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1. Introduction 
 

As the mainstay of urban transportation, metro tunnels 

are often designed for service periods of over 100 years. 

During the operational period, the urban tunnels undergo 

long term loads, material aging, environmental corrosion 

and even extreme loads. Increasing attention has been 

drawn on the maintenance of metro tunnel as any accidents 

would cause unacceptable casualties and economic losses 

(Frangopol 2008). 

Segment tunnel structures are sensitive to the ambient 

stress caused by nearby construction such as foundation pit 

excavation, surcharging and tunneling (Lin et al. 2007, 

Huang et al. 2017, Zhang et al. 2013). With the rapid 

development of sensing technology, structure health 

monitoring (SHM) has become a central technology to 

mitigate potential hazards (Bhalla et al. 2005, Bennett et al. 

2010a, Bennett et al. 2010b, Ye et al. 2013, Wang et al. 

2016, Ye et al. 2016). The SHM system also provides 

sufficient data resources to study the long-term tunnel 

performance and even a potential disaster evolution. 

Therefore, the SHM technology has attracted increasing 

research interests in researcher worldwide, and has been  
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widely used for application in the past few decades. The 

objective of SHM is to detect the structural damage and 

degradation with the help of in-situ, nondestructive sensing 

and mechanical analysis (Housner et al. 1997). The 

measured data are often used as an reference index for 

safety assessment, damage detection, decision making, 

model updating and health diagnosis (Yang et al. 2005, 

Mair et al. 2008, Mohamad et al. 2012, Hu et al. 2013, 

Torbol et al. 2013, Santos et al. 2012, Ye et al. 2015). 

There are usually four parts in an SHM system: sensors, 

hardware and software of data acquisition, transmission and 

processing units, and data management systems (Ou 2003). 

Multi-source sensing technology has often been used in a 

SHM system to improve the reliability and accuracy. 

Although sensors were installed for different measuring 

purposes, they reflect different characteristics of the 

geotechnical structures. Many researchers pointed out that 

an integral safety assessment using multiple sources of 

monitoring information may be more reasonable and 

reliable than single index assessment (Peng et al. 2014, Li 

et al. 2016a), because it will also provide a more 

comprehensive understanding of the tunnel mechanical 

performance and the evolution process of a potential 

disaster. 

Multi-sensor fusion technique integrates data from 

multiple sensors in a monitoring system and other related 

information to achieve improved accuracy and more 

specific inferences that cannot be achieved with single 

sensor alone (Walz and Llinas 1990, Hall and Llinas 1998). 

In the past decade, the multi-sensor fusion method has often 

been used to improve the performance of the monitoring 
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system. Sun et al. (2012) proposed a data fusion method to 

improve the recognition accuracy of a pipeline monitoring 

system. Erazo and Hernandez (2016) proposed a data fusion 

based framework to estimate seismic induced damage in 

buildings. Santos et al. (2012) combined the data fusion 

method with pattern recognition and established a reliable 

method for early damage detection of a cable stayed bridge. 

The data fusion method can be used for safety assessment 

during the construction or operational period of a 

geotechnical structure. Chen et al. (2017) used the support 

vector machines approach (SVM) to identify anomalies 

monitoring data of deep excavation. To quantify the 

parameter uncertainties and make a full safety assessment 

of slope, Peng et al. (2014) and Li et al. (2016b) conducted 

a Bayesian networks model to fuse monitoring information 

from different sensors of a slope. Research on data fusion 

process has, however, been seldom conducted for a tunnel 

during operational period.  

In this study, a systematic approach utilizing multi-

source monitoring information with Kalman filter is 

proposed for the evaluation of shield driven tunnel safety. 

The method aims to (1) integrate multi-source information 

on tunnel loading characteristics; (2) update key external 

force changes such as the coefficients of lateral earth 

pressure; (3) analyze, from a perspective of inverse 

problem, the external forces imposed by construction 

nearby. An example of a shield tunnel with multiple 

monitoring derived indices is presented to illustrate the 

proposed methodology. 

 

 

2. Methodology 
 
2.1 The framework 
 

A general framework of the proposed multi-sensor 

fusion method is shown in Fig. 1. In situ data are collected 

using different sensors within a real time monitoring system 

in a shield tunnel. There are three steps in the multi-sensor 

fusion process. (1) data preprocessing. It contains two parts: 

data cleaning and data association. Data cleaning is 

conducted to reduce the influence of data fluctuation caused 

by train vibration. The time-dependent data are associated 

to ensure consistency in time. (2) numerical simulation. 

Numerical model using the Finite Element Method (FEM) 

is established based on the real tunnel structure and the 

nearby construction condition. The relationships between 

the external force changes and the structural responses of 

the tunnel are studied using the numerical model and fitted 

using the polynomial function. (3) multi-sensor fusion. 

Extended Kalman filter (EKF) method is used to merge the 

different monitoring data and update the external forces of 

the tunnel. Other structural responses such as tunnel 

convergence, internal forces and joint opening are updated 

using the EKF. After that, a holistic safety assessment can 

be conducted based on these mechanical parameters. 

In this paper, four mechanical indicators have been 

taken into consideration namely: tunnel convergence, joint 

opening, segmental internal forces and bolt stress as shown 

in Fig.1. Among these indicators, tunnel convergence and  

 

 

Fig. 1 Framework of the proposed method 

 

 

joint opening are often seen as Key Performance Indicator 

(KPI) both for serviceability and safety limits. Different 

levels of the magnitude for the indicators can be adopted 

depending on the specific condition of application. British 

Tunnel Standards (BTS. 2004) sets an ultimate limit of 

convergence at 2% of the initial outer convergence, while 

Chinese code (GB50157. 2013) sets 0.5% of the 

convergence as the serviceability limits. The ultimate 

intrusive water pressure has a relationship with the joint 

opening width. The limit state of joint opening is determine 

based on the ultimate intrusive water pressure and the in-

situ water pressure. Bolt stress and internal forces which are 

difficult to measure in the tunnel structure can also be 

calculated using the proposed method. 

Although the Kalman filter approach has been used for 

step 1 and step 3, the function of Kalman filter are different. 

Kalman filter is adopted for data cleaning in the first step 

whereas the method is used to merge different monitoring 

data in step 3. More detail information about proposed 

method will be introduced in the following subsections. 

 

2.2 Data preprocessing 
 

The raw data of each sensor should be cleaned and 

associated in time before the data fusion process is 

undertaken. The Kalman filter is one of the most widely 

used techniques to do data cleaning (Kalman 1960).  

In the Kalman filter process, the predicted data at time 

k+1 is equal to the recent state 

ˆ ˆ( 1 ) ( )x k k x k k   (1) 

where ˆ( 1 )x k k  is the predicted monitoring data at time 

k+1 using the in situ monitoring data at time k, and   

ˆ( 1 )x k k  means the estimated data at time k+1 using the 

data of time k. 

The predicted covariance of x is expressed as 

( 1 ) ( )P k k P k k Q    (2) 
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where ( 1 )P k k  is the predicted covariance at time k+1 

and ( )P k k  is the estimated covariance at time k. 

Then Kalman gain K is calculated using the predicted 

covariance 

1

( 1 ) ( 1 )T TK P k k H HP k k H R


     
 (3) 

where R is the covariance of the observation error, 

( 1 )P k k  is the predicted covariance and H is a unit 

matrix. 

The state of parameter x can be updated using the 

Kalman gain 

ˆ ˆ ˆ( 1 1) ( 1 ) ( 1) ( 1 )x k k x k k K x k x k k          
 (4) 

The covariance of x can be updated using the following 

formula 

 ( 1) * ( 1 )P k I K H P k k     (5) 

By iterating calculations 1 to 5, the data are filtered by 

alternating prediction and calibration. With the iterations, 

the curve with the data in the real time becomes more 

smooth as the Kalman filter is repeatedly applied.  

Although different sensors in the same section has the 

same monitoring frequency, the data from different sensors 

are not always synchronized in time. In practical 

application, some of the data are even incomplete due to 

monitoring and data transmission reasons. To compensate 

for this, data association should be conducted to 

synchronize the data in time. Either nonlinear or linear 

interpolation methods can be adopted depending on the 

condition of data trend. For the stable trend of data, linear 

interpolation is a good choice for its simplicity, while 

nonlinear interpolation should be adopted when data 

exhibits higher complexity and nonlinear variation trend. 

Considering of the page limit, it is not explained further in 

this paper. 

 

2.3 Numerical simulation and parameter fitting 
 

Nearby construction may cause a distinct change in 

tunnel external forces and lead to a response in tunnel 

deformation. Numerical simulation using the finite element 

method is conducted under the loading condition of the 

tunnel. For example, as illustrated in Fig. 2, a simplified 

model is established to simulate a urban tunnel with nearby 

pit excavation. The coefficient of lateral soil pressure K0 of 

both sides are chosen as the key external forces for the case 

of a foundation pit excavation near the tunnel (Doležalov et 

al. 2001). The coefficient of lateral soil pressure is defined 

as the ratio of the effective horizontal to vertical stress, 

K0=σ’h/σ’v. Please note that the external forces should not 

necessarily be the K0 for other problems.  

The relationship between the external forces and the 

tunnel mechanical indices such as segment rotation, tunnel 

convergence, joint opening and bolt stress are calculated 

with the result of numerical simulation. Data fitting 

techniques such as the response surface function method 

and polynomial fitting can be used to reflect these  

 

 

Fig. 2 Load-structure model for shield tunnel and the K0 on 

left and right sides 

 

 

relationships (Bucher and Bourgund 1990, Bucher and Most 

2008). Hence structural responses can be calculated by 

tunnel external forces using polynomials as 

m m m
n n-1

ni i (n-1)i i 1i i 0

i=1 i=1 i=1

g( )= α x + α x + + α x +α  x L  (6) 

where x=(x1, x2,…xm) are the external forces, in example 

x1=K0L x2=K0R for the case of a foundation pit excavation 

near the tunnel. 

It should be noted that the observations from multi 

sensors y are included in the structural responses. So the 

monitoring data can also be calculated using the polynomial 

functions 

( ) ( )= 1 2 mx ,x xy g x g L  (7) 

 

2.4 Updating external forces and calculating 
performance index 

 

The Kalman filter method is applicable for a linear 

system. This is not applicable for the polynomial 

relationship of the parameters. The extended Kalman filter 

method (EKF) is then used to solve the polynomial equation 

(Wang et al. 2014). The observation data can be expressed 

with the fitting functions in Eq. (7) and the observational 

error (Welch and Bishop 2001) 

( ) ( ( )) tk k y g x v  (8) 

where y(k) is the monitoring vector from multi sensors at 

time k, x(k) is the unknown external forces at time k, g(x) is 

the fitting functions using RSM or other polynomial 

function, vt is the observational error vector. 

And the external force vectors x at time k+1 can be 

estimated using the x from the previous time 

( 1) ( ) tk k  x x w  (9) 

where wt is systematic error which is often assumed to 

follow an unbiased normal distribution. 
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The main steps of the extended Kalman filter method is 

similar to the Kalman filter method as shown in Eqs. (1) to 

(5) However, the estimated value for the monitoring value 

is the polynomial function of x. And the elements in matrix 

H in the EKF are computed using a first order Taylor series 

expansion 

1 1

1

1

= =

m

n n

m

g g

x x

g g

x x

  
  
 
 

  
  
   

g
H

x

L

M O M
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(10) 

where g is the fitting functions in equation (7), x is the 

external force vectors at time k. 

The Kalman gain is calculated using the matrix H 

1

( 1 ) ( 1 )P k k P k k R


     
T T

K H H H  (11) 

Then external forces of the tunnel are updated using the 

Kalman gain and the monitoring data 

ˆ ˆ ˆ( 1 1) ( 1 ) ( 1) ( 1 )k k k k k k k          x x K y y  (12) 

where y(k+1) is the in situ monitoring data observed in time 

k+1. 

The covariance of x in time k+1 is also updated using 

the approximate matrix H and the predicted covariance 

P(k+1|k) 

 ( 1) ( 1 )P k I H P k k   K*  (13) 

Using the response surface function in Eq. (6), 

mechanical indices such as tunnel convergence, bolt 

stresses and joint opening can be updated. A safety 

assessment can be conducted using these performance 

indexes. 

 

 

3. Application example 
 

To illustrate the whole approach and applicability of the 

proposed data fusion based safety assessment, an example 

of data fusion of real time multi-sensor observations in a 

shield tunnel is now presented. 

 

 

Fig. 3 Real time observations in four segments after 

synchronization of measurements in time 

3.1 Project description 
 
The monitoring was done in one of the tunnels of the 

Shanghai metro line 12. The tunnel was built by earth 

pressure balance shield machine in the end of 2012. The 
lining of the shield tunnel consists of six concrete segments 

which are prefabricated in the factory before tunneling. The 

tunnel is at an average depth of 20 m and has an outer 

diameter of 6.2 m. Nearby the tunnel as shown in Fig. 3, a 

large foundation pit, 100 m wide, 110 m long and at 20 

depth, was under excavation between 9th January 2016 and 

25th April 2016.  
To mitigate the potential risk associated with the added 

stresses and to make a safety assessment of the tunnel 

during the excavation nearby, a real time monitoring system 

using wireless sensor network was installed to measure the 

deformation of the tunnel (Bennet et al. 2010, Huang et al. 

2013, Wang et al. 2016). The ratio of convergence of the 

horizontal inner diameter is often taken as a key 

performance index (KPI) for the assessment of tunnel 

serviceability and safety (BTS. 2004; GB50157. 2013). 

Therefore, the horizontal convergence of the tunnel is often 

measured during the operational period (Mair 2008, Pinto 

and Whittle 2014, Huang et al. 2017). A novel monitoring 

method using wireless multi sensor system was developed 

to measure the rotation of the tunnel segments in real time. 

A geometric transformation was used to transform the 

rotation into tunnel horizontal convergence (Huang et al. 

2013, Wang et al. 2016).  

Fig. 4 shows that tilt sensors were installed at the L1, 

L2, B1 and B2 segments of Ring 805 in the monitored 

tunnel interval. 

 

 

 

(a) Sensors layout sketch 

 

(b) Actual tilt sensors 

Fig. 4 Installing position of the tilt sensors 
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The excavation was undertaken on the right side of the 

tunnel in Fig. 4. Tilt data were collected every one hour 

between 1st January and 25th April 2016. For each tilt 

sensors, anti-clockwise rotation was defined as positive 

value and clockwise rotations as negative as shown in Fig. 

4. The raw data in Fig. 5 indicates that the tunnel undergoes 

an ovalization deformation due to the excavation of 

foundation pit nearby the shield tunnel. 

 

 

3.2 Data cleaning and association 

 

According to Xie et al. (2018), train vibration has a 

significant impact on the real time monitoring data, and will 

create outliers. By comparing the raw data during a 

nonoperational period (“0 to 4h everyday” in Fig. 6) with 

and raw data during operation (“Fulltime” in Fig. 6), the 

fluctuation of the measured data during the nonoperational 

period is much smaller during the operational period. 

  
(a) Segment L1 (b) Segment L2 (close to the excavating pit) 

  
(c) Segment B1 (d) Segment B2 (close to the excavating pit) 

Fig. 5 Raw data of the tilt sensors at four segments during excavation period 

 

  
(a) Segment L1 (b) Segment L2 (close to the excavating pit) 

  
(c) Segment B1 (d) Segment B2 (close to the excavating pit) 

Fig. 6 Comparison of raw tilt data during the non-operational and operational period 
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The fluctuation might be attributed to the fact of train 

vibration. However, this fluctuation is not the interest of this 

paper as the safety condition of tunnel lining is not 

dependent on the fluctuation. The Kalman filter was 

therefore for datacleaning to remove this strong fluctuation.  

 

 

The real time monitoring data after the Kalman filtering are 

shown in Fig. 7. It can be seen that the fluctuations are 

cleaned after the mathematical process and the variation 

curves of the real time monitoring data are becoming more 

stable. 

  
(a) Segment L1 (b) Segment L2 (close to the excavating pit) 

  
(c) Segment B1 (d) Segment B2 (close to the excavating pit) 

Fig. 7 Kalman filter (KF) to clean raw data in Fig. 5 

 

  
(a) Segment L1 (b) Segment L2 (close to the excavating pit) 

  
(c) Segment B1 (d) Segment B2 (close to the excavating pit) 

Fig. 8 Raw data of the tilt sensors at four segments during excavation period 
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Fig. 8 gives the residual error of the Kalman filter. 

Residual error is defined as the difference between the 

measured tilt data and the tilt after Kalman filter processing. 

It is interesting to note that the residual error of segments 

L2 and B2 shown significantly more fluctuation than 

segments L1 and B1. The segments close to the excavating 

foundation pit are therefore more sensitive to the train 

vibration. 

Given that the four tilt sensors in the same section are 

independent of each other, the time of data collection are 

not exactly consistent among the four sensors. In this case 

study, the monitoring system has a high frequency (20min-

1). Considering that the tunnel is relatively stable within 

such a short time interval, a linear polynomial interpolation 

is chosen to keep the data using different sensors consistent 

with time. 

 

3.3 Numerical simulation 
 

A load-structure model as shown in Fig. 2 was 

established and analyzed with the Finite Element method 

(FEM) using the commercial code ABAQUS. The 

unloading process caused by an adjacent pit excavation is 

often simulated by decreasing the lateral resistance of the 

tunnel (Liu et al. 2016). Considering that the excavation is 

on one side of the tunnel, the lateral soil pressure of the two 

sides are not the same during the excavation. The 

coefficient of lateral soil pressure K0 on the distal side and 

the proximal side were chosen as the external forces x1 and 

x2. 

In the numerical model of shield tunnel,  the 

prefabricated segments were modeled with solid elements 

connected by steel bolts represented by beam elements. 

There is hard contact between the different segments: a 

friction coefficient of 0.6 was selected. Therefore, the 

longitudinal joint opening can be quantified from the 

displacements of nodes. According to the Chinese code for 

metro design (GB50157 2013), the coefficient of subgrade 

reaction is selected based on the empirical judgement or a 

wide range suggested by code. Therefore, the subgrade 

reaction of the surroundings is simplified by soil spring. A 

coefficient of subgrade reaction of 25 MPa/m was selected 

according to the value in Shanghai district. Both the 

increment in the lateral earth pressure and the subgrade 

 

 

reaction of the tunnel will increase the deformation and the 

bending moment of the tunnel lining. However, the analysis 

will be quite complicated and the data will be overfitted if 

both lateral earth pressure and subgrade reaction are taken 

into consideration at the same time. So the subgrade 

reaction here is assumed to be static for the sake of 

simplifying the model and improving the calculation 

efficiency. The coefficient of lateral earth pressure of two 

sides will be seen as the feature parameters in this case. 

The deformation and internal forces on the tunnel 

change under excavation. In the present case study, the 

tunnel responses, such as rotation of each of the 4 segments, 

horizontal and vertical convergence of the tunnel, bolt 

stresses and joint opening were obtained with different 

combination of x1 and x2. The initial horizontal convergence 

in this case study is 30 mm which is corresponding to 0.6 

for the lateral soil pressure coefficients x1 and x2. Fig. 9 

shows that segments L1, L2, B1 and B2 rotate due to the 

nearby excavation. The horizontal and vertical inner 

diameters of the tunnel have increments of ΔDh and ΔDv 

respectively. Considering that the tunnel has a horizontal 

convergence, the vertical convergence change ΔDv is 

negative when x1 and x2 show a decrease. The longitudinal 

joint opening δ and bolt stress σ should also increase in the 

construction period. 

 

 

 

Fig. 9 Tunnel response under the nearby excavation based 

on the numerical simulation 
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Table 1 Coefficients of the response surface function 

Coefficient YL1 (°) YL2 (°) YB1 (°) YB2 (°) ΔDh(mm) ΔDv(mm) σ(MPa) δ(mm) 

α31 99.40 -5.31 -6.55 8.60 -679.49 639.33 48000 -50.07 

α21 -165.12 10.29 12.93 -15.37 1261.37 -1166.60 -85800 94.18 

α11 91.92 -8.23 -10.10 8.82 -845.46 764.05 49900 -65.62 

α32 97.84 0.83 -0.10 -0.97 57.49 -36.25 880 3.12 

α22 -160.85 -0.75 0.13 0.87 -64.60 48.90· -966 -4.09 

α12 89.44 -0.70 0.25 1.68 -51.25 35.91 -906 -2.20 

α0 -34.07 2.89 2.64 -2.73 271.36 -236.46 -8230 20.33 

R2 0.982 0.999 0.999 0.999 0.997 0.996 0.932 0.998 
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3.4 Establishing response surface function 
 
The response surface function method is a statistical 

method to simplify and optimize the relationship between 

parameters (i.e., find the best set of factors to fit the 

observed data) (Bucher and Bourgund 1990, Rajashekhar 

and Ellingwood 1993). A third order polynomial function 

was established to reflect the relationship between external 

forces x1 and x2 and the tunnel responses 

2 2 2
3 2+ +i i i

i=1 i=1 i=1

g( ) = x + x + x +   3i 2i 1i 0y x ε α α α α ε  (14) 

where y is the structure response of the tunnel; g is the 

response function of y; coefficients α3i, α2i, α1i and α0 are 

vectors obtained with the least squares method based on the 

numerical simulations in subsection 3.3; model error ε 

expresses the bias between RSM and FEM results.  

The range of x1 and x2 in the fitting process is from 0.4 

to 0.65. This data interval covered whole variation process 

of the external forces in this case study. 

The resulting coefficients of the response surface of the 

third order are listed in Table. 1. Over 25 points are chosen 

to check the accuracy of the response surface functions. It 

should be noted that the order of polynomial function 

should be chosen based on the practical fitness of the data. 

As shown in Fig. 10 and Table. 1, the regression coefficient 

R2 of the fitting curve is very close to 1. It indicates that the 

model error ε of RSM is relatively small and it is very 

effective using the third order polynomial function. 

 

 

 

3.5 Extended Kalman filter 
 

The example analysis considers two external forces (x1 

and x2) and four observation parameters from the four tilt 

sensors in the same tunnel section. The relationship among 

the two external forces and four observation parameters can 

be reflected with the response surface function in Eq. (14) 

2 2 2
3 2

m m m3j i m2j j m1j j m0

j=1 j=1 j=1

y g ( )= α x + α x + α x +α   x  (15) 

where y1, y2, y3, y4 represent the rotation of segment L1, L2, 

B1 and B2 respectively, gm is the response function for the 

for the observation parameter yi. The coefficients of gi are 

those listed in Table 1. The parameter matrix H of the 

extended Kalman filter (EKF) process is a 4×2 matrix 
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(16) 

The external forces are updated by repeating the process 

from Eq. (9) to Eq. (13). Monitoring data and an 

approximate transformation matrix H were used in the 

updating process. 

 

  
(a) Horizontal convergence ΔDh (b) Vertical convergence ΔDv 

  
(c) Bolt stress σ (d) Joint opening δ 

Fig. 10 Comparison of displacements, bolt stress and joint opening using response surface method 
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3.6 Result of data fusion 
 
3.6.1 External forces 
Fig. 11 presents the variation in the coefficient of lateral 

earth pressure during the nearby excavation period. The 

lateral earth pressure coefficient K0R on the right side 

(nearest the excavation) dropped from 0.6 to 0.54 in the 

four-month period. However, the lateral earth pressure 

coefficient on the left side K0L remained approximately 

constant over the four-month period. Only a very slight 

decrease in K0L can be observed. The nearby excavation 

(Fig. 3) has a significantly larger influence on the closest 

side of the tunnel. 

 

3.6.2 Tunnel convergence 
The tunnel deformations are often used as a key 

performance indicator (KPI) for the safety and 

serviceability assessment of a tunnel (Mair 2008, Pinto et 

al. 2014, Liu et al. 2016). The ratio of horizontal 

convergence to initial outer diameter, i.e., ΔD/Dout, is one of 

the most frequently used KPI in codes for tunnel. British 

Tunnel Standards (BTS, 2004) sets that the ultimate limit of 

the ratio is about 2%. Given that the outer diameter in most 

of the Shanghai metro tunnel is 6.2 m, the ultimate limit of 

the convergence is 124 mm. Figs. 12 and 13 present the 

horizontal and vertical convergence variation during the 

monitored nearby excavation period. The horizontal 

convergence in Fig. 12 and the vertical convergence in Fig 

13 indicate that the nearby excavation caused a change of 

4mm in both horizontal and vertical convergence. This is 

still a wide distance to the ultimate limit of 124 mm.  

 

 

 

(a) K0 in the left sides 

 
(b) K0 in the right sides (close to the foundation pit) 

Fig. 11 Variation of lateral earth pressure coefficients 

 

 

 

 

Fig. 12 Horizontal convergence obtained with the data 

fusion and the geometric method 

 

 

 

Fig. 13 Vertical convergence obtained with the data fusion 

method 

 

 

Zhang (2015) divided the ratio of horizontal convergence 

into 5 levels: 5‰Dout, 8‰Dout, 10‰Dout, 12‰Dout, 

14‰Dout using statistical analysis of tunnel convergence 

data in Shanghai Metro Line 2. It can be seen that the 

horizontal convergence reach the first level (5‰Dout) in 

February in 2016, and it hasn’t reach the second level of 

8‰Dout at the end of the excavation period. The horizontal 

convergence using the Kalman filter method is similar to 

the geometric method. The rotation of segment B1 and B2 

are used for the geometric method (Figs. 5(c) and 5(d)) 

Detail information of the geometric method will be 

introduced in the subsection 3.7. 

 
3.6.3 Segments internal forces and bolt stress in 

tunnel segments 
 
The axial forces and bending moment in the segment 

cross sections under different combination of lateral earth 

pressure were calculated with the FEM model. The 

relationship among internal forces and external forces were 

simplified fitted by the response surface functions. The 

axial forces and bending moments were updated based on 

the monitoring data in order to evaluate the safety condition 

of the segment. The bearing capacity was calculated for the 

ultimate limited state (ULS) ITA (2000). The critical curves 

for positive and negative moment in the tunnel segments are 

presented in Fig. 14. None of the internal force combination  
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Fig. 14 Spatial distribution of internal forces in different 

segment sections 

 

 

Fig. 15 Bolt stress variation during the period of the nearby 

excavation 

 

 

exceed the critical boundaries. Fig. 15 gives the bolt stress 

at the top longitudinal joint (which is the highest among all 

other bolts). The bolt stress developed under the excavation 

nearby reached nearly 560 MPa in April 29th 2019. This 

stress is well within the safe state as the yield stress is 

640MPa.  

 
3.6.4 Opening width and waterproofing of the 

longitudinal joint 
 
Joints are the weakest part of a tunnel segmental lining. 

Large joint openings cause not only the bolt fracture but 

also cause a degradation of waterproofing performance. 

Hence joint opening width (δ) is often regarded as a key 

performance index (KPI) for the tunnel safety assessment 

(Liao et al. 2008, Huang et al. 2017). The joint opening can 

also be estimated with the proposed data fusion method. 

The results are shown on Fig. 16. The joint opening on the 

right side of the tunnel (close to the excavation) is much 

larger than on the left side.  

Fan et al. (2012) pointed out that leakage of the longitudinal 

joint may occur if the contact stress of the rubber sealer P0 

is not enough to resist the external water pressure Pw 

0WP αP  (17) 

where α is usually taken as 0.87. 

 

 

Fig. 16 Variation of joint opening caused by the nearby 

excavation over four months on left and right side of tunnel 

 

 

 

Fig. 17 Ultimate water pressure 

 

 

The contact stress P0 can be calculated as 

0
srF

P
A

  (18) 

where r is the residual stress ratio which reflects the 

working performance of the rubber seal, A is the contact 

area of the rubber seal and Fs is the extrusion force which 

can be calibrated with laboratory tests. 

The Code for Polymer water-proofing materials 

(GB18173.4, 2010) specifies that the initial compression 

displacement is 6 mm. The axial compression displacement 

Δ can be determined from the longitudinal joint opening δ 

=6-δ  (19) 

According to the laboratory test conducted by Yan et al. 

(2011), the extrusion force can be calculated with the 

following equation 

2

3 2

0.14 2.97 0.38 0 4

7.7 105.4 488.6 746.6 4 7
S

mm
F

mm
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(20) 

Using the equation from (17) to (20), the ultimate water 

pressure can be updated. Fig. 17 shows that the ultimate 

water pressure of the right joint is higher than that of the left 

joint as the joint opening of the left joint is much smaller. 

Given that the depth of the tunnel is 24 m, the hydrostatic 

pressure is about 0.24MPa. The ultimate water pressure 

calculated by the proposed method is much more than that 

of the hydrostatic pressure. 
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3.7 Verification of the data fusion method 
 

There were four tilt sensors installed in the same cross 

section (Ring 805) of the tunnel. Each tilt measured by one 

sensor can be predicted based on the other three sensors 

with the proposed data fusion method. Fig. 18 compares the 

measured and predicted tilt, the latter made on the basis of 

three and four sensors. The predictions in red were done 

with the data fusion method using the other three tilt data at 

the same time. The prediction and the actual measurement 

in segment L1, L2 and B1 match well in Fig. 18. The good 

match verifies that the rotation of the four segments are not 

totally independent of each other. The internal correlation of 

the four rotations were simulated using the load structure 

model in the proposed method. Considering that the rotation 

can also be updated using the other three sensors, the data 

fusion process can improve the robustness of the behavior 

derived from the monitored data system.  

Fig. 18(d) shows that there is a difference of 0.04° (the 

measurement is 0.11°) between the measurement and 

prediction values of the rotation of segment B2. However, 

this difference of 0.04° can be reduced to 0.01° when the 

data from tilt sensor B2 is taken into use. Given that the 

sensor in segment B2 measure the rotation directly, some 

information about the structure response in segment B2 was 

missing when only the three other sensors were used for the 

interpretation of the monitoring data. Therefore, the 

accuracy of the structural response gets improved with more 

monitoring sensors. 

The tunnel convergence quantified using the proposed 

method was compared with normal geometric method in  

 

 

Fig 12 in order to verify the accuracy of the proposed 

method. The geometric model frequently used to calculate 

convergence assumed that segment D is static and segments 

B rotates around the longitudinal joint between the two 

segments and the horizontal convergence can be calculated 

from the tilt data with the geometrical relationship in Fig 

19. 

 1 2ΔD= L Δθ - Δθ cosω  (21) 

where ΔD is the change of horizontal convergence; Δθ1 and 

Δθ2 are the changes of angle which take the anticlockwise 

as the positive direction; L is the distance from the turning 

point to the inner surface at the center point level; and ω is 

the angle between the vertical line and the horizontal 

diameter of the tunnel (Fig 12). 

According to Huang et al. (2013) and Wang et al. 

(2016), the geometric method for horizontal convergence 

calculation had a reasonable high accuracy and is close to 

the actual convergence change by laser distance meter. Fig. 

12 compares the horizontal convergence obtained with the 

geometric method and with the data fusion method. The 

horizontal convergence of geometric method is calculated 

with the rotation of B segments (Figs. 5(c) and 5(d)) using 

the Eq. (21). The average value of the geometric method 

and data fusion method are quite similar. The data fusion 

method is however more stable and has fewer and less 

spread-out outliers than the geometric model. Hence the 

data fusion method is reliable for the interpretation of 

tunnel convergence. 

 

  
(a) Segment L1 (b) Segment L2 

  
(c) Segment B1 (d) Segment B2 

Fig. 18 Comparison of measurement and prediction of tilt 

 

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

2015-12-31 2016-02-09 2016-03-20 2016-04-29

Measurement

Prediction (3 sensors)

Prediction (4 sensors)

Date

T
il
t

(°
)

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

2015-12-31 2016-02-09 2016-03-20 2016-04-29

Measurement

Prediction (3 sensors)

Prediction (4 sensors)

Date

T
il
t

(°
)

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

2015-12-31 2016-02-09 2016-03-20 2016-04-29

Measurement

Prediction (3 sensors)

Prediction (4 sensors)

Date

T
il
t

(°
)

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

2015-12-31 2016-02-09 2016-03-20 2016-04-29

Measurement

Prediction (3 sensors)

Prediction (4 sensors)

Date

T
il
t

(°
)

703



 

Hongwei Huang, Xin Xie, Dongming Zhang, Zhongqiang Liu and Suzanne Lacasse 

 

 

 

 

 

Fig. 19 Geometric model for the horizontal convergence in a shield tunnel 

  

(a) Comparison of TiltL1 and TiltL2 (b) Comparison of TiltL1 and TiltB1 

  

(c) Comparison of TiltL1 and TiltB2 (d) Comparison of TiltL2 and TiltB1 

  

(e) Comparison of TiltL2 and TiltB2 (f) Comparison of TiltB1 and TiltB2 

Fig. 20 Comparison of data using different tilt sensors 

L

Δθ2

ω

Din+ΔD

Din

Δθ2Δθ1

Turning point Turning point

Dout

ΔD/2

y = -0.9019x + 0.8424

R² = 0.9044

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00

TiltL2

T
il

t L
1

L1 L2

Pearson's r：-0.951

y = -0.5778x + 0.7568

R² = 0.4474

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00

TiltB1

T
il

t L
1

L1

B1

Pearson's r：-0.669

y = 1.0496x + 0.047

R² = 0.9647

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00

TiltB2

T
il

t L
1

L1 

B2

Pearson's r：0.982

y = 0.6571x + 0.2131

R² = 0.5204

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00

TiltB1

T
il

t L
2

L2

B1

Pearson's r：0.721

y = -1.1018x + 1.0119

R² = 0.9561

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00

T
il

t B
2

TiltL2

L2 

B2

Pearson's r：-0.978

y = -0.7878x + 1.0347

R² = 0.4056

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00

T
il

t B
2

TiltB1

B1 B2

Pearson's r：-0.637

704



 

Multi-sensor data fusion based assessment on shield tunnel safety 

4. Discussion 
 
4.1 Correlation among monitoring data 
 

In practice, the monitoring data using different sensors 

may be correlated with each other. However, it is difficult to 

express the correlation directly based on the usual 

mechanical analysis. Hence, novel inverse analysis 

approaches have been proposed to make a holistic 

assessment of the data (Peng et al. 2014). 
Fig. 20 shows the comparison of tilt data from different 

sensors. The data were normalized before data cleaning by 

Kalman filter (Fig 7). Tilt data of segment L1 has a strong 

negative correlation with that of segment L2 and B2. The 

Pearson correlation coefficients are closing to -1. In 

addition, there is a positive correlation between the tilt data 

of segment L1 and B2. The correlation is quite strong as the 

Pearson correlation coefficient is closing to 1. The tilt of 

segment B1 has relatively weak correlation with the data 

from other three tilt sensors. It can be seen from Figure 7 

that nearby construction has little effect on the rotation of 

segment B1. Nevertheless, the Pearson correlation 

coefficient is larger than 0.5 or smaller than -0.5. Thus, it 

can be seen that the data using different sensors are 

correlated with each other in the construction period. 

More importantly, the proposed data fusion approach 

provides us a global interpretation to understand the tunnel 

response under external stress changes. The nearby 

construction or other event can lead to a disturbance of the 

soil which may change the structure response of the tunnel, 

and variation in the monitoring data. The relationship 

between structure response and the external forces were 

established based on a simplified numerical model. Fig. 18 

shows that the change in rotation variations of the four 

segments in the same cross section (Ring 805) are not 

totally axisymmetric especially segment B1 and B2. 

According to the numerical result in Fig. 11, the coefficient 

of lateral earth pressure on the two sides of the tunnel are 

different in space. The disturbance due to the nearby 

excavation on the soil on the right side is larger than that on 

the left side. Given that the tunnel is a long continuous 

structure similar to a long strip, this leads to a constrained 

condition in the surrounding soil especially the soil on the 

left side, opposite to the excavating pit. 

 

4.2 Limitation of the proposed method 

 

The proposed data fusion approach has limitations that 

should be improved in the future: 

(1) The failure of a shield tunnel may involve several 

characteristics such as large convergence change, fracture 

of bolts, concrete spalling and waterproof failure. How to 

identify the likely failure mechanisms of the shield tunnel 

and how to define the ultimate state of the system are 

subject of further research, and is at present not easily 

modelled with the data fusion approach.  

(2) The time effect of monitoring information should be 

considered in the future, especially long term effects, which 

may be caused by aging bolts, concrete crack development, 

soil creep, tunnel leakage and so on.  

(3) The method uncertainty (bias and variability) of the 

numerical simulation should be considered in practical 

applications. The accuracy of the data fusion approach 

depends on the result of the numerical model. The influence 

of the method uncertainty on the data fusion result should 

be studied in order to improve the reliability of the safety 

assessment. 

 

 
5. Conclusions 

 
This paper presented a novel method for tunnel safety 

evaluation utilizing multi-sensor monitoring data. The 

following conclusions can be drawn: 

(1) A data fusion framework is constructed by 

integrating several real time monitoring sensors. The 

interrelationships among the external loads, monitoring 

information, tunnel responses and performances are 

included in the proposed analysis framework. Tunnel 

performance indexes such as maximum factor of safety and 

ultimate water pressure were quantified with finite element 

analysis and response surface fitting function. 

(2) Different sources of monitoring information in the 

same cross-section of a tunnel can be taken into account in 

the safety evaluation with the proposed multi-sensor data 

fusion method. The extended Kalman filter method was 

used to integrate the different monitoring data and estimate 

the impact of nearby construction through the updating of 

the external forces affecting the tunnel performance. The 

updated result showed that the coefficient of lateral earth 

pressure became asymmetrical due to a nearby excavation. 

(3) Different monitoring data in the same cross-section 

were correlated with each other during the nearby 

excavation of a foundation pit. The monitoring data from 

one sensor can be estimated using the monitoring data from 

the other sensors in the same cross section. The comparison 

of the measurement and prediction indicate that the 

accuracy will be improved with additional sensors. 

(4) The correlations among different monitoring data 

and the method uncertainty of the finite element method 

should be studied in the future to make the safety evaluation 

approach more robust and more reliable. 
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