand, when the value of σ is 

smaller, the f(x,y) becomes a non-Gauss model. Therefore, it 

is necessary to use an optimization algorithm to select best 

smoothing parameter σ such as cross validation (CV) (Li et 

al. 2013). 
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2.2 BPNN approach 

 
Back propagation neural network (BPNN) is simply a 

gradient descent method designed to minimize the total 

error of the output computed by the network (Werbos 

1974). In the structure of the BPNN, it consists of an input 

layer, an output layer, and one or more hidden layers 
between them. The hidden layer’s upper limit can be 

determined base on the number of input layer and output 

layer, expressed by (Jadid et al. 1994) 

hidden train input output( ) /p n n n R   (4) 

where Phidden is the number of hidden layer; ninput is the 

number of input layer; noutput is the number of output layer; 

ntrain is the number of sample training; and R is an 

adjustment constant, set as 5≤R≤10. 

The BPNN can express the function mapping 

relationship from ninput independent variables to noutput 

dependent variables, given by (Ding et al. 2011) 
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where xi is the value of input; aj is the output of the hidden 

layer; tkBP is the output of the network; ykBP is the desired 

output; eBP is the error function; φj is the threshold value of 

the hidden layer; φk is the threshold value of the output 

layer; wij is the weight from input layer to hidden layer; wjk 

is the weight from hidden layer to output layer; f1 is the 

transfer function of the hidden layer; and f2 is the transfer 

function of the output layer. 

Once the error is obtained, it is input to the network and 

the weights and threshold have been continuously adjusted 

in the network, aiming to make the error be less than a pre-

set minimum value. Then, input time instants are entered 

into the trained network to obtain the forecasting results. 

The initial weight and initial threshold are important 

parameters of the BPNN, which can be determined by 

optimization algorithms such as genetic algorithm (GA). 

 

2.3 ELM approach 
 
Extreme learning machine (ELM) is composed of input 

layers, hidden layers, and output layers. ELM is an efficient 

learning method for single-hidden layer feed-forward neural 

network (SLFN) (Huang et al. 2006). In the ELM, the input 

weights and thresholds can be determined implicitly by the 

hidden-layer output matrix, which can be expressed by 

(Huang et al. 2007) 

ELM 1 1
( ) ( ) ( )

L L

l l l i l ll l
f x h x g x b  

 
     (8) 

where fELM(x)is the output of the network; xi is an input 

value; βl is the output weights; L is the number of hidden 

layer; wl is the input weights; bl is the threshold; hl(x) is the 

hidden layer function; and g(•) is an activation function. 

The weight parameters β can be calculated by 

minimizing the objective loss function, written as 

ELM ELM1
( )

L

l l i l l ll
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2 2
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where yELMl is the expected output, Y={ yELM1 , yELM2 ,…, 

yELMl }; εELMl is the error between the output value and the 

expected value; H is the hidden layer output matrix of the 

neural network, H={h1(x), h2(x),…, hl(x)}. 

The minimization problem defined in the Eqs. (9) and 

(10) can be solved by well-known least square estimator 

1( )T TH Y H HH Y     (11) 

where H+ is the Moore-Penrose generalized inverse of 

matrix H. 

The performance of ELM largely relies on the given 

labels of training data and initial input weights and initial 

thresholds (Kai et al. 2016). For the training samples, the 

sample errors can be reduced by structural health 

monitoring (SHM) system, which can consider the real 

geographical environment, terrain roughness, structural 

shape, etc. Similarly, the input weights and thresholds can 

be determined by optimization algorithms such as particle 

swarm optimization (PSO). 

 

 

3. Optimization algorithm-assisted and hybrid 
machine learning approaches 
 

3.1 CV-GRNN approach 
 

Cross validation (CV) is a measurement of assessing the 

performance of a predictive model, and performance 

assessment is done based on an independent dataset (Diana 

et al. 2002). Usually, CV is to divide data into two 

segments, which attempts to avoid over-fitting and obtain 

more valid information. One set is used to learn or train a 

model and the other set is used to validate the model 

(Refaeilzadeh et al. 2016). Many CV schemes are 

available, such as K-fold cross validation (K-CV) (Ping et 

al. 2014), leave-one-out cross validation (LOO-CV) (Shao 

et al. 2016). The LOO-CV algorithm needs a long 

computational time. Therefore, the K-CV algorithm is used 

to determine the best smoothing parameter of GRNN. Mean 

square error (MSE) is used as the fitness function of GRNN 

(Braganeto et al. 2004), given by 

2

CVGRNN 1

1
( )

n

i ii
F T Y

n 
   (12) 

where n is the number of samples; Ti is the network training 

output value; and Yi is the expected output value; and 

FCVGRNN is the fitness function. 

The CV-GRNN model includes three important steps 

(Jiang et al. 2016): (i) the data is partitioned into K equally 

folds; (ii) a single sub-sample is regarded as the validation 
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data for testing the model and the remaining K-1 sub-

samples are used as training data; and (iii) the optimal 

parameter are determined by fitness function. 

 

3.2 GA-BPNN approach 
 

Genetic algorithm (GA) is randomized search and 

optimization method, which guided by the principle of 

survival of the fittest (Holland et al. 1973). GA includes 

initial population, fitness function, and genetic operations 

(selection, crossover, and mutation). For the initial 

population, the parameters of the search space are encoded 

in the form of chromosomes. For the fitness function, the 

goodness of the chromosomes is determined. For the 

genetic operations, the process of selection, crossover and 

mutation continues for a fixed number of generations or till 

a termination condition is satisfied (Maulik et al. 2000). 

Therefore, the optimal parameters of BPNN can be 

determined by GA method. GA needs to establish a suitable 

fitness function (Cheung et al. 1997). The absolute value of 

the error between the predicted output and the expected 

output is used as the fitness function 

GABP BP BP

1

| |
m

k k

k

F t y


   (13) 

where m is the network output number; tkBP is the output of 

the network; ykBP is the expected output; and FGABP is a 

fitness function. 

GA-BPNN model consists of three important steps 

(Wang et al. 2016): (i) randomly generate initial weights 

and thresholds; (ii) modify the weights and thresholds by 

fitness function; and (iii) repeat calculation processes until 

the difference between the output of the network and the 

expected output is small enough. 

 

3.3 PSO-ELM approach 
 

Particle swarm optimization (PSO) is a global 

optimization algorithm in which the feasible solution can be 

represented as a point or surface in a multidimensional 

search space (Beheshti et al. 2014). The PSO algorithm 

searches the space of an objective function by adjusting the 

trajectories of individual agents, which is called particles 

(Engelbrecht 2006). Each particle has a memory function, 

and adjusts its trajectory according to two pieces of 

information, the best position that it has so far visited, and 

the global best position attained by the whole swarm 

(Kennedy et al. 1995). The velocity and displacement 

parameters of each particle in the swarm are updated at each 

iteration, expressed by (Wen et al. 2010) 
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where i is the ith particle; ω is a weight; vi(t) is the speed at 

time t; pi(t) is the personal best position; gi(t) is the global 

best position; xi(t) is the position of the particle; c1 and c2 is 

a constant, which adjusting particle step size; r1 and r2 is a 

random number between (0,1); n is the number of samples; 

TPSOELMi is the network training output value; YPSOELMi is the 

expected output value; and FPSOELM is the fitness function 

defined by MSE. 

The PSO algorithm is used to optimize the weight, 

which can be expressed as personal best position in the 

PSO, and threshold, which can be expressed as global best 

position in the PSO, of ELM. It consists of three steps 

(Assareh et al. 2010): (i) randomly generate initial position 

and initial velocity of all particles in the whole search 

space; (ii) update the velocity and position by fitness 

function; and (iii) calculate the value of all particles fitness 

and compare the current values with old personal best 

position and old global best position. 

 

3.4 FM approach 
 

Finite mixture (FM) model, a nonlinear regression 

equation, can be expressed by 

3

FM PM1
( )= ( )n i ini

P t P t
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where PPMin(t) is the predicted output of the ith prediction 

method at time t (PPM1n can be represented for GRNN  

prediction, PPM2n can be represented for BPNN prediction 

and PPM3n can be represented for ELM prediction); Pn(t) is 

the expected output; PFMn(t) is the predicted output based on 

the FM method; ωi is the ith weight factor, ∑ωi=1 and 

0≤ωi≤1. eFMn(t) is the error between the predicted output 

and the expected output; and N is the number of data. 

The Lagrange method, which is effective for solving the 

conditional extremum problem, is used to solve the 

parameter ωi, expressed by 
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where λ represents the Lagrange multiplier; and QFM 

represents the Lagrange function. 

 
3.5 Model assessment 
 

To evaluate the performance of the constructed 

prediction models, the mean absolute error (MAE), mean 

absolute percentage error (MAPE), and root mean squared 

error (RMSE) are adopted as measure criteria. 

The mean absolute error (MAE) of a model with respect 

to a test set is the mean of the absolute values of the  

 

 

 

 

individual prediction errors in the test set. Each prediction 

error is the difference between the true and the predicted 

values, expressed by 

EO PO

1

1
| |

N

t t

t

MAE P P
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   (23) 

where N is the number of predictions; PEOt is the value of 

expected output; and PPOt is the value of predicted output. 

The mean absolute percentage error (MAPE) is a 

measure of prediction accuracy of a forecasting method in 
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Fig. 1 Wind monitoring system installed on the investigated bridge 
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(a) Mean season wind speed 
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(b) Extreme season wind speed 

Fig. 2 Mean season wind speed and extreme season wind speed 
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statistics. It is defined by 
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The root mean square error (RMSE) is a frequently used 

measure of the difference between values predicted by a 

model and the values observed, expressed by 
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4. Investigated bridge and wind field measurements 
 

The Jiubao Bridge is located in Hangzhou, China. The 

total length of the bridge (inclding approach bridge) is 1855 

m, and its main bridge is 3×210 m. One ultrasonic 

anemometer and two mechanical anemometers were 

installed at the 6 meters level above the bridge deck, as 

shown in Fig. 1. The sample frequencies of the ultrasonic 

anemometer and mechanical anemometer are 4 Hz and 0.1 

Hz, respectively. The wind speed range of the ultrasonic 

anemometer is [0, 60] m/s with a resolution of 0.01 m/s, and 

its wind direction range is  [0º, 360º] within an error of 

0.1º. The wind speed measurement range of the mechanical 

anemometer is [0, 45] m/s, and its wind direction range is 

[0º, 360º] within an error of 0.1º. 

The wind data measured by one ultrasonic anemometer 

from September 2014 to August 2015 are utilized to analyze 

the wind field characteristics. The wind data is categorized 

into four seasons: spring wind data (10-min mean spring 

wind speed and 10-min extreme spring wind speed), 

summer wind data (10-min mean summer wind speed and 

10-min mean extreme summer wind speed), autumn wind 

data (10-min mean autumn wind speed and 10-min mean 

extreme autumn wind speed), and winter wind data (10-min 

mean winter wind speed and 10-min mean extreme winter  

For the format requirements of the GRNN, BPNN and 

ELM input data, the wind speed needs to be preprocessed 

and classified. It follows three steps: (i) the wind speed data 

are arranged in a chronological order to establish a time 

series model; (ii) a small number of the first wind speed 

points express the current wind speed label; and (iii) the 

machine learning models are trained and then the wind 

speed data can be forecasted by the constructed models. 

 

 

5. Wind speed forecasting by machine learning 
approaches 
 

5.1 Spring wind speed forecasting 
 

The mean spring wind speeds are forecasted by GRNN, 

BPNN, ELM, CV-GRNN, GA-BPNN, PSO-ELM and FM 

method. The results are shown in Fig. 3. 

It can be seen that the prediction accuracy of ELM is 

better than GRNN and BPNN. Specifically, the RMSEs of 

ELM, GRNN, BPNN are 0.1755, 0.6428, 0.2567, 

respectively, as shown in Fig. 4. As listed in Table 1, the 

weights of ELM, GRNN, BPNN are 1, 0, 0 respectively. 

Obviously, CV-GRNN, GA-BPNN, PSO-ELM and FM 

method can effectively improve the forecasting 

performance. For the CV-GRNN, its MAE, MAPE and 

RMSE are 60.94%, 69.94%, 53.00% less than those of 

GRNN. For the GA-BPNN, its MAE, MAPE and RMSE 

are 33.90%, 48.80%, 3.39% less than those of BPNN. The 

MAE and RMSE of PSO-ELM are 2.11%, 5.70% less than 

those of ELM, while the MAPE of PSO-ELM is 3.38% 

more than ELM. 

For the FM method, its MAE, MAPE and RMSE are 

77.76%, 82.45%, 72.70% less than those of GRNN. MAE, 

MAPE and RMSE of FM are 34.36%, 46.00%, 31.63% less 

than those of BPNN. It can be concluded that the 

performance of FM method depends on the compontents 

and is better than single model method. 

The extreme spring wind speed is forecasted by GRNN, 

BPNN, ELM, CV-GRNN, GA-BPNN, PSO-ELM and FM 

method. The results are shown in Fig. 5. 

It can be seen that the prediction accuracy of ELM is 

better than GRNN and BPNN. Specifically, the RMSEs of 

ELM, GRNN, BPNN are 0.2124, 0.6175, 0.2499, 

respectively, as shown in Fig. 6. 

 

 

Table 1 Weights in FM method (for mean wind speed) 

Weight GRNN BPNN ELM 

Spring wind 0 0 1 

Summer wind 0 0.4892 0.5108 

Autumn wind 0 0.04332 0.5668 

Winter wind 0 0 1 
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Fig. 3 Forecasting of mean spring wind speed by machine 

learning approaches 
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Fig. 4 Performance of machine learning approaches in  

forecasting mean spring wind speed 
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Fig. 5 Forecasting of extreme spring wind speed by 

machine learning approaches 

 

 

GRNN CV-GRNN BPNN GA-BPNN ELM PSO-ELM FM
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

V
al

u
e

Prediction model

 MAE

 MAPE

 RMSE

 
Fig. 6 Performance of machine learning approaches in 

forecasting extreme spring wind speed 

 

Table 2 Weights in FM method (for extreme wind speed) 

Weight GRNN BPNN ELM 

Extreme spring wind 0 0.2516 0.7484 

Extreme summer wind 0 0.2178 0.7822 

Extreme autumn wind 0 0.3382 0.6618 

Extreme winter wind 0 0.3657 0.6343 

 

 

As listed in Table 2, the weights of ELM, GRNN, BPNN 

are 0.7484, 0, 0.2516 respectively. Obviously, CV-GRNN, 

GA-BPNN, PSO-ELM and FM method can effectively 

improve the forecasting performance. For the GA-BPNN, 

its MAE, and RMSE are 6.42%, 5.64% less than those of 

BPNN, while the MAPE of GA-BPNN is 4.93% more than 

BPNN. For the GA-BPNN, its MAE, and RMSE are 6.42%, 

5.64% less than those of BPNN, while the MAPE of GA-

BPNN is 4.93% more than BPNN. The MAE and RMSE of 

PSO-ELM are 2.11%, 5.70% less than those of ELM, while 

the MAPE of PSO-ELM is 3.38% more than ELM. 

For the FM method, its MAE, MAPE and RMSE are 

66.14%, 68.98%, 66.45% less than those of GRNN. MAE 

and RMSE of FM are 8.15%,17.09% less than those of 

BPNN, while the MAPE of FM is 2.46% more than BPNN. 

MAE, MAPE and RMSE of FM are 5.68%, 6.52%, 2.45% 

less than those of ELM. It can be concluded that the 

performance of FM method depends on the compontents 

and is better than single model method. 

 

5.2 Summer wind speed forecasting 
 

The mean summer wind speeds are forecasted by 

GRNN, BPNN, ELM, CV-GRNN, GA-BPNN, PSO-ELM 

and FM method are shown in Fig. 7. 

As seen from Fig. 8, for the CV-GRNN, its MAE, 

MAPE and RMSE are 15.06%, 14.26%, 14.59% less than 

those of GRNN. For the GA-BPNN, its MAE, MAPE and 

RMSE are 5.54%, 11.06%, 4.90% less than those of BPNN. 

The MAE, MAPE and RMSE of PSO-ELM are 7.31%, 

1.00%, 7.18% less than those of ELM. 

For the FM method, its MAE, MAPE and RMSE are 

66.53%, 68.19%, 67.60% less than those of GRNN. MAE, 

MAPE and RMSE of FM are 1.20%, 5.87%, 3.02% less 

than those of BPNN. MAE and RMSE of FM are 0.83%, 

2.80% less than those of ELM, while the MAPE of FM is 

4.25% more than ELM. 

The extreme summer wind speeds are forecasted by 

GRNN, BPNN, ELM, CV-GRNN, GA-BPNN, PSO-ELM 

and FM method are shown in Fig. 9. 

As seen from Fig. 10, for the CV-GRNN, its RMSE is 

1.40% less than those of GRNN, while the MAE and 

MAPE of CV-GRNN are 9.04%, 13.06% more than those 

of GRNN. For the GA-BPNN, its MAE, MAPE and RMSE 

are 5.57%, 7.80%, 5.12% less than those of BPNN. The 

RMSE of PSO-ELM is 6.38% less than ELM, while the 

MAE and MAPE of PSO-ELM are 2.40%, 18.95% more 

than those of ELM. 
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Fig. 7 Forecasting of mean summer wind speed by  

machine learning approaches 
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Fig. 8 Performance of machine learning approaches in  

forecasting mean summer wind speed 

 

 

0 4 8 12 16 20 24
1

2

3

4

5

6

7

8

9

W
in

d
 s

p
ee

d
 (

m
/s

)

Time (h)

 Measured data

 GRNN

 CV-GRNN

 BPNN

 GA-BPNN

 ELM

 PSO-ELM

 FM

 
Fig. 9 Forecasting of extreme summer wind speed by 

machine learning approaches 
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Fig. 10 Performance of machine learning approaches in  

forecasting extreme summer wind speed 

 

 

For the FM method, its MAE, MAPE and RMSE are 

45.99%, 40.50%, 52.64% less than those of GRNN. MAE 

and MAPE of FM are 4.70%, 16.34% less than those of 

BPNN, while the RMSE of FM is 10.00% more than 

BPNN. RMSE of FM is 7.93% less than ELM, while the 

MAE and MAPE of FM are 0.60%, 12.47% more than 

those of ELM. 

 

5.3 Autumn wind speed forecasting 
 

The mean autumn wind speeds are predicted by GRNN, 

BPNN, ELM, CV-GRNN, GA-BPNN, PSO-ELM and FM 

method are shown in Fig. 11. 

As seen from Fig. 12, for the CV-GRNN, its MAE, 

MAPE and RMSE are 14.91%, 14.68%, 10.54% less than 

those of GRNN. For the GA-BPNN, MAE, MAPE and 

RMSE are 1.35%, 3.35%, 5.69% less than those of BPNN. 

The MAE, MAPE and RMSE of PSO-ELM are 13.08%, 

10.60%, 22.16% less than those of ELM. 

For the FM method, its MAE, MAPE and RMSE are 

63.20%, 61.19%, 59.04% less than those of GRNN. MAE 

and MAPE of FM are 0.56%, 1.47% more than those of 

BPNN, while the RMSE of FM is 7.28% less than BPNN. 

The extreme autumn wind speeds are predicted by 

GRNN, BPNN, ELM, CV-GRNN, GA-BPNN, PSO-ELM 

and FM method are shown in Fig. 13. 

As seen from Fig. 14, for the CV-GRNN, its MAE, 

MAPE and RMSE are 19.47%, 14.65%, 26.65% less than 

those of GRNN. For the GA-BPNN, MAE, MAPE and 

RMSE are 7.88%, 7.26%, 7.83% less than those of BPNN. 

The MAE, MAPE and RMSE of PSO-ELM are 6.77%, 

5.45%, 4.52% less than those of ELM. 

For the FM method, its MAE, MAPE and RMSE are 

56.01%, 53.62%, 56.94% less than those of GRNN. MAE, 

MAPE and RMSE of FM are 8.95%, 9.20%, 7.30% less 

than those of BPNN. MAE, MAPE and RMSE of FM are 

1.91%, 0.19%, 2.08% less than those of ELM. 
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Fig. 11 Forecasting of mean autumn wind speed by 

machine learning approaches 
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Fig. 12 Performance of machine learning approaches in  

forecasting mean autumn wind speed 
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Fig. 13 Forecasting of extreme autumn wind speed by  

machine learning approaches 
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Fig. 14 Performance of machine learning approaches in  

forecasting extreme autumn wind speed 

 

 

 

5.4 Winter wind speed forecasting 
 

The mean winter wind speeds are predicted by GRNN, 

BPNN, ELM, CV-GRNN, GA-BPNN, PSO-ELM and FM 

method are shown in Fig. 15. 

As can be seen from Fig. 16, for the CV-GRNN, its 

MAE, MAPE and RMSE are 5.70%, 13.44%, 4.84% less 

than those of GRNN. For the GA-BPNN, its MAE, MAPE 

and RMSE are 21.29%, 32.46%, 19.29% less than those of 

BPNN. The MAE, MAPE and RMSE of PSO-ELM are 

16.65%, 17.62%, 19.58% less than those of ELM. 

For the FM method, its MAE, MAPE and RMSE are 

60.29%, 57.96%, 58.48% less than those of GRNN. MAE, 

MAPE and RMSE of FM are 30.06%, 33.22%, 25.62% less 

than those of BPNN. 

The extreme winter wind speeds are predicted by 

GRNN, BPNN, ELM, CV-GRNN, GA-BPNN, PSO-ELM 

and FM method are shown in Fig. 17. 

As can be seen from Fig. 18, for the CV-GRNN, its 

MAE, MAPE and RMSE are 15.55%, 20.26%, 15.13% less 

than those of GRNN. For the GA-BPNN, its MAE, MAPE 

and RMSE are 4.72%, 5.18%, 5.61% less than those of 

BPNN. The MAE, MAPE and RMSE of PSO-ELM are 

2.57%, 5.67%, 1.04% less than those of ELM. 

For the FM method, its MAE, MAPE and RMSE are 

58.25%, 60.22%, 56.87% less than those of GRNN. MAE, 

MAPE and RMSE of FM are 1.24%, 3.60%, 1.66% less 

than those of BPNN. MAE and RMSE of FM are 0.25%, 

0.54% less than those of ELM, while the MAPE is 1.18% 

more than ELM. 

 

 

6. Conclusions 
 

In this paper, various machine learning methods are 

explored to forecast the wind speed. A total of seven 

machine learning methods are under consideration, namely  
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Fig. 15 Forecasting of mean winter wind speed by 

machine learning approaches 
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Fig. 16 Performance of machine learning approaches in  

forecasting mean winter wind speed 
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Fig. 17 Forecasting of extreme winter wind speed by  

machine learning approaches 
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Fig. 18 Performance of machine learning approaches in  

forecasting extreme winter wind speed 

 

GRNN, BPNN, ELM, CV-GRNN, GA-BPNN, PSO-ELM, 

and FM. In particular, CV-GRNN, GA-BPNN, PSO-ELM 

belong to the optimization algorithm-assisted machine 

learning approaches, and FM is a hybrid machine learning 

approach consisting of GRNN, BPNN, and ELM. 

One-year wind speed monitoring data collected by an 

SHM system installed on the Jiubao Bridge is adopted to 

demonstrate the applicability of these machine learning 

approaches in forecasting the wind speed. The forecasting 

performance of these machine learning methods is fully 

compared. The main conclusions drawn from this study are 

summarized as follows: 

1. Overall, the optimization algorithm-assisted and 

hybrid machine learning approaches have better 

forecasting performance than the traditional machine 

learning methods (GRNN, BPNN, and ELM). 

2. For the traditonal machine learning methods, the 

forecasting accuracy of ELM is better than GRNN and 

BPNN. Optimization algorithms integrated into the 

machine learning methods can improve the forecasting 

performance. For the optimization algorithm-assisted 

machine learning methods, the forecasting 

performance of PSO-ELM is better than CV-GRNN 

and GA-BPNN. 

3. The forecasting accuracy of FM method largely 

depends on the machine learning methods and is better 

than machine learning methods, which are components 

of FM method. The hybrid machine learning approach 

(e.g., FM) and the optimization algorithm-assisted 

ones have similar forecasting performance. 
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