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1. Introduction 
 

Miter gates are essential components of the US inland 

waterways, stretching 25,000 miles and supporting about 

14% of the domestic freight (American Society of Civil 

Engineers 2017). Appropriate monitoring and maintenance 

of miter gates are required for the uninterrupted safe 

operations of the waterways. Typical means of identifying 

structural conditions of miter gates are visual inspections, 

where human inspectors see the members of miter gates to 

identify damage (Greimann et al. 1992). The visual 

inspections tend to be costly and labor-intensive, sometimes 

taking gates out of service to perform underwater operations 

or dewatering of the lock chambers. To reduce the workload 

and economic loss incurred by such inspections, structural 

health monitoring platforms of miter gates based on sensor 

measurements have also been implemented. One of those 

platforms is the SMART Gate developed by the US Army 

Corps of Engineers. Using strain data from the SMART 

Gate, Eick et al. (2018) detect gaps at the quoin of a miter  
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gate, where the slope of the strain-water level plot during 

the chamber water level change is used with the principal 

component analysis (PCA) to extract damage sensitive 

features. Hoskere et al. (2019) extends the research by 

applying the artificial neural networks to the slope features 

to detect the existence of quoin gaps and estimate the gap 

profiles. The behavior of the finite element model with the 

estimated gap profile is consistent with the strain 

measurement data from the SMART Gate. 

The performance of the damage detection algorithms for 

miter gates is supported by the dense measurement of 

physical quantities, such as displacement and strain. 

Although the SMART Gate provides rich information from 

contact sensors (e.g., strain gages), the platform does not 

provide information of the entire surfaces of the structures. 

In consequence, damage detection at the parts with 

relatively less sensors tends to be challenging, and adding 

information from further dense measurement is beneficial to 

evaluate the entire structures. 

Vision-based measurements are expected to supplement 

the data from contact sensors by increasing the spatial 

resolution of the measurement significantly with limited 

amount of cost (Spencer et al. 2019). Images can be 

obtained by non-contact measurement using cameras, and 

post-processing algorithms can be applied to estimate the 

displacement and strain at every location of the images. In 

the field of civil engineering, vision-based measurement has 

been investigated particularly for the structures where the  
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installation of contact sensors is difficult due to the 

accessibility issues and/or large size of the structure 

(Fukuda et al. 2013, Ye et al. 2013). The dense vision-based 

measurement has also been investigated to estimate the 

global deflection of bridges (Yoneyama et al. 2007, 

McCormick and Lord 2012) and strain fields of laboratory 

specimens (Ghorbani et al. 2015, Mahal et al. 2015). 

Visualization of structural behavior is another effective 

application of vision-based measurement, where small and 

almost invisible motions in video recordings are magnified 

by phase-based motion magnification technique (Wadhwa 

et al. 2013). Real-time digital image correlation for 

vibration measurement has been proposed and applied to 

bridge monitoring (Pan et al. 2016). Commercial software 

for the vision-based displacement and strain measurement 

has been developed (e.g., VIC-2D (Correlated Solutions), 

GOM Correlate (GOM)). 

A challenge of applying the vision-based measurement 

in the field is that the accuracy of measurement is sensitive 

to factors such as camera intrinsic and extrinsic parameters, 

textures of target surface, and environmental conditions 

(e.g., lighting). Existing studies about accuracy evaluations 

thus limit their scopes by using specific combinations of 

cameras, specimens, and measurement settings (Hoult et al. 

2013), or listing the factors affecting the accuracy 

qualitatively (Pan et al. 2009). However, cameras, lens, 

and/or target texture/environmental conditions of each field 

application are highly likely to be different from those 

investigated in the existing studies. Furthermore, unlike 

experimental applications, distance of cameras from target 

surfaces may not be close enough, or the camera 

orientations may be closely aligned with the direction of 

structural deformation, which makes the measurement 

challenging. Therefore, planning a measurement based on 

the predicted accuracy of the vision-based measurement 

before traveling to the site or validating the measurement 

results after collecting data is not straightforward. 

 

 

 

To address the challenge, this paper investigates a 

framework of implementing vision-based dense 3D 

displacement and strain measurement of miter gates in the 

field, which has the following three components: (i) 

Estimation of 3D displacement and strain from images 

before and after deformation (water-fill event), (ii) 

evaluation of the expected accuracy of the measurement, 

and (iii) selection of measurement setting with the highest 

expected accuracy. The next section discusses the 

methodology employed in this framework, including the 

physics-based graphics model (PBGM) used to simulate 

and evaluate the vision-based measurements in a photo-

realistic environment. Then, using the framework, a process 

of finding the best camera locations for the measurement of 

the miter gates of the Greenup lock and dam is 

demonstrated. The framework investigated in this paper can 

be used to analyze and optimize the performance of the 

measurement with different camera placement and post-

processing steps prior to the field test. 

 

 

2. Methodology 
 

2.1 Overview of the proposed framework 
 

Steps of the proposed framework are shown in Fig. 1. 

First, images before and after the deformation of the target 

structure are collected (Fig. 1(a)). Then, the full-field 

optical flow is computed between the images before and 

after the deformation (Fig. 1(b)). The optical flow is the 2D 

motion field in the image plane expressed in pixel unit, 

which is then converted to 3D displacement and strain field 

with physical units (e.g., inches). To address the challenge 

of estimating the expected performance of the measurement 

plans (camera properties, measurement locations etc.), the 

framework has an additional performance evaluation step. 

In this step, the entire process of the field test is simulated 

using the physics-based graphics model (PBGM), and the  

  
 

(a) Image collection (b) Optical flow estimation 
(c) 3D displacement/strain estimation 

with performance evaluation 

Fig. 1 Steps of the proposed framework of 3D vision-based measurement 
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estimated displacement and strain fields are compared with 

the ground truth values. The expected performance of the 

vision-based measurement algorithms can be visualized in 

the form of error maps shown in Fig. 1(c), where blue color 

shows low error (high accuracy) and red color shows high 

error (low accuracy). The maps of the expected 

performance can be used to compare different measurement 

settings (e.g., camera locations, post- processing 

algorithms) quantitatively to develop a measurement plan 

with optimized expected accuracy prior to the measurement 

in the field. The following sections describe each step of the 

framework in detail. 

 
2.2 Physics-based graphics model for simulating 

vision-based measurement 
 
The physics-based graphics model (PBGM) is a textured 

graphics model whose geometry and deformation are 

determined based on the physics-based analysis (i.e., finite 

element analysis) (Hoskere et al. 2019). Typical physics-

based graphics modeling process is shown in Fig. 2. First, a 

finite element model of the target structure is created, and 

the structural behavior is estimated by applying realistic 

loads. The deformed and underformed mesh obtained by the  

 

 

 

 

finite element analysis can be represented by coordinates of 

nodes (vertices) and sets of vertices forming faces. The 

information of vertices and faces is then exported to a 

graphics engine and textured appropriately. This research 

uses Abaqus for the finite element analysis, and Abaqus-

Python Scripting is used to read and export the mesh data. 

For graphics modeling, this research uses Blender with its 

Python API. 

This synthetic environment can be used to simulate the 

entire measurement process by placing cameras at the 

planned locations/orientations and render images (intrinsic 

parameters such as focal length and resolutions can be set 

arbitrarily). Furthermore, the ground truth values for the 

measurement (displacement and strain fields) are available 

from the finite element analysis results, which can then be 

used to evaluate the expected performance of the 

measurement plan, including the selection of cameras/lens, 

camera locations/orientations, and post-processing 

algorithms. 

One of the main differences of the PBGM used in this 

research from the PBGMs used previously by the authors 

(Hoskere et al. 2019, Narazaki et al. 2019) and other 

general synthetic datasets for the performance evaluation of 

optical flow algorithms (e.g. Baker et al. 2011) is the 

 

Fig. 2 Typical physics-based graphics modeling process 

  
(a) (b) 

Fig. 3 Texturing of physics-based graphics models (a) Naive approach, where the UV mapping is defined independently at 

each step (b) The approach of this research, where the UV mapping of the undeformed mesh is used consistently 

711



 

Yasutaka Narazaki, Vedhus Hoskere, Brian A. Eick, Matthew D. Smith and Billie F. Spencer 

updated texturing step. During the physics-based graphics 

modeling, the target structure deforms according to the 

finite element analysis. If the structure is textured 

independently at each deformation stage, the mapping from 

the base image texture to the surface of the 3D mesh (UV 

mapping) does not stay consistent (Fig. 3(a)), posing 

difficulty in simulating surface displacement and strain 

measurement. To address this problem, this research stores 

the UV mapping for the undeformed mesh, and defines the 

UV mapping during subsequent steps such that the same 

vertex of the mesh is always mapped to the same point in 

the base image regardless of deformation. By implementing 

this updated texturing procedure using Blender-Python API, 

the surface texture of the PBGM can deform consistently 

with the underlying finite element analysis (Fig. 3(b)). 

 

2.3 Full-field optical flow computation 

 
Optical flow algorithms estimate the motion of each 

pixel of an image sequence by observing the spatial and 

temporal intensity change (Szeliski 2011). One of the 

simple yet effective methods for the optical flow estimation 

is the Lucas-Kanade algorithm (Lucas and Kanade 1981), 

which solves the optical flow constraint equation 

𝐼𝑥𝑢 + 𝐼𝑦𝑣 + 𝐼𝑡 = 0 (1) 

where 𝑢, 𝑣 are the motion of each pixel in image 𝑥 and 𝑦 

axes,  𝐼𝑥 , 𝐼𝑦 , 𝐼𝑡  are the partial derivatives of the image 

intensity with respect to the two image axes (𝑥 and 𝑦) and 

time 𝑡, respectively. Since this equation is underdetermined, 

the (weighted) least square solution of the optical flow 

constraint equation within a local patch is computed. 

The optical flow estimation by the Lucas-Kanade 

algorithm faces challenge when (i) the optical flow 

constraint equation does not hold for reasons such as large 

motion, occlusion, and lighting changes, and/or (ii) image 

gradient is small (e.g. unique solution does not exist for 

uniform texture, or 𝐼𝑥 = 𝐼𝑦 = 0). (Barron et al. 1994). One 

of the approaches to get globally consistent optical flow 

estimation for such cases is to minimize an error function 

accumulated over the entire image (Horn and Schunck 1981) 

∫ ∫(𝐼𝑥𝑢 + 𝐼𝑦𝑣 + 𝐼𝑡)
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(2) 

The first double integral term corresponds to the optical 

flow constraint equation, and the second double integral 

term penalizes abrupt change of the optical flow, leading to 

smooth estimates even for the image parts where local 

method fails. 

A hybrid of above two approaches has also been 

investigated to get smooth estimates where the local method 

fails, while preserving abrupt changes in the parts with high 

image gradient. Bruhn et al. (Bruhn et al. 2005) investigated 

the combined local-global (CLG) method by introducing a 

new integration scale parameter in the error function. The 

method combines the new error function with the 

spatiotemporal optimization applied in multiple resolutions 

to get accurate optical flow estimates for different 

magnitudes of motion. This research uses the MATLAB 

implementation of the CLG method by (Liu 2009). 

Another approach for motion estimation particularly 

useful for large motion is template matching (Barron et al. 

1994, Sutton et al. 2009, Pan et al. 2016). In template 

matching, parameterized motion (warping function) at each 

point in image is estimated by optimizing similarity 

measure (sum of square deviation, zero-mean normalized 

cross correlation, zero-mean normalized sum of squared 

difference etc.) between patches in the reference and target 

images. Iterative techniques, such as forward additive 

Gauss Newton (FA-GN) and inverse compositional Gauss 

Newton (IC-GN) algorithms are often employed to solve 

the optimization problem (Baker and Matthews 2004). 

Reliability-guided digital image correlation (RG-DIC) (Pan 

2009) is one of the successful framework for estimating 

motion field by template matching: the method minimizes 

zero-mean normalized sum of square differences at each 

point iteratively, starting from the most reliable estimates of 

the neighbors. MATLAB implementation of the RG-DIC is 

available at (Ncorr - Open source 2D digital image 

correlation MATLAB software). 

An example motion field estimation results by CLG 

approach and the RG-DIC are shown in Fig. 4, where the 

patch size of the RG-DIC algorithm is set to 43 pixel × 43 

pixel after testing different values ranging from 22 × 22 to 

172 × 172 pixels. The estimation by CLG approach is 

cleaner near the edges, compared to the blurred and/or 

inaccurate estimation by the RG-DIC. This is because the 

estimation from patches with the fixed shape and size is 

corrupted by the inclusion of multiple structural parts 

behaving differently. The estimation using patches with 

fixed size and shape suffers similar type of inaccuracy as 

the distance to the target structure changes. For example, 

motion near the bottom is smoothed too much in Fig. 4(b) 

compared to the CLG approach in Fig. 4(c). One of the 

advantages of the template matching approach over the 

CLG approach is its robustness to lighting change and 

deformation, since those effects are handled explicitly in the 

formulation. However, the effect of lighting change in the 

dataset investigated in this research is not significant, and 

the deformation of the gate is small throughout the 

measurement. Therefore, the CLG approach by (Liu 2009) 

is used in the subsequent sections. 

 

2.4 Conversion of optical flow results into 3D 
displacement 

 

Estimation of 3D displacement from the optical flow 

results in the (2D) image plane is a challenging problem 

because the solution is not unique mathematically. Any 

point on a ray originating from the camera center is mapped 

to the same point on the image plane and, without further 

assumptions, estimation of the 3D displacement from 2D 

optical flow data is impossible. A typical assumption to 

address the problem is to constrain the solution to the plane 

parallel to the image plane and neglect the motion 

perpendicular to the plane (e.g., Ye et al. 2013, Hoskere et 

al. 2018). Another possible approach is to assume the  
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direction of motion (e.g., vertical) and determine the 

magnitude of the displacement vector pointing to that  

direction (e.g., Pan et al. 2016)). When the assumptions are 

valid, these approaches have shown successful results. 

However, finding valid assumptions is not straightforward 

when the displacement field of the miter gate is estimated, 

because of the complexity of the displacement field. 

This research considers two assumptions to convert the 

optical flow results into 3D displacement. The first 

assumption is that the displacement is in the horizontal 

plane, neglecting the vertical displacement (an approach 

similar to (Pan et al. 2016). The rationale for this 

assumption is the actual loading mechanism of the miter 

gates: deformation is caused by the water level difference 

between the upstream and downstream sides. This 

assumption can be interpreted as identifying the mapping 

from the 2D optical flow results to 3D displacement vectors 

in a subspace spanned by the two horizontal basis vectors. 

The second assumption seeks for the better selection of 

the basis vectors to define appropriate subspaces adaptively. 

The key idea is to use the displacement obtained by the 

finite element analysis as an approximation of the 

displacement of the target structure. As shown in Fig. 5, the 

first basis vector is taken in the direction of the 

displacement obtained by the finite element analysis. Then, 

considering that the optical flow does not capture the 

motion on the ray connecting the camera center and the 

target point, a vector perpendicular to the ray and the first 

basis vector is selected as the second basis vector. Finally, a 

vector perpendicular to the first and second basis vectors is 

taken as the third basis vector. Using the basis vectors 

defined adaptively at each nodal location, the optical flow 

results are mapped to the 3D displacement vector in the 

subspaces spanned by the first two basis vectors. This 

assumption can take advantage of the prior knowledge 

about the complex structural behavior obtained by the finite 

element analysis. 

 

 

 

 

 

 

Fig. 5 Adaptive basis assumption 

 

 

After determining the assumption (basis vectors), the 3D 

displacement vectors at the nodal locations of the target 

structure can be computed by solving 

�̃�im = P�̃�world (3) 

where  �̃�im = (𝑥im, 𝑦im, 1)T is the nodal location of the 

deformed structure in the image expressed in the 

homogeneous coordinate, P  is the 3 × 4  camera 

calibration matrix, and �̃�world =
(𝑋world, 𝑌world, 𝑍world, 1)T is the unknown 3D location of 

the deformed structure in the homogeneous coordinate. 

Using the basis vectors ( 𝑣1, 𝑣2 ) determined by the 

assumption, �̃�world can be rewritten as 

�̃�world = �̃�world
0 + [𝑣1 𝑣2] [

𝑐1

𝑐2
] (4) 

where �̃�world
0  is the nodal location of the undeformed 

structure, and 𝑐1, 𝑐2 are the unknown linear combination 

coefficients. The linear combination coefficients can now be 

identified by the simple algebra, and the 3D displacement is 

obtained by 

[𝑣1 𝑣2] [
𝑐1

𝑐2
] (5) 

 

   
(a) Images 

Top: undeformed/Bottom: deformed 

(b) RG-DIC (Ncorr) 

Top: horizontal/Bottom: vertical 

(c) CLG optical flow (Liu 2009) 

Top: horizontal/Bottom: vertical 

Fig. 4 Example motion field estimation results  
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2.5 Strain estimation from the displacement field 
 

The estimation of local surface strain typically involves 

two steps (Sutton et al. 2009): (i) fitting analytical functions 

(e.g., quadratic functions) to the estimated local 

displacement field, and (ii) estimating strain  by 

differentiating the fitted function. This research investigates 

different implementations of the strain estimation within the 

two-step framework, and evaluates the performance 

quantitatively using the PBGM. 

The strain estimation steps implemented and compared 

in this research are listed below: 

Patch selection: Two types of patches are tested in this 

research. The first type is square patch defined on the 3D 

surface. The size of the patch is set to 10in ×  10in, 

considering that the width of the flange of the horizontal 

beam is 10in. The second type of patch is defined by the 

element faces of the finite element model (Fig. 6 left). 

These patches are used to fit analytical functions to the 

estimated 3D displacement field. 

Function selection: Using the local coordinate system 

of the selected patch (𝑋, Y), linear, bilinear, and quadratic 

functions are fitted in this research (Fig. 6 right) 

𝑈𝑖 = 𝛼0
𝑖 + 𝛼1

𝑖 𝑋 + 𝛼2
𝑖 𝑌 (6) 

𝑈𝑖 = 𝛼0
𝑖 + 𝛼1

𝑖 𝑋 + 𝛼2
𝑖 𝑌 + 𝛼3

𝑖 𝑋𝑌 (7) 

𝑈𝑖 = 𝛼0
𝑖 + 𝛼1

𝑖 𝑋 + 𝛼2
𝑖 𝑌 + 𝛼3

𝑖 𝑋𝑌 + 𝛼4
𝑖 𝑋2 + 𝛼5

𝑖 𝑌2 (8) 

where 𝑈𝑖  ( 𝑖 = 1,2,3 ) are the three components of the 

estimated 3D displacement field. 

RANSAC: The RANSAC algorithm (Fischler and 

Bolles 1981) is implemented in this research to estimate the 

strain robustly from noisy displacement field. The algorithm 

tries to remove outliers of the estimated displacement field 

within the patch by the iterative process (Fig. 6): (i) the 

algorithm randomly samples points within the patch (50% 

in this research) and fits a function using the sampled points 

only, and (ii) evaluate the deviation of all points within the 

patch from the fitted function. The points where the 

deviations are less than the predetermined threshold are 

regarded as inliers, and other points are regarded as outliers.  

 

 

The algorithm repeats (i-ii) multiple times to find the fitted 

function with the largest number of inliers. A few threshold 

values are tested in this research. 

Function fitting: Using the inliers within each patch, 

the selected function is fitted to the local displacement field. 

First, the estimated optical flow at the inlier samples is 

converted to the 3D displacement field using the adaptive 

basis assumption, where the first basis vector is computed 

by the bilinear interpolation of the finite element 

displacement at the surrounding nodes. Then, the function is 

fitted to the projected 3D local displacement field by linear 

least square approach. 

Strain estimation: Once the parametric representation 

of the local 3D displacement field (𝑈𝑖 with 𝑖 = 1,2,3) is 

obtained by function fitting, the Lagrangian strain tensor 

can be obtained by differentiating the function analytically. 

The formulae for computing the Lagrangian strain tensor 

are available, for example, in (Sutton et al. 2009). 

 

2.6 Performance evaluation criteria 
 

One of the appealing properties of the PBGM is the 

availability of the ground truth displacement and/or strain 

values from the finite element analysis. Using the ground 

truth values, this research investigates the following two 

error criteria to evaluate the expected performance of the 

measurement plan and post-processing algorithms 

𝑅𝑎𝑤 𝑒𝑟𝑟𝑜𝑟 ≔ 𝑑est − 𝑑true (9) 

𝐸𝑟𝑟𝑜𝑟 𝑟𝑎𝑡𝑖𝑜 ≔
𝑑est − 𝑑true

𝑑true

 (10) 

where 𝑑est  and 𝑑true  stands for the estimated and the 

ground truth values of the quantities (displacement or 

strain).  

The raw error and error ratio are the local criteria 

evaluated at each nodal location of the associated finite 

element model. To get an intuition of the global expected 

performance of the displacement and strain estimation 

under the given measurement plan, we can create error 

maps by assigning colors to each node of the finite element 

model based on the expected raw error and error ratio  

 

Fig. 6 Strain estimation steps. (left) Patch generation, (left to right) Fitting analytical functions to the displacement field in 

the patch, (right to left) Evaluation of the fit (RANSAC). Strain is computed by differentiating the fitted function 

714



 

Vision-based dense displacement and strain estimation of miter gates with the performance evaluation… 

 

 

values (e.g., Fig. 1(c)). If we have specific regions of 

interests (ROIs), different measurement plans can be 

compared quantitatively by computing average values of 

the evaluation criteria within the ROIs. For the quantitative 

evaluation of the global performance of the measurement 

plans with the desired accuracy level, we can count the 

number of finite element nodes where the raw error or error 

ratio is below the desired minimum error levels. 

 

 

3. Results of the proposed framework 
 

This section presents results of the steps of the proposed 

framework for the vision-based dense displacement and 

strain measurement. The section first presents the details of 

the target structure of this research, miter gates of the 

Greenup lock and dam, followed by the description of the 

PBGM of the miter gate. Then, the results of dense 

displacement measurement in the synthetic environment 

created using the PBGM are presented, with the discussion  

 

 

about the effectiveness of the adaptive basis assumption. 

Furthermore, the use of the PBGM to optimize the camera 

location and orientation is demonstrated. Finally, the 

simulated measurement data is post-processed by the 

different implementations of the strain estimation 

algorithms, and the expected performance is compared 

quantitatively. 

 
3.1 Greenup lock and dam 
 

Greenup lock and dam (US Army Corps of Engineers 

2014) is the 11th lock and dam on the Ohio river. The 

length, width, and lift of the main chamber are 1,200ft, 

110ft, and 30ft, respectively. The Greenup lock and dam has 

two chambers: main chamber and auxiliary chamber, both 

completed in 1959. This research focuses on the miter gates 

of the main chamber (Fig. 7), which has the height of 62ft 

9in and the transverse length of 61ft 6in. 

Structural health monitoring of the Greenup miter gates 

has been investigated because the gates are instrumented  

  
(a) Aerial view (Google Maps) (b) Miter gates (Upstream side) 

Fig. 7 Overview of Greenup lock and dam 

 

 

Fig. 8 Overview of finite element model of the Greenup miter gate 

North (Downstream) side

South (upstream) side
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with sensors, such as strain gages and load cells (SMART 

Gate). In (Eick et al. 2018, Hoskere et al. 2018), an 

ABAQUS finite element model of the Greenup miter gate 

was developed, which is used in this research (Fig. 8). The 

model is made of linear quadrilateral shell elements (S4R), 

except for the diagonal members modeled by linear beam 

elements (B31). Contact boundary condition is defined at 

the quoin following (Hoskere et al. 2019). The model has 

250,795 nodes and 255,925 elements.  

 

3.2 Physics-based graphics model of the Greenup 
miter gate 

 

The finite element model of the Greenup miter gate is 

used to analyze the structural behavior during chamber 

water level change. In the deformed state, hydrostatic 

pressure with the zero-pressure height of 600 inches (50 

feet) and 240 inches (20 feet) are applied to the upstream 

and downstream surfaces of the miter gate, respectively. 

Then, the undeformed and deformed meshes are exported to 

the Blender for further graphics modeling, where subtle 

noise texture is added to mimic the steel surface. As 

discussed previously, the texture is deformed according to 

the deformed mesh imported from Abaqus. An overview of 

the PBGM of the Greenup miter gate is shown in Fig. 9. 

A camera with the resolution of 4,000 × 2,000 and the 

focal length of 35 mm is placed at 18 different locations 

along the top of the left concrete wall of Fig. 9 to simulate 

the vision-based displacement and strain measurement. The 

distance along the concrete wall from the camera to the 

miter end ranges from 100 in to 350 in. The synthetic 

measurement data is generated by rendering images of the 

undeformed/deformed structure using the camera. 

 
3.3 Displacement measurement and the performance 

evaluation 
 

The 3D displacement field is estimated by computing 

the full field optical flow between images before and after 

deformation (water level change) and mapping the results to  

 

 

the 3D world coordinate system using the assumptions on 

the basis vectors. To compare the expected performance of 

the displacement measurement under different assumptions, 

images from the camera at 150 in from the gate along the 

wall are used and the 3D displacement field is estimated.  

The maps of the raw error and error ratio criteria 

evaluated with the first assumption (neglecting vertical 

displacement) are shown in Fig. 10 with the camera location 

and orientation. In the figures, blue color indicates negative 

raw error or low error ratio, and red color indicates positive 

raw error or high error ratio. Uncolored (black) points are 

not included in the field of view of the camera. The error 

ratio in the vertical direction is 1.0 (100%) because the 

motions in that direction have been neglected by 

assumption. This assumption is not desirable particularly 

for the surface strain estimation. 

Using the same images of the undeformed/deformed 

structure, displacement field is estimated again with the 

second assumption (selecting basis vectors adaptively with 

the help of finite element analysis results). The maps of the 

raw error and error ratio are shown in Fig. 11. By defining 

the subspace adaptively at each part of the structure, the 

approach can find the better solution, particularly in the 

direction of relatively small motion (in-plane horizontal and 

vertical directions). 

Note that the actual displacement need not be in the 

direction of the finite element displacement perfectly, 

although the perfect match is ideal to get the best accuracy; 

the first basis vector from the finite element analysis is used 

to approximate the direction of the actual displacement, and 

the second basis vector is used to correct the mismatch 

between the directions of the actual and finite element 

displacement. 

To demonstrate the further capability of the PBGM in 

evaluating different measurement plans quantitatively, the 

average values of the error ratio within a region of interest 

(ROI) shown in Fig. 12(a) are compared among all of the 18 

camera locations and orientations (Fig. 12(b)). The second 

assumption with the adaptive basis vectors is used to 

convert optical flow results into the 3D displacement. To  

 

Fig. 9 Overview of the PBGM of the Greenup miter gate 
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(a) Raw error (in-plane horiz.) (b) Raw error (in-plane vert.) (c) Raw error (out-of-plane) 

   
(d)  Error ratio (in-plane horiz.) (e) Error ratio (in-plane vert.) (f) Error ratio (out-of-plane) 

Fig. 10 Performance evaluation of displacement estimation with the first assumption (vertical displacement neglected) 

   
(a) Raw error (in-plane horiz.) (b) Raw error (in-plane vert.) (c) Raw error (out-of-plane) 

   

(d) Error ratio (in-plane horiz.) 
(e) Error ratio (in-plane 

vert.) 
(f) Error ratio (out-of-plane) 

Fig. 11 Performance evaluation of displacement estimation with the second assumption (adaptive basis)  
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mimic the noisy measurement, noise-free images as well as 

noise-corrupted images (additive Gaussian noise with 𝜎 =
5 and 𝜎 = 10) are evaluated herein. The averaged error 

ratios between the measured/ground truth displacement 

magnitude are shown in Fig. 13 for different levels of 

camera distance along the sidewall. For both the noise-free 

and noise-corrupted images, the estimated displacement 

estimation errors are less than 5%. The general trends are: 

the expected performance improves as we go closer to the 

target surface, and the error increases as the noise level 

increases. Besides, the figure also shows the  sensitivity of 

the expected performance on the camera angle, even when 

the camera distance is constant (see the results for camera 

distance at 250 in). By examining the averaged error ratio 

within the ROI, the optimal camera location and 

orientations for the 3D displacement measurement of the 

ROI is determined as the one at 100 in from the end of the 

gate (highlighted in Fig. 12(a)). The performance evaluation 

discussed in this section is effective for the prediction of the 

p e r f o r m a n c e  o f  d i f f e r e n t  

 

 

measurement plans (equipment, camera 

locations/orientations, post-processing algorithms), as well 

as the optimization of the measurement plan by examining 

the expected performance. 

 

3.4 Strain estimation and the performance evaluation 
 
As discussed in the previous section, strain field is 

estimated by fitting parameterized functions to the local 

displacement field and differentiating the function with 

respect to the local coordinate system. For the clarity of 

presentation, this section examines the data from the camera 

location/orientation used to create Figs. 10 and 11 (150 in 

from the end of the gate along the concrete sidewall). Note 

that this camera setting may not be optimal to measure 

strain fields if we have a specific ROI in mind (e.g. near the 

miter of the gate). In such cases, steps similar to the 

evaluation of displacement estimation performance can be 

taken to optimize the measurement plan for the specific 

interests. 

Instead of considering specifics of the measurement and 

optimizing the details of the measurement plan, this section 

evaluates the global criteria to compare the performance of 

different realizations of the strain estimation algorithms in 

general. The numbers of finite element nodes where the raw 

error and error ratio are below the predetermined threshold 

are counted as explained in the previous section. In this 

research, the thresholds for the raw error and error ratio are 

set to 0.0001 and 0.1, respectively. 

The results of performance evaluation of strain 

estimation algorithms with different optional steps are 

shown in Fig. 14. The figure compares the counts of the 

nodes with low raw error and error ratio for different patch 

selection methods (square, elements of the finite element 

model), function selection (linear, bilinear, quadratic), and 

RANSAC parameters (no RANSAC, 0.1 and 0.01 pixel 

error in the image plane for the inlier selection). The figure 

shows the performance evaluation for the axial strain 

estimation in the in-plane horizontal direction, and the 

evaluation of other strain components can also be done 

similarly if needed. By comparing the counts for different 

algorithm realizations, the best implementation for this  

  
(a) Region of interest (b) Candidate camera locations/orientations 

Fig. 12 Demonstration of camera location/orientation optimization 

 

Fig. 13 Average displacement magnitude estimation error 

ratio within the ROI 
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measurement setting can be determined (Square patch, 

linear function, and the RANSAC threshold 0.01, if the 

error ratio is optimized). 

As noted previously, even with the optimal post-

processing method, the strain estimation becomes 

increasingly challenging as the camera distance to the target 

surface increases. The map of the error ratio for the strain 

estimation in the in-plane horizontal direction are presented 

in Fig. 15. Compared to the displacement estimation, the 

region where we can expect accurate strain estimation is 

significantly smaller, requiring careful planning and 

optimization to achieve the desired accuracy. The 

performance evaluation framework proposed in this 

research is important, because the performance 

visualization of the framework helps those who carry out  

measurement avoid spending time in going to the site with a 

plan which cannot expect desired estimation accuracy. 

 

 

When the framework implies that the measurement plan 

at hand needs to be improved to achieve the desired 

performance, the possible actions are (i) changing the 

equipment (camera with the higher resolution, lens with 

larger focal length etc.), (ii) devising a accessing method 

which enables better camera placement (e.g., UAVs can be 

used potentially to measure dynamic structural behaviors), 

(iii) improving the postprocessing steps (e.g., model 

updating of the finite element model can be performed to 

investigate the structural behavior through the calibrated 

model). The significance of the performance evaluation 

framework proposed in this study is that, every time we 

come up with a new method for improving the 

measurement results, we can test the method in the realistic 

synthetic environment in a labor-efficient and time-effective 

manner. 

 

 
4. Conclusions 

 

This study investigates the framework for vision-based 

dense displacement and strain measurement of miter gates 

with the quantitative evaluation of the expected 

performance in the field. The framework consists of the 

following steps: (i) Estimation of 3D displacement and 

strain from images before and after deformation (water-fill 

event), (ii) evaluation of the expected performance of the 

measurement, and (iii) selection of the measurement setting 

with the highest expected accuracy. As a testing 

environment for different measurement settings and post-

processing algorithms, the physics-based graphics model 

(PBGM) of the miter gate at the Greenup Lock and Dam 

was developed and used effectively. The contributions of 

this research are listed below: 

Physics-based graphics model with consistent texture 

deformation: The surface texture of the PBGM developed 

in this research deforms according to the deformation of the 

  
(a) Raw error evaluation (threshold 0.0001) (b) Error ratio evaluation (threshold 0.1) 

Fig. 14 Quantitative performance evaluation of different strain estimation methods (axial strain, in-plane horizontal 

direction) 

 

Fig. 15 Map of strain estimation error ratio (axial strain, in-

plane horizontal direction) 
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mesh obtained by the finite element analysis, which has 

addressed the challenge of the invalid strain estimation 

caused by the inconsistent UV mapping. 

New approach to convert optical flow estimation 

results to 3D world coordinate system: Displacement 

vector obtained by finite element analysis was used to 

define subspace to which the 2D optical flow results are 

projected in an adaptive manner (adaptive basis 

assumption). This approach addresses the problem of 

conventional conversion approaches, where displacement in 

one direction is disregarded even if the component is 

important in some locations of the structure. The synthetic 

measurement data reveals that the adaptive basis 

assumption leads to higher accuracy in all three directions, 

compare to the assumption that the direction with little 

global displacement is disregarded. 

Demonstration of measurement plan optimization 

based on performance evaluation: Measurement using the 

PBGM was performed at 18 different camera 

locations/orientations. The performance of each camera 

location/orientation was evaluated quantitatively using the 

average error ratio within a region of interest, from which 

optimal camera locations and orientations were determined. 

Demonstration of post-processing algorithm selection 

based on performance evaluation: Performance of 

different methods of converting the estimated displacement 

field to the strain field were evaluated quantitatively by 

counting the number of corresponding finite element nodes 

where expected error ratio is less than the predetermined 

threshold. By comparing the numbers, the best algorithms 

and their parameters can be determined for the specific 

measurement considered. 

The dense 3D displacement/strain measurement 

framework investigated in this research provides 

quantitative information relevant to structural conditions, as 

well as the information about the expected quality of the 

measurement data. The framework leverages the specifics 

of the measurement appropriately, and therefore can be 

applied to the planning and/or assessment of every action 

before/during/after field measurement. This research will 

contribute to the structural health monitoring of the large 

number of miter gates of the inland navigation systems by 

maximizing the time-effectiveness and information gain of 

the field measurements. 
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