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1. Introduction 
 

System identification methods for identifying structural 

damage in the early stage have gained attention since the 

1990s (Friswell and Mottershead 2013). Numerous 

techniques have since been developed (Ye et al. 2013, Ni et 

al. 2014, Ye et al. 2016a, b). However, the majority of these 

methods assume that structural behaviors remain in the 

linear elastic stage after damage has occurred. This 

assumption may be incorrect because damage generally 

causes a structure in the nonlinear state. For example, a 

strong earthquake may cause cracks in a structure; the 

opening and closing of cracks exhibit a nonlinear property 

(Chen et al. 2006, Prawin et al. 2018). Therefore, nonlinear 

structural behaviors should be considered in damage 

identification. 

The nonlinear characteristics of structures have been 

identified using Bayesian approach (Yuen and Beck 2003), 

least squares algorithm (Smyth et al. 1999), Kalman filter 

(Chatzi and Smyth 2009) and intelligence algorithm 

(Charalampakis and Koumousis 2008). For example, Yuen 

and Beck (2003) proposed a nonlinear parameter 

identification method based on a spectral density. A 

stochastic model was used to represent the uncertainty of a 

random input, whereas a Bayesian probabilistic approach 

was developed to quantify the parameters in the stochastic 

model. Ting et al. (2006) developed a Bayesian technique to  
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estimate the parameters in a rigid body dynamics system. 

The Bayesian regularization method was applied to ensure 

the robustness of the algorithm by considering the noise in 

the measured responses and input force. Xu et al. (2012) 

proposed a power series polynomial model to represent the 

nonlinear restoring force. The least squares technique was 

developed to estimate the coefficients of the polynomial 

model. The proposed method was applied to a nonlinear 

multiple degree-of-freedom (DOF) chain-like structure 

without prior knowledge of the system model. The 

nonlinear restoring force and unknown dynamic loadings 

were successfully identified. An experimental study on a 

four-storey steel frame structure equipped with two actively 

controlled magnetorheological dampers was also conducted 

(He et al. 2012). Lei and Wu (2011) developed a technique 

to identify the nonlinear restoring force with limited input 

and output measurements. The unknown system parameters 

were identified by using a two-stage Kalman estimator 

technique with vibration responses. The nonlinear restoring 

force and unmeasured excitation were estimated using the 

recursive least squares method. 

The majority of these existing studies use simplified 

models to calculate the nonlinear vibration responses of 

structures. These models, including the mass-spring-damper 

and shear-building models, are based on simplified 

assumptions and are insufficient for predicting the vibration 

characteristics/responses of real structures. The recent 

development of nonlinear finite element (FE) methods, 

particularly with improvements in computer efficiency and 

capability, enables the simulation of the complex nonlinear 

behaviours of large-scale structures under earthquake 

inputs. Existing nonlinear FE methods have focused on 
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dynamic analysis (Taucer et al. 1991), seismic design and 

reliability evaluation (Haukaas and Der Kiureghian 2004). 

These studies have shown that the nonlinear FE methods 

can predict and model the nonlinear dynamic behaviour of 

structures with high accuracy. 

Recently, nonlinear FE model updating has been 

developed to identify structural nonlinear parameters. 

Ebrahimian et al. (2015) utilised the extended Kalman filter 

to identify the material parameters in the constitutive 

models of reinforcement and concrete. Astroza et al. (2014) 

adopted the stochastic filtering technique to estimate the 

material parameters in the distributed plasticity of the FE 

model. Similar studies on nonlinear material parameter 

identification were conducted using the batch Bayesian 

approach (Ebrahimian et al. 2017). The unknown material 

parameter and seismic input were identified using the 

recursive Bayesian estimation approach (Astroza et al. 

2017) and sequential maximum likelihood estimation 

algorithm (Ebrahimian et al. 2018). Experimental studies on 

nonlinear FE model updating were also conducted. Asgarieh 

et al. (2014) calibrated the nonlinear FE model of a 

masonry infilled frame structure. The parameters in the 

hysteretic material models were updated with time-varying 

modal parameters of the real structure. Li et al. (2017) 

performed an experimental investigation on a seismic 

isolated bridge. The parameters of the isolators were 

calibrated from the experimental test data, and the updated 

bridge model was consistent with the measured responses.  

These nonlinear FE model updating methods are global 

based, that is, the unknown parameters of the entire 

structure are updated simultaneously. The nonlinear analysis 

is computationally intensive and time consuming; thus, the 

global approach cannot be applied to practical structures 

that contain a great number of DOFs. This study proposes a 

decentralized approach for nonlinear FE model updating. 

The dynamic responses of the structure are computed on the 

basis of the discrete FE models with nonlinear dynamic 

analysis. The nonlinear behavior of a structure is simulated 

using the uniaxial material model (Taucer et al. 1991). 

Following previous studies (Law et al. 2014, Ni et al. 

2018), a large-scale structure is divided into several small 

zones on the basis of its FE configuration. Each subset of 

unknown material parameters is updated using the 

measured vibration responses at its own zone with the 

Newton-SOR method. The proposed method is 

implemented in MATLAB and interfaced with OpenSees 

(McKenna 2011) for calculating the dynamic responses and 

response sensitivity. Numerical studies on two building 

structures under ground motion inputs are conducted to 

verify the accuracy of the proposed method. Different 

material parameters in the constitutive parameters, such as 

the compressive strength of concrete and the yield stress of 

reinforcement, are regarded as unknown variables to be 

updated. Results show that the proposed decentralized 

method can accurately identify the nonlinear material 

parameters. The efficiency of the present method is also 

compared with that of the conventional global model 

updating approach. 

 

 

2. Decentralized model updating approach 
 

2.1 Nonlinear FE analysis procedure 
 
The equation of motion of an N-DOFs damped 

nonlinear system under ground motion excitation can be 

written as follows 

        ,
r g

t t t x tMx + Cx + K x = MIθ  (1) 

where  tx ,  tx
 

and  tx  are the vectors of the 

displacements, velocity and acceleration responses of the 

structure at time t, respectively; M and C denote the mass 

and damping matrices of the structure, respectively; θ is the 

material parameter vector in the material constitutive model; 

  ,r tK x   represents the resisting force vector and 

depends on  tx  and θ; and  gx t  refers to the ground 

motion acceleration. The mass matrix of a structure can be 

estimated accurately from the geometric dimension and 

material density, which are assumed invariant. 

The fiber beam-column elements (Taucer et al. 1991) 

are used in this study for the nonlinear dynamic analysis of 

frame structures under seismic input. The structural model 

is initially divided into a number of elements. Then, the 

section of each element is discretized into several fibers, 

which follows a specific constitutive law of the material. 

Fig. 1 shows the computational model of the nonlinear 

dynamic analysis. The nonlinear analysis procedure 

contains state determination at the element, section and 

fiber levels. The fiber strain is computed from the 

section/element deformation with the plane section 

assumption. The stress and tangent moduli of each fiber are 

obtained from the material constitutive models with the 

fiber strain. Meanwhile, the section resisting forces are 

calculated by adding the axial force and biaxial bending 

moment contributions of all fibers. Finally, the element 

flexibility matrix is formed by integrating the section 

flexibility and then inverted to the element tangent stiffness 

matrix. Detailed descriptions of the technique are provided 

in previous study (Taucer et al. 1991). 

 

2.2 Decentralized identification of nonlinear material 
parameters 

 

Decentralized methods, as a promising solution in large 

structural health monitoring (SHM) systems, have been 

developed for modal identification (Kim and Lynch 2011), 

vibration control (Xu et al. 2003, Lei et al. 2013) and 

damage detection (Law et al. 2014, Ni et al. 2018) in large-

scale structures. A decentralized approach for nonlinear FE 

model updating is developed in this study. 

A large-scale system can be divided into several 

subsystems. Measurements in the structure are divided into 

small physical zones on the basis of its FE formulation. The 

unknown structural parameter θ can be divided into r 

subsets  1 2,  ,  , r   , where iθ  contains all unknown 

material parameters of the ith (1 i r  ) zone. Field testing 

is conducted in different zones of the structure. The 
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measured dynamic responses from the ith zone ,mea ix  can 

be written as a function as 1 2( , , , , )i r gxg θ θ θ . The 

measured responses from different zones can be expressed 

as 

1 1 2 1

2 1 2 2

1 2

1 2

( , , , , ) 0

( , , , , ) 0

( , , , , ) 0

( , , , , ) 0

r g mea,

r g mea,

i r g mea,i

r r g mea,r

x

x

x

x

 

 

 

 

g θ θ θ x

g θ θ θ x

g θ θ θ x

g θ θ θ x

 (2) 

In Eq. (2), material parameters in the constitutive model 

are unknown and will be identified from a nonlinear FE 

model updating technique. Eq. (2) can be written as 

( ) 0=G   (3) 

and solved using the Newton method (Ortega and 

Rheinboldt 1970) as follows 

1( ) ( ) ( )( ) 0n n n+ n=   G G G       (4) 

1( ) ( ) ( )n n+ n n n=  G G G      (5) 

1
1 ( ) ( )n+ n n n=



   G G     (6) 

where n denotes the number of iterations; and  ' n
G θ  is 

the Jacobian matrix of  n
G   as 

1 1 1

1 2

2 2 2

1 2

1 2

( )

r

n

r

r r r

r

=

   
   
 
   
 

    
 
 
   
    

g g g

θ θ θ

g g g

θ θ θG

g g g

θ θ θ

  (7) 

Following the derivation in previous study (Law et al. 

2014), an iterative SOR method is applied to Eq. (5). The 

Jacobian matrix  nG   is decomposed into a diagonal 

block matrix L and non-diagonal block matrix U as follows 

 n  G L U  (8) 

Eq. (5) can then be rewritten as follows 

     1n+ n n n=  L U G G     (9) 

The right-hand side of Eq. (9) is defined as follows 

   n n n G Gb     (10) 

By substituting Eq. (10) into Eq. (9), we have 

1 1n+ n+= +L U b   (11) 

By using the SOR method, Eq. (11) can be written as 

1, 1, 1n+ q n+ q= +
L U b   (12) 

and 

 1, 1 1, 1 , ( 1 2 3 )n+ q n+ q= +  q= , , , 
L U b 

 
(13) 

where superscript q denotes the iteration step in the SOR 

method. 

By defining matrix V=L−1U, Eq. (13) can be rewritten as 

follows 

1, 1, 1 1n+ q n+ q= + 
V L b   (14) 

By expanding 1, 1n+ q
V , we have 

 

   

    

1, 1,0 2 1

1,0 1,0 2 1 1

1,0 2 1 1,0 1

n+ q q n+ q

n+ q n+ q

n+ q n+

 

 

 

  

    

    

= V I V V V L b

= V I I V V V L b

= I V V V V I L b

 

 

 

 (15) 

Given 

 1 1=    V I L U I L U L  (16) 

The last bracket on the right-hand side of Eq. (15) can 

be expressed as 

 

      
    

1,0 1

1 1,0 1

1 1,0 1

n+

n+ n n

n+ n n

= +

=



 

 

 
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V I L b

L U L L L U G

L U L L G



  

  

 (17) 

The initial and ending values of the SOR iteration are 
the initial and ending values of the Newton iteration, 

respectively: 1,0n+ n   and 1, 1n+ q n+  . By 

substituting Eq. (17) into Eq. (15), we have 

   1 2 1 1n+ n q n   = I V V V L G    (18) 

When q→∞, Eq. (18) is equivalent to the Newton 

method in Eq. (6). When q=1, we have the one-step 

Newton-SOR iteration as follows 

 1 1n+ n n= L G    (19) 

By rewriting 1n+  into a vector of subsets 
1 1 1

1 2, , ,n+ n+ n+

r   θ θ θ , Eq. (19) can be expressed as 

   
1

1 , 1, 2, ,n+ n ni

i i i i mea,in

i

i r



 
        

g
θ θ g θ f x

θ
  (20) 

or 
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0 0 0
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nn+ n
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n+ n
n

r r
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= i r





 
                                              
  

g

θ g f x
θ θ

g
g f xθ θ

θ

θ θ g f xg

θ

 







 

(21) 

The least squares method is applied to Eq. (20), and the 
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resulting one-step Newton-SOR is obtained as follows 

 
1

1 ,

T T

n+ n ni i i

i i i g mea,in n n

i i

x




        
                    

g g g
θ θ g x

θ θ θ
  

 1,2i r  

(22) 

When an iterative SOR method is used to solve Eq. (5) 

for each Newton iteration, the entire process is called the 

Newton-SOR method (Ortega and Rheinboldt 1970). If p 

iterations are used within the SOR loop, then the method is 

called p-step Newton-SOR. Comprehensive descriptions of 

the method were discussed by Ortega and Rheinboldt 

(1970). The SOR solution is used to reconstruct the 

Jacobian matrix for the succeeding Newton step such that 

the SOR solution is not required to have high precision 

(Law et al. 2014, Ni et al. 2018). Therefore, we only 

consider the one-step Newton-SOR method. The Jacobian 

matrix or dynamic response sensitivity is calculated in the 

next section. 

 

2.3 Dynamic response sensitivity considering material 
nonlinearity 

 

Structural response sensitivity has been studied for years 

and extensively used for probabilistic analysis, structural 

design optimisation and reliability analysis (Conte 2001, 

Haukaas and Der Kiureghian 2004, Ye et al. 2015). 

Numerous methods, such as finite difference (Hsieh and 

Arora 1984), perturbation (Kiran et al. 2016), direct 

differentiation (Gu et al. 2009) and substructuring methods, 

have been proposed to calculate sensitivity. Although the 

perturbation method is computationally efficient, it may not 

be accurate enough. The forward finite difference method is 

simple, but it is time consuming and vulnerable to 

numerical errors. The direct differentiation method trades 

off accuracy and computational efficiency and has been 

extensively used in nonlinear FE model updating (Astroza 

et al. 2014, Ebrahimian et al. 2015, Ebrahimian et al. 2017). 

Therefore, this method is adopted in this study and briefed 

as follows. 

The acceleration and velocity at time step (t+1) can be 

interpolated with an implicit time integration scheme as 

follows 

         1 2 3 41 1t b t b t b t b t     x x x x x  (23) 

         5 6 7 81 1t b t b t b t b t     x x x x x  (24) 

where b1 to b8 are constant integration coefficients. By 

substituting Eqs. (23) and (24) into Eq. (1), we have 

        1 51 1 1 , 1rb t b t t t      Mx Cx K x P  (25) 

where 

         

     

2 3 4

6 7 8

1 1

             

gt x t b t b t b t

b t b t b t

       

    

P MI M x x x

C x x x
 (26) 

 

Eq. (25) is differentiated with respect to each material 

parameter 
i  to obtain the response sensitivity as follows 

   
  
 

 

    
 

1 5

1 5

1 , 1
1 1

1

1 , 1
1

r

i

i i i i

t t
b t b t

t

t t
b b t



   

    
    

    

      
      

    

K x x
Mx Cx

x

K x P M C
x





 (27) 

This study only considers nonlinear material parameters 

in the material constitutive model. Therefore, 0i  M  

and 0i  C . The last term on the right-hand side of 

Eq. (27) can be negligible. Similarly, by using the derivative 

of Eq. (26) with respect to θi, we have 

   
           

           
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2 3 4 6 7 8

2 3 4 6 7 8

2 3 4
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   
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 

    
               

        
        

        

  
   

 

MIP M C
x x x x x x

x x x x x x
M C

x x
M        6 7 8

i i i i

t b t b t b t
   

     
     

      

x x x x
C

 

(28) 

Vectors   it  x ,   it  x  and   it  x  are 

available from the last time step sensitivity computation. 

Therefore,  1 it   P  can be obtained. The first term in 

the right-hand side of Eq. (27), that is, 

  1 ,r it   K x  , is the partial derivative of the 

resisting force with respect to the unknown material 

parameter θi. The internal resisting force vector 

  1 ,r t K x   can be assembled from the element nodal 

resisting force as follows 

      ,

1

1

1 , 1 ,
ne

ele i

r t i

i

t K t



  K x x   (29) 

where  1i t x  is the element nodal displacement vector 

in the element local coordinate system, ne denotes the total 

number of elements and ,

1

ele i

tK 
 represents the ith element 

nodal resisting force vector at time step (t+1) and is 

obtained from the integral of the section stress vector as 

follows 

  , sec sec

1 1 1 ,ele i T

t t tK dl   B      (30) 

where B indicates the strain-displacement transformation 

matrix, 
1

sec

t  refers to the section strain and 
1

sec

t  is the 

section stress vector that is obtained by integrating the fibre 

stresses over the cross section as follows 

  1 1 1 ,sec fib fib

t t tσ ε dA   b    (31) 

where b is the section kinematic vector; 
1

fib

tσ 
 represents the 

fibre stress; and 
1

fib

tε 
 denotes the fibre strain. 

By substituting Eqs. (30) and (31) into Eq. (29), the 

partial derivative is computed as follows 

     1 1

1

,1 ,
fib fib

ne
t tr T

ii i

σ εt
dAdl

 

 



    
  

   
  

K x
B b

 
 (32) 
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where   1 1 ,fib fib

t t iσ ε     is the derivative of the fibre 

stress with respect to material parameter 
i  and can be 

computed by analytically differentiating the material 

constitutive law (Zhang and Der Kiureghian 1993, Kleiber 

et al. 1997, Conte et al. 2003). 

 

2.4 Procedures of the model updating technique 
 

The proposed method is implemented in MATLAB and 

interfaced with OpenSees (McKenna 2011) for calculating 

the structural responses and response sensitivity. The 

procedures of the proposed method are as follows. 

Step 1: The structure is divided into small zones on the 

basis of its FE formulation, and the corresponding 

sets of responses from each zone are obtained. 

Step 2: The initial value of the parameters is set as 
0 0 0

1 2, , , r
   θ θ θ θ . 

Step 3: The sensitivity of responses is computed with 

respect to the structural parameters of each zone 

with OpenSees. 

Step 4: The parameters of each zone 1n+

iθ  are updated 

using Eq. (22). 

Step 5: Steps 3-4 are repeated until the following 

convergence criterion in Eq. (33) is satisfied. 

 

1

1
100%

n n

n
Tol






 

θ θ

θ
 (33) 

where Tol is the tolerance of convergence criterion, which is 

set as 1.0×10−8 and 1.0×10−5 for cases without and with 

noise, respectively, in following examples. 

 

 

3. Numerical examples 
 
3.1 RC frame 
 
A two-bay, three-floor RC planar frame structure is 

studied. Fig. 2(a) shows the dimensions of the frame model. 

Each bay of the structure has a length of 5 m and the height 

of each floor is 3 m. The cross sections of columns and 

beams are 0.5 m×0.5 m and 0.25 m×0.4 m, respectively 

(Figs. 2(b-c)). This structure is modeled with displacement-

based fiber-section beam-column elements in OpenSees. 

The columns and beams on each floor are further divided 

into 5 and 10 elements, respectively, along the longitudinal 

direction. Therefore, the FE model of the structure 

comprises 102 nodes, 105 elements and 306 DOFs, as 

shown in Fig. 3. The beam and column sections are 

discretized into several fibers, as shown in Fig. 4. The 

longitudinal reinforcement is modelled with the uniaxial 

Menegotto-Pinto steel material (Barbato and Conte 2006). 

The concrete is modeled with the uniaxial smoothed 

Popovics-Saenz concrete material (Zona et al. 2005). Figs. 

5(a-f) show the stress–strain relations and hysteresis curves 

of the steel and concrete. Table 1 lists the material 

parameters of the longitudinal reinforcement, confined 

concrete and unconfined concrete. These parameters are 

selected from previous studies (Zona et al. 2005, Gu et al. 

2009). 

The El Centro earthquake with a peak ground 

acceleration (PGA) of 0.8 g is selected as the input. The 

nonlinear dynamic responses of the structure are computed 

using the Newmark method. A mass of 4,000 kg/m is added 

to the beam elements to simulate the weight of floors and 

other dead loads. As shown in Fig. 5, the entire structure is 

divided into three zones. Three accelerometers are installed 

in each zone to measure the horizontal acceleration 

responses. The sampling frequency is 1000 Hz and the 

ground motion lasts for 20 s. The measured responses in 

each zone are used to update the material parameters of that 

zone. 

 

 

Table 1 Material parameters of the RC frame structure 

Material Unknown material parameters (initial values) 

Confined 

concrete 

Compressive strength fc (34.5 MPa) 

Concrete strain at maximum strength εc 

(0.005) 

Initial tangent stiffness Ec (27.9 GPa) 

Unconfined 

concrete 

Compressive strength fuc (27.6 MPa) 

Concrete strain at maximum strength εuc 

(0.002) 

Initial tangent stiffness Euc (24.9 GPa) 

Reinforcement 

Initial yield stress fy (248.2 MPa) 

Young’s modulus Es (210 GPa) 

Strain-hardening ratio b (0.02) 
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Fig. 2 Dimensions of RC frame structure 
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Fig. 3 FE model of frame structure 
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 (confined concrete) 

Concrete 1

 (unconfined concrete) 

Reinforcement

 

Concrete 1

 (unconfined concrete) 

Concrete 2

 (confined concrete) 

Reinforcement

 
(a) Column (b) Beam 

Fig. 4 Fibers defined in the cross section 

   
(a) Strain-stress curve of 

reinforcement 

(b) Strain-stress curve of unconfined 

concrete 

(C) Strain-stress curve of confined 

concrete 

   
(d) Hysteresis loop of reinforcement (e) Hysteresis loop of unconfined 

concrete 

(f) Hysteresis loop of confined 

concrete 

Fig. 5 Material models 
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Material parameters in the constitutive model for each 

floor are the same. The unknown variables are compressive 

strength fc, concrete strain at maximum strength εc, initial 

tangent stiffness of the confined concrete Ec, compressive 

strength fuc, concrete strain at maximum strength εuc, initial 

tangent stiffness of the unconfined concrete Euc, initial yield 

stress fy, Young’s modulus Es and strain-hardening ratio of 

reinforcement b. Other empirical parameters that control the 

curvature of the hysteretic loops are assumed as known 

constants. Therefore, each zone has 9 unknown material 

parameters and the entire structure has 27 to be identified. 

Table 1 lists the initial values of the material parameters. To 

simulate the uncertainty in the material parameters, 10% 

random errors are added to such parameters. 

With the measured acceleration responses, the material 

parameters in each zone are identified using the proposed 

decentralized approach. Fig. 6 shows the results with a 

comparison of the true values. The identified material 

parameters in each zone are consistent with the true values, 

thereby verifying the accuracy of the proposed method. Fig. 

7 compares the computational time and relative errors 

between the proposed decentralized and conventional global 

model updating methods. The latter is based on the classic 

sensitivity-based model updating method (Lu and Law 

2007). The decentralized method converges to the true 

values in approximately 3.5 h; it is considerably faster than 
the global method, which takes 11 h. 

 

 

(a) Subset 1 

 
(b) Subset 2 

 
(c) Subset 3 

Fig. 6 Identified parameters of the RC structure 

The effect of measurement noise on the identified 

results is considered, in which 5% and 10% measurement 

noises are evaluated. A random noise is added to the actual 

responses as 

 mea p noiseE N  x x x  (34) 

where Ep is the percentage of the noise level; Nnoise denotes 

a standard normal distribution vector with a zero mean and 

unit standard deviation; and  x  indicates the standard 

deviation of the actual acceleration response. 

 

 

Fig. 7 Computational time of the decentralized and 

global methods 

 

 

(a) Subset 1 

 
(b) Subset 2 

 
(c) Subset 3 

Fig. 8 Identified parameters using noisy measurement data 
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Fig. 8 shows the identified normalised parameters of 

each subset with different noise levels. The error generally 

increases as the noise level increases. When 5% 

measurement noise is added, the large identification errors 

are 3.64% (fc in Subset 1), 4.45% (εc in Subset 2) and 4.21% 

(Ec in Subset 3). The other errors are relatively small. In the 

case of 10% measurement noise, the large errors are 7.26% 

(Euc in Subset 1), 5.72% (b in Subset 2) and 6.48% (εuc in 

Subset 3). The identification errors are acceptable in both 

cases. 
 

3.2 Steel frame 
 

A one-bay, six-floor steel planar frame structure is 

investigated. Fig. 9(a) shows the dimensions of the frame 

structure model. The height of each floor is 3.5 m, and the 

building width is 6 m. The beams of the frame are 

composed of W14×61 wide flange beams, and the columns 

of each floor have the same section with a width of 400 mm 

and thickness of 8 mm. Figs. 9(b) and (c) shows the cross 

sections of the columns and beams, respectively. The beams 

and columns are welded to form rigid joints. The bottom of 

the frame is fixed on the strong floor. The columns and 

beams on each floor are further divided into five elements.  
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Fig. 9 Dimensions of steel structure 

 

 

 

Table 2 Material parameters of steel structure 

Member 

Initial yield 

stress (fy, 

MPa) 

Young’s 

modulus (Es, 

GPa) 

Strain-

hardening 

ratio 

Columns 1-2 

Beams 1-2 
350 210 0.02 

Columns 3-4 

Beams 3-4 
300 210 0.02 

Columns 5-6 

Beams 5-6 
200 210 0.02 

 

 

The structural elements are modeled with displacement-

based, fiber-section and beam–column elements. Therefore, 

the FE model of the structure comprises 86 nodes, 90 

elements and 258 DOFs. The constitutive behavior of the 

steel material is simulated with the uniaxial Menegotto-

Pinto steel material (Barbato and Conte 2006). In each floor, 

initial yield stress fy and Young’s modulus Es in the 

constitutive model of the columns and beams are set as 

unknown variables, resulting in a total of 6×4 unknown 

material parameters to be identified. Table 2 lists the initial 

material parameters used in this example. A 10% model 

error is considered in the material parameters. 

The dynamic responses of the building under the El 

Centro earthquake (PGA = 0.8 g) are computed on the basis 

of the nonlinear FE model. Six accelerometers are installed 

at the beam and column joints for measuring the horizontal 

acceleration responses at the sampling frequency of 1,000 

Hz. The structure is divided into two zones. 

 

 
(a) Subset 1 

 
(b) Subset 2 

Fig. 10 Normalized identified results of the steel structure 

(fy, Bi and fy, Ci denote the yield stress of the beam and 

column at the ith floor, respectively; Es, Bi and Es, Ci 

represent the Young’s modulus of the beam and column at 

the ith floor, respectively) 
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Fig. 11 Computational time of steel structure with global 

and decentralized methods 
 

 

The first zone contains the acceleration responses from 

the first to third floors, whereas the second zone contains 

those of the fourth to sixth floors. Each subset of responses 

is used to update the corresponding material parameters in 

the same zone, in which the first 50 s vibration responses 

are used. 

Fig. 10 shows the model updating results based on the 

measurement data. The accuracy of the proposed 

decentralized model updating method is likewise verified. 

The identified normalized parameters, without considering 

measurement noise, remarkably match their true values. 

When 10% noise is added to the actual responses, the 
largest identification error is 5.72% (Es, B3) in Subset 1 and 

5.49% (fy, C4) in Subset 2. Fig. 11 compares the proposed 

decentralized and global methods in terms of the 

identification errors and computational time. The 

decentralized and global methods take 6 and 12 h, 

respectively, to achieve the same level of precision. These 

results demonstrate the accuracy and robustness of the 

proposed method. 
 
 
4. Conclusions 

 

A decentralized model updating technique is proposed to 

identify the structural nonlinear parameters under 

earthquake excitations. In comparison with the global 

model updating technique, the decentralized approach 

divides a global structure into several zones. Then, the 

unknown nonlinear material parameters in each zone are 

updated using the vibration measurements of the same zone 

via a one-step Newton-SOR method. The nonlinear 

dynamic responses of the structure are calculated using a 

fiber element model. The sensitivity of the dynamic 

responses with respect to the material parameters is derived 

using the direct difference method. The proposed method is 

applied to two numerical structures subjected to seismic 

inputs. Results show that nonlinear parameters in the 

material constitutive model, such as the compressive 

strength, concrete strain at maximum strength and initial 

tangent stiffness, can be identified with high accuracy even 

when 10% measurement noise is included. Comparative 

studies with the global model updating technique 

demonstrate that the proposed method can identify 

unknown material parameters with less computational time. 
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