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1. Introduction 
 

The civil infrastructure of a nation is a key indicator of 

economic growth and productivity (Romp and Haan 2007), 

possession of a reliable transport infrastructure facilitates 

production, tourism and many other commercial interests. 

In 2016, the United Kingdom (UK) government invested 

over £18.9 billion in infrastructure, with over 85% of this 

figure allocated to transport infrastructure (Office of 

National Statistics 2018). Facilitating over 90% of 

motorized passenger travel and 65% of domestic freight, the 

road network is the most popular means of transport in the 

UK. The road network is under continuous levels of stress 

from loading and environmental impacts whose effects can 

be detrimental to the integrity of the network. UK transport 

infrastructure is rated as second worst among the G7 

countries (World Economic Forum 2018), and there is a 

bridge maintenance backlog valued at £6.7bn in 2019.  
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(RAC Foundation 2019). In the UK, the budget for core 

bridge maintenance has been reduced by up to 40% in 

recent years (OECD 2016). This problem is extensible to 

most western countries. For instance, according to the 2017 

Infrastructure report card, the corresponding figure in the 

USA is $123bn resulting in 188 million daily trips across 

structurally deficient bridges (ACSE 2017). This budgetary 

shortfall means that cost effective and accurate structural 

information on bridge condition is becoming increasingly 

important. According to literature (Graybeal et al. 2002, See 

2012), the prevalent method for bridge monitoring 

continues to be visual inspections which can be highly 

subjective and differ depending on climatic conditions. 

Structural Health Monitoring (SHM) systems provide a 

valuable alternative to traditional inspections and overcome 

many of the previous limitations. SHM can provide an 

unbiased means of determining the true state of our ageing 

infrastructure. Sensor systems are used to monitor bridge 

deterioration and provide real information on the capacity 

of individual structures, hence extending the safe working 

life of bridges and improving safety. In particular, 

monitoring of the displacement of a structure under live 

loading provides valuable insight into the structural 

behaviour and can provide an accurate descriptor of bridge 

condition and provide validation for numerical assessments 

such as structural stress methods (Ye et al. 2015). Testing 

under live loading conditions also removes the requirement 
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for bridge closure, an expensive undertaking which has 

knock on effects on other bridge structures as vehicles are 

diverted to alternative routes, increasing their loading. To 

monitor deterioration over time it is vital that the cause of 

displacement is also understood. Relating real time 

displacement along the span of a bridge to load type and 

location provides an opportunity to accurately identify 

localised damage within the structure. This research 

involves the use of Computer Vision methods for SHM. The 

basic principle involves using a camera to monitor the 

behaviour of a bridge as it experiences various effects – 

traffic load, varying temperature etc. Computer vision 

methods are used in this research as they are low cost, 

accurate and easily deploy able in the field. Previous 

research in this area has employed cameras to determine 

displacement, acceleration, natural frequency and response 

to temperature loads of bridges with varying span lengths. 

The bulk of the existing research is centred on single 

camera systems; this means that a trade-off between pixel 

accuracy and monitoring accuracy must be taken into 

consideration on bridges with a longer span. To reduce this 

factor, multi-point/multi-camera systems for displacement 

monitoring have been explored in the literature. Existing 

multi-camera methods require extensive cabling or impose 

range limitations on the system. This research will expand 

upon the current state of the art by successfully 

demonstrating the application of a wireless long range fully 

time synchronised application of displacement monitoring 

using Computer Vision. The findings presented in this paper 

show that displacement monitoring using computer vision 

methods can be used on long span bridges with the 

methodology of the system development presented in this 

paper. While accurate displacement information for abridge 

structure is useful, it is necessary to also identify the cause 

of this displacement through load identification. The 

established solutions for load identification have either used 

in situ instrumentation such as bridge weigh in motion (B-

WIM) or coarse-grained video classification algorithms, 

this research will demonstrate the development of a fine-

grained vehicle classification method.  

The underlying challenge addressed by the research is 

that of obtaining accurate bridge response to correctly 

classified applied live load. Pairing these two inputs will 

allow the developed system to output statistical information 

to aid in the decision-making process for allocation of 

bridge maintenance resources. 

 

 

2. Literature review 
 

2.1 Review of multipoint displacement systems 
 
In recent years, Computer Vision techniques have been 

applied to the field of SHM, allowing conventional Charge-

coupled device (CCD) cameras to be used, as is discussed 

by Ye et al. (2016). One of the first studies carried out in 

this area was the work on the Humber Bridge using targets 

in conjunction with a template matching method performed 

by Stephen et al. (1993). In this work, a camera with zoom 

lens was focused on a high-contrast target that was installed 

at mid span of the Humber Bridge. Due to limits on storage 

capacity, a limited frame rate of 4.17 frames per second 

(FPS) was used for this testing which limits the information 

gathered from live loading. The results were compared to 

integrated acceleration values, only a visual comparison of 

the results was presented in the paper. While the lack of 

statistical comparison between the vision-based results and 

the traditional instrumentation is unfortunate, the results of 

the work were promising and were an early step in 

demonstrating the viability of using a camera to study 

bridge displacement. This experiment style, where a single 

camera was pointed at mid span of a bridge has been 

repeated several times in multiple studies (Ye et al. 2013, 

Zaurin and Catbas 2011, Fukuda, et al. 2010, Feng et al. 

2015) with increasing accuracy as camera technology and 

image processing systems have developed over time. For 

the study of long span bridges, the use of multiple cameras 

has become increasingly prevalent. Multiple camera 

systems have a number of inherent advantages over single 

camera systems: multiple point measurements can be 

carried out on longer span bridges and the pixel: mm 

resolution can be greatly improved for multiple point 

measurements which reduces the measurement error. (Park 

et al. 2010) developed a partitioning method for studying 

the displacement of a high rise building where paired 

cameras would be used in series to monitor progressively 

higher levels of a tall building. Theoretically this system 

would result in a detailed analysis of building response, 

unfortunately in this study the authors do not explain or 

verify that their multiple cameras are accurately 

synchronised, so this application cannot be considered a 

viable multiple camera approach. A wired system for multi-

point displacement using an optical flow method was 

demonstrated in laboratory work by Dong et al. (2018). 

Their results were very promising with a standard deviation 

between camera and potentiometer of 0.0154 mm. Their 

system for time synchronisation involved the cameras being 

cabled directly into the control unit, with time 

synchronisation handled by a USB timer. This type of 

centralised system can be time consuming to install and is 

limited to a centralized data server where data are collected 

and analysed that can become the main critical point of 

failure for the whole system.  Additional multi-camera 

setups are trailed as shown in the literature by Malesa et al. 

(2016) and Malowany et al. (2017).  

 

 

Fig. 1 Modified Action Camera with Zoom lens and 

synchronization hardware attached 
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A fully contactless time synchronized multi-camera system 

using modified action cameras (Fig. 1) for displacement 

(referred to below as QUBDisp) was developed and 

validated by the authors in work by Lydon et al. (2018). 

This system will be used in the field trials presented in 

Section 3 of this paper. 

 

2.2 Review of composite systems for displacement 
measurement and analysis of bridge response 

 

A hybrid sensor camera system for classifying vehicles 

was developed by Yan et al. (2008). In this paper, the 

authors laid out a system for grouping vehicles into seven 

different classes depending on the readings from electrical 

resistant strain gauges (ERSG) which were time 

synchronised with video images of the vehicles passing 

over a test bed. A neural network was developed to classify 

the vehicles based on the application of a Bayesian filter to 

the collected strain gauge readings. The main purpose of the 

video images was to establish the location of the vehicles on 

the deck. It was suggested that they could also be used to 

give gross weights of vehicles by assigning weights based 

on classes that were determined by an image based neural 

network. The classes were determined by annotating the 

database of images obtained from the cameras. In another 

research study by Fraser et al. (2010) a background 

subtraction method was used to identify the presence of a 

vehicle on the bridge. The background subtraction method 

is a technique where images of the empty bridge are used to 

provide a means of determining when a vehicle is travelling 

on the bridge. That is, images of the empty bridge are 

initially obtained, and then subtracted from images taken 

during a test. Any objects remaining after this subtraction 

are judged to be vehicles and subjected to further analysis 

for classification. Various techniques can be used for 

background subtraction, further reading can be found in the 

review by Piccardi (2004).  

 

 

 

 

Fig. 2 Test Setup (Zaurin and Catbas 2011) 

 

 

 

Images taken from a camera capturing images at 3 FPS 

were used with readings taken from paired with 

accelerometers scanning at 1000 Hz, foil strain gauges and 

thermocouples. The images from the camera were time 

stamped using LabVIEW to provide a means of 

synchronisation with the readings from the traditional 

instrumentation. The study did detect variations in natural 

frequencies in the range of 7-13%, without correlation of 

vehicle loads to bridge response it is difficult to determine 

the cause of this variance. Further laboratory-based testing 

of a camera-sensor system which utilised computer vision-

based algorithms to determine the type of vehicle crossing a 

model bridge was carried out by Zaurin and Catbas (2011). 

The position of the vehicle at specified times was logged in 

order to build the Unit Influence Line (UIL) using the 

corresponding data obtained from 20 foil type strain gauges 

scanning at 1 kHz from the transducers placed on the 

underside of the model bridge as shown in Fig. 2.  

The proposed system provided promising results, 

particularly in detecting changes in the bridge response 

based on various damage scenarios. However, this research 

is not transferable to field applications as it does not deal 

with an inherent issue of multiple sensor systems: time 

synchronisation. The data logger and USB camera in this 

study were linked to the same computer and could have 

been synchronised to the same time stamp. However, this 

particular approach is not feasible in the field as the USB 

camera did not have the required pixel resolution to detect 

deflection at the accuracy needed from typical distances in 

the field. Moreover, this vision-based system could only 

differentiate between three types of predetermined vehicle 

classes and a larger database would have created a more 

viable system for use in the field. This system was verified 

further by a field trial by Zaurin et al. (2015). In this work, 

video recordings were synchronised with strain readings 

from Hi-Tec weldable dynamic strain gauges that were 

attached to the main girders at the west and east bascule 

leaves of the Sunrise Bridge in Florida, USA. These 

readings were used to construct the Unit Influence Line 

(UIL) from numerous vehicle crossings on the bridge. The 

readings were synchronised using a Data Acquisition 

System (DAQ) which transmits data from each unit to a 

dedicated server using dedicated wireless network cards 

that are time locked through use of GPS timing receivers. 

Through the simulation of damage by adding and removing 

structural elements, the UIL created by the system can 

detect these changes, validating the presented method. The 

use of the background subtraction algorithm and 

requirement for strain gauges have significant limitations 

for field applications. Nevertheless, the underlying theory is 

a promising one and has provided the basis of the work 

carried out in this paper. A completely camera-based system 

for load identification and the corresponding displacement 

response measurement was developed by Ojio et al. (2016). 

The concept was to use two cameras which were time-

synchronised, the first camera was used to measure sub-

millimetre deflections on the underside of the bridge deck 

and the second camera to monitor passing vehicles on the 

bridge surface. The vehicle tracking camera was used a 

means of manually determining what vehicle type crossed  
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the bridge during a displacement event. There was no 

process to automatically detect or classify the vehicles 

crossing the bridge. This camera-based system provides a 

great advantage in situations where access to the underside 

of the bridge is restricted, thus making it very difficult to 

attach sensors particularly displacement which need to be 

independently supported. This research was also used as a 

basis for the research presented below. It was important the 

system could classify vehicles into types, as for certain 

classes of vehicle (e.g., 5-axle semi-trailers), the peak in the 

histogram of weights is highly repeatable, therefore it 

follows that the histogram of bridge deflections in response 

to that vehicle class, is repeatable. Once seasonal trends 

have been removed, any change in that most frequent 

deflection then indicates that the bridge’s stiffness has 

changed, i.e., that there has been damage. This approach 

should be highly effective for long term monitoring. 

 
2.3 Overview of the usage of convolutional neural 

networks for vehicle detection and classification 
 
In recent years there has been significant research into 

the concept of deep learning, a subset of machine learning. 

Deep learning has been used in many applications, for 

example: driverless cars, translations, image colourisation 

and facial recognition with state-of-the-art results. The 

primary disadvantage to deep learning is that the training 

process requires a significant amount of data to obtain 

accurate results, with object classification tasks requiring 

thousands of images for accurate classification. Object 

classification and detection tasks using deep learning are 

typically performed using a Convolutional Neural Network 

(CNN). The concept of a CNN was inspired by a study by 

Hubel and Wiesel (1962) which discovered that different 

cells (or neurons) in the visual cortex were activated when 

the subject viewed basic shapes. This means that separate 

parts of the visual cortex were recognising different shapes,  

 

 

for example one cell could be responsible for determining if 

a shape is a straight line, another for curved lines and so on. 

When all these neurons are combined into a structure, the 

basis for visual recognition is produced. A CNN replicates 

this concept but does so using several layers of various 

types. Further reading on the concepts behind CNNs can be 

found in the literature (Cavaioni 2018). An implementation 

of GoogLeNet (Szegedy et al. 2015) for traffic detection 

was developed by Zhuo et al. (2017) an accuracy of up to 

98% was achieved when classifying images from a data set 

created with the following classes: Large Bus, Car, 

Motorcycle, minibus, truck and van. 

While the accuracy of this implementation is excellent, 

the requirement of having to crop and provide images to the 

CNN render it unsuitable for the purposes of this research.  

Additionally, it was desired to have a finer-grained 

differentiation between classes of truck, specifically by axle 

count, for the proposed implementation. Suhao et al. (2018) 

applied the Faster R-CNN (Ren et al. 2015) model using 

VGGNet (Simonyan and Zisserman 2015) for initial feature 

map generation to traffic detection over 3 classes: car, 

minibus and SUV. The mean Average Precision (mAP) 

(Worth 2010) of the classes detected ranged from 78%-85% 

which is acceptable, the lack of fine-grained traffic 

detection/classification is unsatisfactory for the 

requirements of our desired system. Faster R-CNN was also 

employed by Arinaldi et al. (2018) to detect and classify 

vehicles into either car, small van, bus, small truck or large 

truck categories. A mAP of 67% -69% was achieved over 

all classes based on a data set created from traffic videos. It 

was decided to use a similar image gathering method for 

this research as it enabled collection of ‘real-life’ data to be 

used for training the CNN, which can potentially improve 

accuracy of the system. Although these systems do show 

promising results in their desired application, they are not 

sufficient for replacing conventional methods for vehicle 

detections such as Bridge Weigh in Motion. Therefore, it 

 

Fig. 3 Overview of proposed approach; (a) Camera identifies truck class/type on bridge and tracks it, (b) Histogram of gross 

vehicle weight for the identified class of truck and (c) Histogram of maximum mid-span displacement for that class of truck 

for the healthy and damaged cases 
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was decided to implement a fine-grained system for vehicle 

detection and classification based on axle count. 

 

 

3. Development and testing of proposed system for 
vehicle classification and displacement 
measurement 
 

3.1 Development of vehicle classification method 
 
The You Only Look Once (YOLO) method was chosen 

as the basis for creating a fine-grained system for vehicle 

classification (Redmon and Farhadi 2018). It was selected 

due to the excellent performance of YOLO compared to 

other CNN implementations. The underlying architecture 

for feature extraction in Yolo is Darknet-53 and is shown in 

Fig. 4. 

YOLO uses anchor boxes to make predictions of object 

locations in an image. Anchor boxes give a general shape of 

objects to be detected and are calculated by using k-means 

clustering on the bounding boxes of objects used to train 

YOLO. YOLO then divides an image into an SxS grid. 

YOLO detects objects at multiple scales so S can vary 

depending on what scale of image has been passed through 

the input pipeline. The prediction confidence for object 

detection in each cell is then calculated, using Intersection 

over Union (IoU) between a predicted bounding box and 

the anchor boxes. 

 

 

 

 

Fig. 4 Darknet-53 architecture (Redmon and Farhadi 2018)  

 

 

 

Table 1 Class Breakdown of Image Dataset for QUBYOLO 

Training 

Class Image Count 

Car 1,461 

Bus 1,410 

Van 1,170 

Two-Axle Truck 1,559 

Three-Axle Truck 1,537 

Four-Axle Truck 1,788 

Five-Axle Truck 1,276 

Six- Axle Truck 831 

Negative Images  

(Diverse Objects etc.) 
7295 

 

 

If the IoU values exceeds a user defined threshold 

YOLO determines that an object is present at that cell 

location in the scene. The centroid of the predicted 

bounding box is then converted to real world coordinates 

using a conversion ratio based on reference points in the 

scene. This was performed in this research by determining 

the location of, and the distance between, two pillars on the 

bridge used in the field trial. In order to create a valid 

implementation of YOLO for vehicle classification 

(hereafter referred to as QUBYOLO) an image database of 

different vehicle types had to be created. Numerous images 

of diverse objects that did not resemble the objects were 

also used to provide further data for comparison during 

training of QUBYOLO. 

The images were collated from online databases and the 

data store was then increased using a process known as 

image augmentation. Image augmentation is a technique 

that slightly modifies an image passed to the process 

resulting in an image that, to a CNN, is distinct from the 

original version. This means that an image data set can be 

increased, allowing for more accurate training, without 

having to capture large amounts of new data. Prevalent 

augmentations include colour channel modification, 

horizontal and vertical flipping, translation, rotation and 

scaling. The total images per class is shown in Table 1.  

A split of 60% training, 20% validation and 20% testing 

on each data set was performed for all image classification 

trials. Essentially, 60% of the gathered images were used to 

train QUBAN through the process of back propagation as 

explained above. 20% were used to validate training as it 

was being carried out; this process involves tuning the 

hyper parameters (e.g. learning rate, number of epochs, and 

the size of the image batch used to update the weights in a 

single pass) used in the training step by evaluating the 

predictive accuracy of an attempt by the network to classify 

a set of images. The network does not directly learn from 

these images; the results are only used as a basis for 

parameter modification. The final 20% of the image data set 

(which the trained CNN had never been seen before) is used 

to test the predictive accuracy of the trained network. The 

reason the images are split into 3 portions is that if the same 

images are used to both train and validate the network, the 
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risk of over fitting increases. The separate testing portion is 

needed to approximate the real-world performance of the 

trained CNN on images it has not previously encountered. 

The average precision values for QUBYOLO at a threshold 

of 0.5 IoU between proposed bounding boxes and ground 

truth for testing images is shown in Table 2. 

The mAP for the implementation of QUBYOLO was 

73.55%. This high precision paired with the location of 

objects in the image scene resulted in QUBYOLO being 

deemed sufficiently accurate to be implemented in the 

evaluation of the full system for synchronised displacement 

measurement and load identification, which is detailed in 

the following section. 

 

3.2 Evaluation of synchronised QUBYOLO & 
QUBDisp in field conditions 

 

A field trial was carried out to investigate the 

applicability of QUBYOLO for fine-grained vehicle 

detection on traffic images with the time synchronised 

deflection readings from multiple cameras. The trial was 

carried out at Verners Bridge, Dungannon. Illustrated in Fig. 

5, Verners Bridge is a 30 m span steel truss bridge situated 

on the Tamnamore road in Dungannon, Northern Ireland. 

This road provides access to a busy industrial estate and 

is therefore frequently used by HGVs. Additionally, traffic 

on the bridge is controlled by a traffic light system which 

creates a single lane of traffic in one direction at any one 

point in time. This simplifies cases of multiple events on the 

bridge. Normal bridge behaviour was expected for this trial 

as the bridge was recently strengthened by Department for 

Infrastructure. 

 

 

Table 2 AP for QUBYOLO 

Class Average Precision (%) 

Car 86.77 

Bus 80.49 

Van 66.67 

Two-Axle Truck 74.32 

Three-Axle Truck 65.99 

Four-Axle Truck 77.66 

Five-Axle Truck 63.22 

Six- Axle Truck 73.32 

 

 

Fig. 5 Side elevation of Verners Bridge 

 

Fig. 6 Location of Cameras and Monitoring Location on 

Verners Bridge 

 

 

 

Fig. 7 Representation of Monitoring angle at Verners Bridge 

 

 

Three GoPro cameras were used to track displacement 

on the bridge. The cameras were set up 13m from the bridge 

and set to the monitor the  and  span of the bridge. A 

4th camera was deployed to record traffic images above the 

bridge deck. All 4 cameras were fitted with Syncbac 

accessories and set to record at 25fps. The location of each 

camera and its monitoring location on the bridge can be 

seen in Fig. 6 and a representation to show the monitoring 

angle can be seen in Fig. 7. 

The  span location was easily identifiable in the above 

deck image therefore this location was selected to extract 

images for QUBYOLO vehicle classification. The readings 

from each displacement camera were analysed using 

QUBDisp, the monitored displacements from 3 separate 

vehicle passes over the bridge is shown in Figs. 8-10. 

Once the displacement for the truck events was 

obtained, it was possible to calculate an approximation of 

bridge response based on the applied load to the bridge 

structure. This was calculated for this trial by obtaining the 

displacement measurements when the first truck axle was at 

quarter span through a geometric transformation between 

the image coordinate (captured by the camera system) and 

the world coordinate of the bridge. An approximate curve of 

spatial displacement response was calculated using the  
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Fig. 8 Displacement from Pass 1 on Verners Bridge 

 

 

Fig. 9 Displacement from Pass 2 on Verners Bridge 

 

 

curve fitting toolbox in MATLAB, it was assumed the 

bridge behaved like a simply supported structure. This 

displacement profile was used as a precursor to creation of a 

complete influence line that could be developed after access 

to a categorised weights database. The QUBYOLO 

implementation was then used to classify the images 

obtained from the traffic camera. QUBYOLO was not 

successful in all frames captured from the traffic camera, 

the precision (how accurate were the predictions) and recall 

(what proportion of all possible correct predictions were 

made) from the target class of vehicle in each pass are 

shown in Table 3. 

 

Fig. 10 Displacement from Pass 3 on Verners Bridge 

 

 

 

Fig. 11 QUBYOLO Prediction and Approximate Spatial 

Displacement Response for Pass 1 at Quarter Span 
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Fig. 12 QUBYOLO Prediction and Approximate Spatial 

Displacement Response for Pass 2 at Quarter Span 

 

A decrease in performance was noted when the object 

was not centred in the field of view of the camera, most 

inaccurate predictions were made when this was the case. 

This was particularly problematic for the six axle HGV as 

not all axles were visible in the view of the traffic camera 

during image capture. Careful consideration needs to be 

taken regarding the camera position and orientation when 

setting up a monitoring location for a long-term 

implementation of this system. The use of images where 

vehicles were cropped and centred in the image to train 

QUBYOLO may also have led to this reduction in 

performance. Successful identifications from QUBYOLO 

as the front axle of each vehicle passed the quarter span 

monitoring location and the approximate curve of spatial 

displacement response from the bridge at this time are 

shown in Figs. 11 -13.  The results obtained in this field 

trial confirm the successful identification of vehicle 

position/type in combination with monitoring of 

displacement of a bridge structure. 

 

Table 3 Precision and Recall Results for Field Evaluation of 

QUBYOLO 

Target Class Precision (%) Recall (%) 

Bus (Pass 1) 78 58 

Six Axle HGV (Pass 2) 45 60 

Two Axle HGV  

(Pass 3) 
63 50 

 

 

Fig. 13 QUBYOLO Prediction and Approximate Spatial 

Displacement Response for Pass 3 at Quarter Span 

 

 

4. Conclusions  
 

This paper has presented a review of the current state-

of-the-art in relation to vehicle detection for bridge 

monitoring systems using computer vision and adapted 

CNN. This review identified a critical need for a non-

contact and non-destructive method of vehicle classification 

from recorded images which can be accurately related to the 

corresponding bridge response to live loading. Previous 

research presented AI vision-based traffic identification 

methods which were suitable for traffic studies with the 

potential for use in condition rating of bridges but with a 

need for improved accuracy. The development and testing 

of the QUBYOLO method has resulted in acceptable 

performance and greater applicability for the requirements 

of this research, that is, the algorithm has been proven 

capable of accurate detection and location of objects in an 

image scene. The field trial has also demonstrated the 

flexibility of the system as the camera used to record 

images of traffic was in a position and orientation that had 

not been used previously when capturing images for 

training. The successful identification of multiple vehicle 

types has shown that QUBYOLO is suitable for the fine-

grained vehicle classification required to identify applied 

load to a bridge structure. No other research work has been 

found which has successfully classified HGV’s into groups 
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which are specific enough to facilitate load identification. 

The process of displacement analysis and vehicle 

classification for the purposes of load identification which 

was used in this research adds to the body of knowledge on 

the monitoring of existing bridge structures, particularly 

long span bridges, and establishes the significant potential 

of computer vision and Deep Learning to provide 

dependable results on the real response of our infrastructure 

to existing and potential increased loading. Future work in 

this area would involve the analysis of axle spacing of the 

captured vehicles, which could be used in combination with 

a vehicle weights database to create an influence line of 

bridge response to applied load. Access to a vehicle weights 

database categorised by axle count would facilitate 

calculation of approximate applied load for influence line 

creation. A damage detection method based on changes in 

the displacement profile for a specific weight classes over 

time can be implemented. This proposed system can act as 

an early warning system for bridge inspection and track 

change over time as a means of safety classification. 
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