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1. Introduction 
 

Modal parameters of a structure generally include 

natural frequencies, mode shapes and damping ratios. When 

the excitation frequencies are close to the natural 

frequencies of a structure, the structure is prone to 

resonance, which may cause potential damage to the 

structure; the mode shape reflects the stiffness and mass 

distribution of the structure while the damping ratio 

characterizes the ability to dissipate energy (Au and Zhang 

2016, Zhang and Au 2016). Modal parameters play an 

important role in model updating, damage detection, 

structural health monitoring, seismic design, etc. 

There are several ways to analyze the structural 

performance such as establishing numerical models and 

performing field tests. For example, the finite element  
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model (FEM) can be used to acquire dynamic 

characteristics of a structure, so that engineers can analyze 

possible failure modes as well as the dynamic response 

under different excitations, such as earthquake excitations. 

Although the precision of the FEM can be improved by 

refining the meshing size or selecting a higher order shape 

function, modeling errors still exist due to the simplification 

of the model, the discretization of the structure, and the 

error of material properties. In addition, for the existing 

structures, material aging, possible structural damage, etc. 

may also change the value of modal parameters, so that the 

initial FEM cannot accurately simulate the in-situ structure. 

Another way is to carry out field tests to collect dynamic 

response of structures such as acceleration data or 

displacement data (Ye et al. 2013, Ye et al. 2016a, Ni and 

Zhang 2019). Efficient applications have been applied to 

long-span bridges (Ye et al. 2016b, Ni et al. 2019) and 

high-rise buildings (Zhang et al. 2016). Such data can be 

used to assess the structural condition (Ye et al. 2017) as 

well as the structural reliability (Ye et al. 2015). 

With the combination of field tests and model updating, 

a more accurate numerical model can be obtained. On one 

hand, the operational response of the structure can be 

obtained by ambient vibration tests, which reflects actual 
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Abstract.  Finite element analysis is one of the important methods to study the structural performance. Due to the 

simplification, discretization and error of structural parameters, numerical model errors always exist. Besides, structural 

characteristics may also change because of material aging, structural damage, etc., making the initial finite element model cannot 

simulate the operational response of the structure accurately. Based on Bayesian methods, the initial model can be updated to 

obtain a more accurate numerical model. This paper presents the work on the field test, modal identification and model updating 

of a Chinese reinforced concrete pagoda. Based on the ambient vibration test, the acceleration response of the structure under 

operational environment was collected. The first six translational modes of the structure were identified by the enhanced 

frequency domain decomposition method. The initial finite element model of the pagoda was established, and the elastic 

modulus of columns, beams and slabs were selected as model parameters to be updated. Assuming the error between the 

measured mode and the calculated one follows a Gaussian distribution, the posterior probability density function (PDF) of the 

parameter to be updated is obtained and the uncertainty is quantitatively evaluated based on the Bayesian statistical theory and 

the Metropolis-Hastings algorithm, and then the optimal values of model parameters can be obtained. The results show that the 

difference between the calculated frequency of the finite element model and the measured one is reduced, and the modal 

correlation of the mode shape is improved. The updated numerical model can be used to evaluate the safety of the structure as a 

benchmark model for structural health monitoring (SHM). 
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boundary conditions of the structure (Zhang et al. 2019). 

On the other hand, the initial FEM can be updated based on 

the measured modal parameters to obtain a more accurate 

numerical model whose calculated results can better match 

test results. By making full use of the numerical model and 

in-situ test results, the modeling error of the initial FEM can 

be significantly reduced, and the dynamic characteristics of 

the structure under operational environments can be 

obtained. The updated FEM can provide a benchmark 

model for the structural reliability analysis, structural 

damage identification, as well as structural health 

monitoring (SHM). 

Model updating methods can be divided into 

deterministic methods and probabilistic methods depending 

on whether the parameter to be updated is regarded as a 

random variable. The deterministic model updating method 

refers to improving the mass matrix, stiffness matrix and 

design parameters of FEM through the test results, so that 

the calculated modal parameters can match the measured 

ones (Natke and Schulze 1981, Kabe 1985, Zhang and 

Zhang 1992). It was first studied in the mid-1960s when the 

matrix updating method was proposed, which was the 

earliest comprehensive and complete method for model 

updating (Berman and Flannelly 1971). However, for an in-

situ structure, the number of degrees of freedom (DOF) is 

large, so the complete stiffness matrix and mass matrix are 

usually not available. In addition, due to limitations of test 

conditions, the measured modes are usually also 

incomplete. Therefore, the solution derived from 

deterministic methods by increasing the number of 

constraint equations or reducing the number of unknowns is 

usually the local optimal solution. 

In addition, for in-situ structures uncertainties often 

exist. On one hand, there are uncertainties in the field test, 

such as the systematic error of the instrument and 

equipment, the error caused by the test conditions, and so 

on. On the other hand, uncertainties also exist in FEM 

caused by mathematical assumptions, discretization of 

structures, and errors of values of material parameters. The 

existence of these uncertainties makes the updated model 

derived from the deterministic method can only reproduce 

the results of a particular case and cannot quantify the 

uncertainties of updated parameters. By considering the 

parameter to be updated as a random variable, the Bayesian 

model updating theory combines the prior information and 

the test results to derive the posterior probability density 

functions (PDFs) of the parameters to obtain a more 

accurate FEM and can also quantify the uncertainties, 

which has been an important method of model updating in 

recent years. 

Beck and Katafygiotis (1998) introduced the Bayesian 

statistical theory in dynamic system identification, and 

established the benchmark model updating method based on 

Bayesian theory. The posterior PDFs of parameters can be 

obtained by weighted Gaussian distribution based on a 

series of finite points (Beck and Katafygiotis 1998, 

Katafygiotis and Beck 1998). Due to ill-conditional 

computation problems, early Bayesian model updating 

method was limited in its application in practical 

engineering, so it was often applied to some numerical 

models. Besides, for in-situ structures, the posterior PDFs 

are usually in the form of high-dimensional and not 

standard, so the results estimated by the Gaussian 

distribution may not be accurate especially when the 

modeling errors are large. 

Beck and Au (2002) proposed an enhanced model 

updating method based on Markov Chain Monte Carlo 

(MCMC) algorithm (Metropolis et al. 1953, Hastings 

1970), and divided the entire process into multiple levels by 

kernel density estimation (Au and Beck 1999), which 

improved the computation efficiency. Based on this, Lam et 

al. (2015) proposed a novel stopping criterion, which 

introduces the uncertainty of the relative error in the 

objective function as a parameter in the updating process 

and introduces the convergence procedure for the structure 

with different complexity. The Bayesian method based on 

MCMC makes it possible to implement the application of 

complex structures. Based on the data obtained from the 

field test, Lam et al. (2015) utilized the enhanced MCMC 

sampling method to update the FEM of a coupled floor 

system. Lam et al. (2017) carried out the ambient vibration 

test of a 14-story industrial building in Hong Kong and 

updated the interlayer stiffness of the structure based on the 

enhanced Bayesian model updating method. 

Compared with the deterministic methods, the Bayesian 

probabilistic method provides a tool to quantify the 

uncertainty, which can better reflect the uncertainty nature 

of the problem. Therefore, it has become a research hotspot 

in recent years. However, the Bayesian updating method is 

mainly used in numerical models and some other simple 

structures, and has less application to traditional Chinese 

style pagodas. 

This paper presents the work of the field test, modal 

identification and model updating of a rebuilt Chinese 

pagoda. The pagoda is a reinforced concrete frame 

structure, which further will be retrofitted. The initial finite 

element model was established based on the design 

information. Field tests were carried out to collect dynamic 

responses of the structure under ambient conditions, and 

modal parameters of the structure were identified by the 

enhanced frequency domain decomposition method. Model 

updating was carried out based on the modal parameters 

identified. The posterior PDFs of the parameters were 

determined from the MCMC sampling algorithm and the 

uncertainties are also quantified based on the Bayesian 

updating method, so that the updated model can better 

match the dynamic performance of the actual structure. The 

updated model can evaluate the seismic performance of the 

structure and provide an analytical model for subsequent 

reinforcement. 

 

 

2. Description of the investigated structure 
 

The objective pagoda is 56.64 m high with eight floors. 

The typical plane shape is a regular octagon. The pagoda is 

a reinforced concrete frame structure with bored pile 

foundation. The main structure is shown in Fig. 1. As the 

owner intends to remove the column at the center of the 

pagoda from -4.90 to -0.05 m, it is necessary to perform  
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structural monitoring to obtain the dynamic characteristics 

of the structure and establish a benchmark model for the 

structural performance evaluation. 

 

 

3. Finite element analysis 
 

The FEM was established using the software ANSYS 

15.0. According to the design data, the concrete 

compression strength is C40 for all columns and C30 for 

beams and slabs. The elasticity modulus values are based on 

Chinese National Standards GB 50010-2010, i.e., 3.25×104 

MPa and 3.0×104 MPa, respectively. The Beam188 unit 

was used to simulate beams and columns, and the Shell181 

unit was used to simulate slabs. Considering that the pile 

foundation is placed at the bottom of the structure, bottom 

constraint is then set to be fixed. There are 1359 beam 

elements and 816 shell elements in total. The total number 

of finite element model elements is 2175 and the number of 

nodes is 2236. The overall model is shown in Fig. 2. 

 

 

 

 

 

 

Table 1 Calculated modes of the finite element model 

Modes Frequency/Hz Period/s Mode shape 

1 1.031 0.970 
1st translational mode in 

Y direction 

2 1.032 0.969 
1st translational mode in 

X direction  

3 1.468 0.681 1st torsional mode 

4 3.297 0.303 
Translational mode in 

1st and 3rd quadrant 

5 3.301 0.303 
Translational mode in 

2nd and 4th quadrant 

6 4.104 0.244 2nd torsional mode 

7 5.766 0.173 
Translational mode in 

1st and 3rd quadrant 

8 5.771 0.173 
Translational mode in 

2nd and 4th quadrant 

9 6.370 0.157 3rd torsional mode 

 

 

 

Fig. 1 The objective pagoda 

 

Fig. 2 The finite element model of the pagoda 
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The subspace iteration method is used to calculate the 

first nine modal frequencies of the structure. The result is 

shown in Table 1, and the mode shapes of the structure are 

shown in Fig. 3. 

 

 

 

4. Field test 

 

Measurement points were located near staircases from 

the second floor to eighth floor along the height of the 

structure. Two single-axis piezoelectric accelerometers 

   
(a) 1st mode shape (b) 2nd mode shape (c) 3rd mode shape 

   
(d) 4th mode shape (e) 5th mode shape (f) 6th mode shape 

   
(g) 7th mode shape (h) 8th mode shape (i) 9th mode shape 

Fig. 3 The calculated mode shape of FEM 
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(Lance 0132T) were arranged for each measurement point 

to acquire the acceleration response in the X and Y 

directions respectively. Due to the limited number of 

sensors, the whole test was divided into six setups. The 

measurement point in the eighth floor was selected as the 

reference point, i.e., the two accelerometers in the eighth 

floor remained the same in each setup. The tests were 

completed by moving other sensors in other floors. 

Piezoelectric accelerometers used in the test are shown in 

Fig. 4. The frequency range of the sensor is 0.05~500 Hz. 

The acceleration data collected by the sensor is outputted to 

the data acquisition instrument in the form of electrical 

signal, and the measured acceleration amplitude can be 

converted by the calibrated sensitivity value of 

corresponding sensor. The data acquisition system used for 

data collection is DEWESoft○R , which has eight channels 

with an accuracy of 0.03%. The data acquisition system is 

shown in Fig. 5. 

According to the sampling theorem, in order to prevent 

spectral aliasing, the sampling rate needs to be at least twice 

the interested frequency, so the acquisition frequency is set 

to 500 Hz, and each setup lasts 15 min. Table 2 shows the 

setup configuration. The numbers in Table 2 denote the 

location number. The first digit of each number indicates 

the floor number where the measuring point is located, and 

the last two digits indicate the measuring point number. For 

example, 801 indicates the measuring point No. 1 in the 

eighth floor. The layout of the measurement points is shown 

in Fig. 6 and the yellow circle in the figure represents the 

location of measurement points. 

 

 

Fig. 4 Accelerometers (Lance 0132T) 

 

 

Fig. 5 Data acquisition system 

 

 

Fig. 6 Measurement locations 

 

Table 2 Setup configuration 

Setup Measurement locations 

1 801 701 

2 801 601 

3 801 501 

4 801 401 

5 801 301 

6 801 201 

 

 

Table 3 Identified natural frequencies 

Mode Frequency/Hz 

1 1.363 

2 1.390 

3 2.686 

4 4.468 

5 4.528 

6 6.219 

7 7.592 

8 7.764 

 

 

 

Fig. 7 Singular value spectrum 
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In ambient vibration tests, the input information is often 

unknown. However, since ambient vibration source is 

mainly composed of wind loads and micro tremors, the 

input is usually regarded as wide stationary random process. 

Therefore, as long as the test is long enough, the statistical 

characteristics can be estimated by analysing the samples 

obtained from the field test. By assuming that the input 

follows the Gaussian noise with the constant power spectral 

density, modal parameters of the structure can be identified 

by analysing the response collected in the field test. In this 

study, the enhanced frequency domain decomposition 

method was used to identify the modal parameters, and the 

singular value spectrum calculated is shown in Fig. 7, 

where clear peaks can be found in the spectra. 

The first eight frequencies identified are shown in Table 

3. The basic frequency of the structure is 1.363 Hz, i.e., the 

fundamental natural period is about 0.734 s. The adjacent 

translational frequencies are relatively close, indicating that  

the mass and stiffness distribution of the structure in the two 

test directions are relatively uniform. 

Correlation analysis is an effective method used to 

compare the calculated results from FEM with the measured 

results. For modal frequencies, the differences can be 

compared directly. For mode shapes, modal assurance 

criterion (MAC) is often used for correlation analysis. The 

calculation of the MAC value between the two modes is as 

follows 

MAC𝑖𝑗 =
|�̂�𝑖

𝑇𝛙𝑗(𝛉)|
2

(�̂�𝑖
𝑇�̂�𝑖) (𝛙𝑗

𝑇(𝛉)𝛙𝑗(𝛉))
 (1) 

where �̂�𝑖 is the i-th order test mode shape; and 𝛙𝑗(𝛉) is 

the j-th order FEM calculated mode shape based on the 

design parameters 𝛉. It can be known from Eq. (1) that the 

MAC value is a number between 0 and 1. The closer the 

value is to 1, the better the correlation between the two 

modes is. 

 

 

 

 

 

Due to the limited numbers of measurement points, the 

DOFs of the measured modes are not the same as the DOFs 

of the FEM. An effective way is to extract the node 

displacement in the calculated mode shapes corresponding 

to the measurement points, and by normalizing the 

extracted modes, the DOFs of the two could be the same, 

which facilitates subsequent correlation analysis. 

Table 4 shows the difference between the initial 

calculated frequencies and the measured frequencies. Table 

5 shows the MAC matrix between the mode shapes. 

Because in each floor, only one point was measured so that 

the torsional mode shape cannot be obtained, thus in 

subsequent analysis only translational modes are used. 

As can be seen from Table 4, the relative frequency 

error is around 25%, and the maximum difference is 

27.10% (the fifth-order mode). It can be seen from Table 5 

that the MAC values between the calculated and identified 

mode shapes of the first three translation modes are all 

above 0.8, indicating that the correlation between the 

calculated mode shape and the corresponding measured 

mode shape is good. However, MAC values of the latter 

three modes are relatively low. Model updating is necessary 

to obtain an accurate FEM. 

 

 

5. Model updating 
 

In order to carry out the model updating, a MCMC 

sampling method is used in this paper. Beck and Au (2002) 

proposed a multiple-level adaptive sampling algorithm to 

improve the efficiency of the model updating by improving 

the proposed distribution in the MH algorithm. Lam et al. 

(2015) further enhanced the method. This method is 

introduced briefly as follows. 
Since the natural frequencies and mode shapes are 

relatively easy to identify, the posterior PDFs of the 

parameters 𝛉 can be derived based on the measured modal 

parameters 𝐃. The Bayesian formula shows 

Table 4 Calculated frequencies fa and measured frequencies fm 

Mode 1 2 4 5 7 8 

𝑓𝑎(Hz) 1.031 1.032 3.297 3.301 5.766 5.771 

𝑓𝑚(Hz) 1.363 1.390 4.468 4.528 7.592 7.764 

𝑓𝑎 − 𝑓𝑚

𝑓𝑚

 24.36% 25.76% 26.21% 27.10% 24.05% 25.67% 

Table 5 MAC between calculated mode shapes and measured mode shapes 

Mode 1 2 4 5 7 8 

1 0.9686 -- -- -- -- -- 

2 -- 0.9565 -- -- -- -- 

3 -- -- 0.8375 -- -- -- 

4 -- -- -- 0.5952 -- -- 

5 -- -- -- -- 0.6787 -- 

6 -- -- -- -- -- 0.5573 

636



 

Structural modal identification and MCMC-based model updating by a Bayesian approach 

𝑝(𝛉|𝐃) = 𝑐𝑝(𝐃|𝛉) (2) 

where 𝑝(𝛉|𝐃) is the posterior probability density function 

(PDF) of 𝛉; 𝑝(𝐃|𝛉) is the likelihood function; and 𝑐 is a 

constant. 

Since the modal parameters between different modes are 

independent of each other, the likelihood function can be 

regarded as the product of each mode 

𝑝(𝐃|𝛉) = ∏ 𝑝(𝑓𝑖, �̂�𝑖|𝛉)

𝑚

𝑖=1

= ∏ 𝑝(𝑓𝑖|𝛉)

𝑚

𝑖=1

𝑝(�̂�𝑖|𝛉) (3) 

where  𝑓𝑖  is the measured natural frequency of the i-th 

mode; and �̂�𝑖  is the corresponding measured mode shape. 

Define the difference between measured natural 

frequency and calculated frequency as 

𝜀𝑓,𝑖 =
𝑓𝑖 − 𝑓𝑖(𝛉)

𝑓𝑖

 (4) 

where 𝑓𝑖(𝛉) is the calculated natural frequency based on 

the parameters  𝛉 . Assuming that𝜀𝑓,𝑖 follows a Gaussian 

distribution whose mean is zero and standard deviation 

is 𝜅, then 

𝑝(𝑓𝑖|𝛉) =
1

√2𝜋𝜅2
𝑒𝑥𝑝 {−

1

2𝜅2
[
𝑓𝑖 − 𝑓𝑖(𝛉)

𝑓𝑖

]

2

} (5) 

According to the reference (Lam et al. 2015), the 

fraction error of mode shape can be defined as 

𝜀ѱ,𝑖 = {1 − |�̂�𝑖
𝑇

𝛙𝒊(𝛉)|
2

}
1/2

 (6) 

where the modal shape is normalized. Assuming that the 

difference of the mode shape follows a zero-mean Gaussian 

distribution, then 

𝑝(�̂�𝑖|𝛉) =
1

√2𝜋𝜅2
𝑒𝑥𝑝 {−

1

2𝜅2
[1 − |�̂�𝑖

𝑇
𝛙𝒊(𝛉)|

2

]} (7) 

Then the objective function can be defined as 

𝐽(𝛉) = ∑ ((
𝑓𝑖 − 𝑓𝑖(𝛉)

𝑓𝑖

)

2

+ (1 − |�̂�𝑖
𝑇

𝛙𝒊(𝛉)|
2

))

𝑚

𝑖=1

 (8) 

By using the software ANSYS and MATLAB, the direct 

updating of the parameters can be performed conveniently. 

The elastic modulus of columns, beam and slabs are 

selected as the parameters to be updated, i.e., x(1)~x(7) 

represents the ratio of elastic modulus of columns in the 1st 

to 7th floor to their initial values respectively, and x(8) is 

the change ratio of elastic modulus of beams and slabs. 

For the selected parameters, the initial distribution space 

is defined as (0.5, 3.0), and the initial sample points are 

shown in Fig. 8, and the sample point of the second level 

and the last level (the eighth) are shown in Figs. 9 and 10, 

respectively. 
 
 

 

Fig. 8 Sample points in level 1 

 

Fig. 9 Sample points in level 2 

 

Fig. 10 Sample points in Level 8 
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Fig. 11 Posterior PDF of the model parameters 

 
 

The posterior marginal PDFs of the eight model 

parameters are shown in Fig. 11. As can be seen in this 

figure, the posterior marginal PDFs of model parameters are 

similar to the Gaussian distribution, i.e., the farther away 

from the most probable value, the smaller the probability is. 

The optimal value of the updated parameters and the 

corresponding uncertainty are shown in Table 6, where the 

coefficient of variation (COV) represents for the ratio of the 

standard deviation to the optimal value. The optimal value 

is then substituted into the finite element model, and the 

difference of the natural frequency between the modified 

FEM and the measured one are obtained. The updated 

natural frequencies and MAC values are shown in Table 7. 

It is worth mentioning that the optimal value in Table 6 is 

the ratio of the updated parameters to the initial ones. As 

can be seen from Table 6, the elastic modulus of the 

columns in the 2nd floor, 3rd floor and 4th floor is slightly 

lower than that before the updating, when others are a bit 

larger than initial values. Compared with the initial FEM 

calculated modes, the difference of the natural frequency is 

reduced to 2%~5%. Compared with Table 5, the MAC  

value of the last three modes is improved, indicating that 

the modeling error of the initial FEM and the measured 

results is reduced by the selected parameters. 

 

 

 

6. Conclusions 
 

In this paper, the modal parameters of a pagoda are 

identified using data collected in the ambient vibration tests 

with multiple setups. The finite element model of the 

pagoda is established, and it is found that there is a large 

gap between the modal parameters identified from collected 

data and calculated from FEM. Model updating is 

performed based on a multi-level MCMC method using the 

measured results. The posterior PDF and uncertainty of the 

parameters are obtained. The optimal value of the updated 

parameter is substituted into the finite element model, and 

the comparison shows that the difference between the 

updated calculated modes and the measured one is 

effectively reduced. The MCMC Bayesian model updating 

method was well applied on the model updating of a 

pagoda. Note that after the field test, the central column 

removal work started. The updated model can be used as 

the benchmark model for the subsequent analysis. 
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