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1. Introduction 
 

Bridge structures are important components of the 

transportation systems, and it is important to keep them in 

safe working condition to ensure the normal operation of 

the transportation network. With daily traffic and other 

external effects, bridges are undergoing with structural 

changes, deterioration and damages over time. Currently, 

human visual inspection is still a common approach to 

detect defects and most of the decisions are made by 

inspectors’ experiences (Catbas et al. 2017). For safe 

operation, timely maintenance and convenient management 

in aspect of structural problems, effective sensing 

technologies and analytical approaches are necessary to 

detect the structural changes and damages and give reliable 

condition assessment and performance evaluation timely 

and sufficiently (Zaurin et al. 2015). To achieve this goal, in 

last two decades structural health monitoring (SHM) has 

been widely explored and implemented on bridges all over 

the world. SHM systems can collect massive valuable 

information including structural input (loads and other 

external effects) and structural output (responses such as  
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displacement, strain and acceleration) and make diagnosis 

and prognosis to support the structural safety and decision 

making (Chen et al. 2019, Ni et al. 2010, 2011, Ye et al. 

2013b, 2015b, 2016e). 

With the benefits of interdisciplinary integrations, 

various advanced sensing technologies such as elasto-

magneto-electric (EME) sensor for in-service steel cable 

forces measurement (Duan et al. 2015), wireless sensors for 

dynamic monitoring (Celik et al. 2018b), fiber Bragg 

grating (FBG) sensor for strain monitoring (Ye et al. 2016d, 

2017), LiDAR scanning for structural condition assessment 

(Chen et al. 2012), skin-type sensor for strain measurement 

(Kong et al. 2018), infrared thermography for automated 

concrete deck inspection (Catbas et al. 2017) and vision-

based bridge monitoring at global level (Catbas et al. 2018), 

etc. have been employed in current research and practice. 

Among these technologies, vision-based approaches are 

gathering increasing attention in the field of SHM (Dong 

and Catbas 2019, Ye et al. 2016a) due to the advantages 

such as non-contact, long distance, low cost, time saving 

and ease of use. Generally, the studies and practices of 

vision-based monitoring are divided into two aspects: 1) 

inspection and condition assessment at local level such as 

crack, spalling (Karaaslan et al. 2018) and delamination 

detection (Hiasa et al. 2017) and 2) structural monitoring at 

global level such as vibration and deflection monitoring 

(Dong et al. 2015, 2018b, 2019b; Xu and Brownjohn 2018; 

Ye et al. 2013a, 2015a, 2016b, f;), cable force monitoring 

(Feng et al. 2017; Ye et al. 2016c), modal analysis (Chen et 
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al. 2018a, Hoskere et al. 2019, Yang et al. 2017), load 

estimation (Celik et al. 2018a), load rating (Catbas et al. 

2012) and load capacity estimation (Lee et al. 2006) etc. 

With vision-based inspection at local level, the condition 

assessment is carried out when damages already appear and 

are visible and large enough. It is very hard to estimate the 

tiny deteriorations of structures and give further prediction. 

Vision-based monitoring at global level mostly collects the 

structural responses and make evaluation of structural 

performance and safety based on the time histories such as 

displacement, acceleration and strain. However, the 

research about the identification of operating traffic loads as 

structural input doesn’t receive sufficient attention. Even 

though weigh-in-motion (WIM) systems are installed as 

parts of the SHM system on bridges, only the weight of 

vehicles can be estimated and the position information is 

hard to obtain. Both vehicle loads and position information 

on the bridge are quite important to structural identification 

at global level. If only response data are used for structural 

identification without knowing input force, the structural 

change and damage has to be large enough to induce 

significant change to the output responses. Feature 

extraction from output responses for damage detection is 

very difficult. 

To comprehensively and sufficiently evaluate the 

structural performance, assess the condition, predict safety 

and remaining life, the monitoring of structural input and 

output are necessary. Zaurin and Catbas (2010a, b) 

combined cameras and conventional sensors such as strain 

gages to extract the strain unit influence line (UIL) and 

recognized damages using statistical outlier detection from 

UIL vector sets and also conduct load rating (Catbas et al. 

2012). Their work was validated with laboratory 

experiments on large-scale bridge model and field 

application on real life bridges. Khuc and Catbas (2018) 

integrated camera and displacement sensors to obtain 

displacement unit influence surface and proposed a 

statistical approach to detect bridge damages. Damage cases 

were simulated by changing the boundary condition and 

connection of bridge components of a bridge model in 

laboratory. Both the two examples extracted the static 

structural properties as damage features and used cameras 

for input monitoring and conventional sensors for output. 

There are other studies focusing on input-output data and 

evaluating structural dynamic properties. Tian et al. (2018) 

conducted impact test on a small-scale beam in laboratory 

using camera to capture the human input and 

accelerometers to collect the output responses. The impact 

test was also validated on a footbridge and modal 

parameters such as frequency, mode shape and scaling 

factor were extracted. In another research, Tian et al. (2019) 

conducted impact test on a small scale beam with moveable 

camera to collect the beam outputs and impact hammer to 

give excitation and record the inputs. The major difference 

between two studies done by Tian et al. is just to switch the 

data collection approaches for input-output data sources. 

The studies above including static and dynamic structural 

properties estimation were carried out by combining 

cameras and conventional sensors. The drawbacks of using 

conventional sensors are traffic closure, setup time and 

labor force to deal with the cable wiring work. It is not 

convenient to conduct such experiments, especially for field 

application. The synchronization between cameras and 

sensors are also a big challenge.  

In this paper, the study of structural identification using 

input-output data will further advanced from combining 

cameras and conventional sensors to a completely non-

contact recognition system just using cameras. The input 

and output data are both obtained from portable cameras 

and computer vision techniques are employed to process the 

images and track the structural behaviors. UIL is an 

effective and sensitive index for monitoring bridge behavior 

under identified loading conditions and explicit structural 

feature for efficient structural evaluation and assessment. It 

is also very intuitive for engineers. The proposed 

recognition system will take UIL as the target parameter for 

structural identification and the proposed UIL extraction 

method can be extended to a fully non-contact damage 

detection approach. 

 

 

2. Methodology 
 

2.1 UIL 
 

UIL as shown in Fig. 1 indicates the variation of a 

response such as moment, force, displacement, strain and 

acceleration at a given position on a structure due to the 

imposition of a unit load at any point on the structure 

(Zaurin and Catbas 2010a). To generate a UIL, a unit load is 

imposed on the structure and moved on it. The response 

induced by the load at the selected position on the structure 

is calculated by structural analysis methods or measured by 

experimental approaches. The response values are then 

plotted against with the position of load on the structure to 

generate the UIL. Mathematically UIL of a selected position 

is the function of the position of the moving unit load on the 

structure. The detailed concept and calculations of UIL are 

discussed in elementary structural analysis courses as basics 

and here only the procedure of UIL extraction using 

experimental data is introduced. 

 

 

 

Fig. 1 UIL decomposition 
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When UIL is extracted from experimental data by 

processing an inverse problem, UIL provides a signature 

with a normalized structural response for the selected 

critical locations instrumented by any type of sensors 

(selected positions in Fig. 1). To extract UIL with 

experimental approaches, the weight and location of each 

axle of a vehicle crossing the bridge has to be known in 

advance and responses of the selected position are also 

measured with sensors. Then the UIL of the structure can be 

extracted using the following equation (Zaurin and Catbas 

2010a) 

    r w u  (1) 

where{r} is the vector containing the responses of the 

selected position induced by the moving load, [w] is the 

matrix containing the axle weights with respect to the 

corresponding distances, and {u} is the UIL vector. Fig. 1 

gives an example of the extraction of moment UIL. In this 

example, a specific position determined by L1 and L2 is 

selected and a moving vehicle is imposed on the bridge. 

The axle weights of the vehicle are w1, w2 and w3. The 

distance between axles are d12 and d23. In this case, one 

element of Eq. (1) can be expressed as 

1 2 3r aw bw cw    (2) 

When knowing any location of the vehicle on the 

bridge, Eq. (1) can be written as 
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(3) 

where n is the moving steps of the vehicle and also the 

number of discretized coefficients for unit influence along 

the actual length of the bridge, and m is the number of the 

samples of the measured responses. The UIL is calculated 

as an inverse problem using the equation below 

     
1

u w r


  (4) 

In the study, displacement UIL is targeted and the 

displacement is regarded as the response that can be 

measured by vision-based methods. The weight and 

distance between axles are predesignated and the location of 

the vehicle is estimated by vehicle tracking from images. In 

the followings, the vision-based structural input estimation  

 

Fig. 2 General procedure of vehicle tracking 

 

 

(vehicle location) and vision-based structural output 

estimation method (displacement responses) are introduced 

respectively. 

 

2.2 Vision-based structural input estimation: vehicle 
location 
 

2.2.1 General procedure of vehicle tracking 
To identify the vehicle location on bridge surface, in 

general there are four steps as shown in Fig. 2. At first, the 

camera is calibrated to rectify the distortions such as 

projective distortion caused by camera pose and radial 

distortion caused by lenses. Then the object detection 

algorithms are implemented to detect the category of the 

vehicles and give the initial bounding boxes of detected 

vehicles and they will be regarded as the tracking targets. 

The tracking targets can also be selected manually. In the 

third step, the visual tracking algorithms are implemented to 

tracking the detected or selected vehicles and the vehicle 

location in each frame of the image sequence or video can 

be estimated. At last, the vehicle location in the image 

coordinates is transformed to the real-world coordinates to 

estimate the vehicle location on bridges. 

 

2.2.2 Camera calibration 
During digital recording, three-dimensional (3D) objects 

in the real world are projected onto the image plane (two-

dimensional, 2D) of the camera. The camera calibration is 

to estimate the projection process including camera intrinsic 

and extrinsic parameters and distortion parameters. Fig. 3 

illustrates a pinhole camera model. 

 

 

Fig. 3 Pinhole camera model 
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The projection from world coordinates to the image 

coordinates through camera coordinates can be expressed 

by the formula below 
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 (5) 

and it can be simplified as 

 |s x K R t X  (6) 

where s is the scale factor, x = (x, y, 1)T are image 

coordinates, X = (X, Y, Z, 1)T, are world coordinates, and K 

is the camera intrinsic parameters which represent the 

projective transformation from the three-dimensional (3D) 

real world to the two-dimensional (2D) image. In the 

intrinsic parameters, fx and fy are the focal lengths of the 

lens in horizontal and vertical directions, cx and cy are 

offsets of the optical axis in horizontal and vertical 

directions, and γ is the skew factor of the lens. R and t are 

camera extrinsic parameters which represents the rigid 

rotation and translation from the 3D real world coordinates 

to the 3D camera coordinates, and rij (i, j = 1, 2, 3) and ti 

(i=1, 2, 3) are the elements of R and T respectively. From 

Eq. (5) and (6), it is indicated that the camera intrinsic 

parameters are relevant to the camera and lens and the 

camera extrinsic parameters are relevant to the relative 

position between the camera-lens and real objects. Once the 

camera is calibrated with specific lens, as soon as the focal 

lens doesn’t change, the intrinsic parameters don’t change. 

While the extrinsic parameters should be calibrated in 

different application scenarios. The black and white 

chessboard is used to do calibration and Zhang’s practical 

approach (Zhang 2002) is always implemented. Various 

commercial software such as MATLAB, NI VISION and 

Halcon and open source software such as OpenCV provide 

libraries to complete the calibration quickly. 

 

2.2.3 Vehicle detection/selection 
There are various algorithms for automated vehicle 

detection. (Zaurin and Catbas 2010a) applied background 

subtraction to detect the vehicles and made classifications. 

(Khuc and Catbas 2018) implemented AdaBoost technique 

and Cascade classifier using histograms of oriented 

gradients (HOG) features to train and detect vehicle types. 

With the application of deep learning in computer vision, 

deep learning-based visual tracking has made great 

progress. The classical studies in this area are R-CNN 

(Regions with Convolutional Neural Networks) (Girshick et 

al. 2012) and its successors such as Fast R-CNN (Girshick 

2015), Faster R-CNN (Ren et al. 2017), Mask R-CNN (He 

et al. 2017), YOLO (You only look once) (Redmon et al. 

2015) and SSD (Single shot multibox detector) (Liu et al. 

2016). As stated in Section 2.2.1, the vehicle targets can 

also be selected manually. It all depends on the 

experimental requirement and application scenarios. If 

during the time of the experiment there is only one vehicle 

crossing the bridge, manual selection is good enough to deal 

with this work. While, if multiple vehicles crossing, 

pretraining and using deep learning-based vehicle detection 

algorithms are the more convenient options. In this study, 

the demonstration is designated for the experiments of UIL 

extraction and predefined vehicles are selected for the 

experiments, so that the tracking targets are manually 

selected from images. Also, using one vehicle to extract 

UIL faces fewer influencing problems that would happen in 

multiple vehicle cases. In the real bridge application, 

automated vehicle detection should be applied to adopt the 

cases of multiple vehicle crossing bridges. 

 

2.2.4 Visual tracking 
Once the vehicle is detected or selected in the first frame 

of the video or image sequence, visual tracking is necessary 

to track the location of the vehicle in the successive images. 

Up to now in the field of computer vision, there are many 

algorithms for visual tracking and more studies are 

developed every year (Kristan et al. 2018). However not all 

the algorithms are suitable for the vehicle localization on 

bridge for load distribution information extraction. As 

illustrated in Fig. 4(a) and 4(b), due to the camera angle and 

view depth, the scale of the vehicle and the view changes 

from the beginning to the end even the camera is stationary. 

In addition, since this is a truss bridge, the vehicle is 

occluded during crossing the bridge. The visual tracking 

algorithm has to satisfy the requirements of scale invariant 

and view robustness and can predict target location when 

occlusion happens. 

 

 

 

(a) Status of vehicle at the beginning of a truss bridge 

 
(b) Status of vehicle at the end of a truss bridge 

Fig. 4 Vehicle tracking example 
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In this research, the Discriminative Correlation Filter 

tracker with Channel and Spatial Reliability (CSR-DCF, 

also called CSRT tracker) (Lukezic et al. 2017) is employed 

to do vehicle visual tracking. CSRT is one of the algorithms 

using discriminative correlation filter (DCF) which shows 

great performance. In CSRT, channel and spatial reliability 

maps are implemented, and a learning progress is applied to 

update the filter during tracking. This enlarges the search 

region and improves tracking accuracy of non-rectangular 

objects. The channel reliability map considers multiple 

features such as Histogram of Oriented Gradient (HOG), 

color names and grayscale template to learn and update 

better filter and spatial reliability map reflect weighting 

effects in target localization. With the integration of channel 

and spatial reliability, CSRT achieves state-of-art 

performance in various popular datasets for visual tracking 

(Lukezic et al. 2017). CSRT satisfies the requirements 

aforementioned and it is implemented for vehicle tracking 

in this study. 

 
2.2.5 Coordinate transformation 
After the vehicle location (coordinates) in the image is 

estimated, it needs to be transformed to the real-world 

coordinates. In this study, the bridge deck is assumed as a 

plane so that the question is to transform the vehicle from 

image plane to the deck plane. As shown in Fig. 5, the real-

world objects (the bridge and the vehicle) are projected to 

the image plane. As a result, the shape that is determined by 

the four points (A, B, C, D) on the real-world plane is 

distorted due to the projection. According to the work of 

(Hartley and Zisserman 2003), the projection from the real 

world plane to the image plane is expressed by the linear 

transform 

sX Hx  (7) 

where X is degraded to (X, Y, 1)T. In this formulation, H is 

the 3×3 homography matrix which transforms the real-

world plane to the image plane. 

 
 

 

Fig. 5 In-plane transformation using Homography matrix 

 

 

The scale of the matrix does not affect the equation, so 

only the eight degrees of freedom corresponding to the ratio 

of the matrix elements are significant. Eq. (7) can be 

simplified as 

X Hx  (8) 

The homography matrix H has 9 unknowns but only 8 

of them are independent. Eq. (8) can be formed by 

1 2 3

4 5 6

7 8 91 1

X h h h x

Y h h h y

h h h

     
    

    
         

 (9) 

This matrix is computed directly from image-to-world 

point correspondences. From Eq. (9) each image-to-world 

point correspondence provides two linear equations in the H 

matrix elements. For n point correspondences, a system of 

2n equations with 8 unknowns is obtained. This means that 

at least four point correspondences are needed to solve the 

problem. If more than four point correspondences are 

provided, Eq. (9) becomes over-determined and a 

homogeneous estimation method is implemented to 

estimate the optimal H (Dong et al. 2019a). Writing the 

homography matrix, H in vector form as, h = {h1, h2, h3, h4, 

h5, h6, h7, h8, h9}T, Eq. (9) for n points becomes 
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(10) 

It is a standard result of linear algebra that the vector h 

that minimizes the algebraic residuals |Ah|, subject to |h|=1, 

is given by the eigenvector of least eigenvalue of ATA. This 

eigenvector is obtained directly from the singular value 

decomposition (SVD) of A. Writing h back in matrix form, 

the homography matrix, H is obtained. The scale s can be 

calculated by substituting the point correspondences, X, x, 

and the homography matrix H, into Eq. (7). 

At the end, the vehicle location can be transformed from 

the image coordinates to the real-world coordinates, i.e., the 

location on the bridge deck. 
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Fig. 6 General procedure of vision-based displacement 

measurement 

 
 
2.3 Vision-based structural output estimation: 

displacement responses 
 

2.3.1 General procedure of vision-based 
displacement measurement 

The structural output estimation carried out in this study 

is vision-based displacement measurement. Usually there 

are four steps to estimate displacement from videos of 

structures using vision-based method (Dong et al. 2018a, 

Dong and Catbas 2019) as shown in Fig. 6. Firstly, camera 

calibration is done to calculate the geometric relationship 

between the image coordinates and the real-world 

coordinates. Secondly, measurement targets are selected 

from images as images subregions and features in the 

subregions are extracted for object tracking. Thirdly, visual 

tracking algorithms are employed combining with the 

selected features to do object tracking and the locations of 

measurement targets are updated in consecutive image 

sequence. At the end, the displacement in image coordinates 

is calculated by comparing the location change of the 

measurement targets in each image and the final 

displacement in real-world coordinates is obtained by 

combining the camera calibration information and 

displacement in image coordinates. 

The general procedure introduced here is very similar 

with the vehicle tracking. While in displacement 

measurement, some different requirements should be 

addressed. In the following, all of them will be introduced 

separately. 

 

2.3.2 A practical way of camera calibration for vision-
based displacement measurement 

For vision-based displacement measurement, the camera 

calibration is the same with vehicle tracking as introduced 

in section 2.2.2. Or if the motion of selected location on 

structures moving in a plane and a lens without distortion is 

used, the homography matrix can also be applied to 

simplify the calibration procedure. In this study, the major 

displacement direction of the selection bridges is vertical so 

that here a more practical and simplified version of 

calibration is applied: scale ratio. Scale ratio, SR is 

expressed as the formula when the optical axis is 

perpendicular to the displacement direction (Dong et al. 

2018b) 

 

D
SR

d
  (11) 

where D is the actual dimension of the selected object such 

as millimetre and d is the dimension of it in image with the 

unit of pixel. If the optical axis is not perpendicular to the 

displacement direction, Eq. (11) has to be modified. 

Detailed discussion can be found in the previous study 

(Dong et al. 2018a). With the scale ratio, the displacement 

in pixel level can be easily converted to the real-world 

dimension. 

 

2.3.3 Normalized cross-correlation coefficient using 
edge map (NCCEM) for template matching 

Unlike vehicle tracking, the monitoring target of vision-

based displacement measurement is simpler and limited in a 

specific region. The view and scale do not change too 

much. Although the tracking for displacement measurement 

is much easier than that cases in vehicle tracking, it needs 

much higher accuracy. In general, tracking result should be 

in sub-pixel level. In previous studies, the authors proposed 

keypoint matching-based methods (Khuc and Catbas 2016, 

2017) and optical flow with keypoints methods (Dong et al. 

2018a) to achieve the subpixel level results. All of them 

showed good measurement results comparing with the 

conventional displacement sensor. While the processing 

speed is too slow when using keypoint-based methods. In 

this study, the normalized cross-correlation coefficient using 

edge map (NCCEM) for template matching is implemented 

to obtain the displacement from images. NCCEM is an 

improved version of digital image correlation (DIC) based 

template matching methods. The most popular DIC based 

template method is the normalized cross-correlation 

coefficient (NCC) method (Chen et al. 2018b, Zhong et al. 

2019a, 2018, 2019b, Zhong and Quan 2018). The NCC 

coefficient is expressed as 
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In these formulas above, T is the grayscale image 

intensity of selected template, I is the grayscale image 

intensity of the image searching region, (x, y), (x’, y’) and 

(x”, y”) represent the location coordinates in image 

searching regions and template. The NCC coefficient is 

normalized with image mean value and standard deviation 

so that it assures the matching result is not affected by the 

light changing. 
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As shown in Fig. 7(a), when the NCC coefficient 

achieves the maximum, the matching target is located, i.e., 

at the peak of the map of NCC coefficient. However, the 

regular NCC coefficient method is not accurate sometimes. 

For example, in Fig. 7a, there are some pseudo peaks in the 

map of NCC coefficient, which make distractions of 

accurate matching. In this study, the grayscale image is 

replaced with edge map before template matching using 

NCC coefficient. The edge map is extracted from grayscale 

image using Canny operator (Canny 1986). Fig. 7(b) shows 

the NCC coefficient of Canny edge map, which can be seen 

that the peak in it is very clear and there is no pseudo peak. 

With the peak in NCC map of Canny edge map, the 

matching target is first located in the  

 

 

Canny edge map of the image searching region. Then it is 

updated in the image searching region. The comparison of 

NCC maps in Figs. 7(a) and 7(b) indicates that using edge 

map gives more accurate, reliable and robust results. The 

NCC methods including regular one and the one using edge 

map, only give measurement results in pixel level. To 

achieve the sub-pixel level, a refined searching progress is 

necessary. In this study, the local pixel upsampling and 

interpolation operations are applied to do searching 

refinement. Depends on the required accuracy, a specific 

iteration number needs to be preset. 

 

 

 

 
(a) Normalized cross-correlation coefficient of grayscale image 

 
(b) Normalized cross-correlation coefficient of Canny edge map 

Fig. 7 Digital correlation-based template matching 
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Fig. 8 System configuration 

 
 
2.3.4 Displacement calculation and transformation 
After getting the matching of the target template in 

consecutive images within sub pixel level, the centre of the 

template is regarded as the tracking location, (x, y). 

Assuming the initial location is (x0, y0) and with the scale 

ratio, SR, the displacement of the selected target is SR×(x - 

x0) in horizontal direction and SR×(y - y0) in vertical 

direction. 

 

 

3. System configuration 
 

The proposed system consists of a set of portable 

cameras, synchronization modules, a computer and a suite 

of processing software. Fig. 8 shows the system 

configuration. The portable cameras are divided into two 

groups, one is for bridge displacement measurement, and 

the other is for the vehicle tracking. The synchronization 

modules are applied to synchronize the image sequences 

captured from different cameras. All the image sequences 

are transferred to the computer and processed by the 

predesignated software. At the end, the UIL is obtained as 

output. 

 

 

4. Laboratory demonstration 
 

4.1 Experimental setup 
 

The proposed system is verified on the two-span bridge 

model (UCF two-span bridge) constructed in the University 

of Central Florida’s Civil Infrastructure Technologies for 

Resilience and Safety (CITRS) Experimental Design and 

Monitoring (EDM) laboratory. As shown in Fig. 9, The 

bridge is a scaled down model of a mid-sized real-life 

structure and toy trucks with variable weights are used to 

model moving loads. The bridge consists of two 300-cm 

main continuous spans. The bridge deck includes a 3.18-

mm steel sheet at 120 cm wide, which makes the deck 600 

cm long by 120 cm wide.  

To view the whole bridge deck and track the vehicle 

during the whole loading process, a fisheye camera is 

mounted on the tripod which is 2 m the middle of the 

bridge. The fisheye camera used here is a Raynic 4K Sports 

Action Camera with 170-degree wide angle lens. The 

camera can be connected with a smart phone through the Ez 

iCam App for remote controlling. This fisheye camera can 

capture full 1080p (1920 × 1080 pixels) high-density (HD) 

video clips at a speed of 30 frames per second (30 FPS).  

The reason why the fisheye camera is used is that fisheye 

camera provides a wide angle and can broaden the field of 

view to assure whole bridge is in the image.  

Another portable camera is mounted on the tripod which 

is close to the midspan of the left span of the bridge to 

measure the bridge displacement. The distance from the 

camera to the measurement region, P1, is around 0.8 m. The 

camera used here is a Z-CAM E1 action camera with a 75-

300 mm zoom lens. The camera can also be connected with 

a smart phone through the Z-CAM official application. The 

video format set here is 4K (3840 × 2160 pixels) resolution 

at a speed of 30 FPS. A potentiometer is mounted under the 

deck to measure the displacement of P1 and is assumed as 

the ground truth. The model No. of the potentiometer is BEI 

Duncan 9615. The sampling rate of the data acquisition 

system for the potentiometer is 200 Hz, which is then 

downsampled to 30 Hz during post processing. During the 

experiments, the toy truck moves from one side of the 

bridge to the other while the potentiometer and the camera 

record the motion of P1 (midspan of the left span) 

synchronously. 

As shown in Fig. 10, since images captured by the 

fisheye camera have a severe radical distortion and the 

straight bridge in the image becomes a curved bridge. 

The fisheye camera has to be calibrated. The calibration 

procedure follows the steps presented in Section 2.2.2 and a 

white black chess board as shown in Fig. 11 is employed to 

complete the calibration. 

 

 

Fig. 9 Experimental setup in laboratory 

 

 

 

Fig. 10 Image from fisheye camera 
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Fig. 11 Camera calibration using a black white chessboard 

 

 

 

Fig. 12 Rectified image after camera calibration 

 

 

 

Fig. 13 Video time synchronization using normalized cross-

correlation based pattern matching of audio signals 

 

 

The intrinsic parameters of the fisheye camera are (1) 

mapping coefficients are [1.03 × 103, -2.49×10-4, -4.89 × 10-

7, 3.55 × 10-10]; (2) distortion center is [951.95, 577.98]; and 

(3) stretch matrix is [1, 0; 0, 1]. The extrinsic parameters, 

i.e., H is [-0.100, -1.982, 1107.9; 0.0136, -1.240, 684.14; 

1.86×10-5, -0.002, 1]. Fig. 12 shows the rectified image 

after camera calibration. 

In this experiment, the video recorded by the two 

different portable cameras are synchronized by using cross-

correlation based pattern matching of audio signals. During 

the video recording, the portable cameras also record the 

audio signals and within the same camera, the images and 

audio signals are synchronized by the internal clock. As 

shown in Fig. 13, the audio signals of the two cameras start 

at different time as the two cameras started recording with 

different smart phones. During the recording, a voice, 

“Start”, is called at the beginning of the experiment and a 

voice, “Stop”, is called at the end of the experiment. The 

two audio signals are first realigned and synchronized with 

one dimensional normalized cross-correlation based pattern 

matching. The pattern is the signal “Start”. Then the signal 

synchronization is validated by another signal pattern 

“Stop”. Finally, the two videos are synchronized with the 

synchronized audio signals. 

 

4.2 Result analysis 
 
Fig. 14 shows the tracking results of the toy truck in the 

rectified images obtained from the fisheye camera after 

calibration. During the loading process, although the view 

and scale of the truck changes, the CSRT tracker can still 

successfully estimate the location of the toy truck in each 

image. And eventually the locations in the rectified images 

are converted to the location on the bridge deck using 

homography matrix. 

Fig. 15 shows the displacement comparison between the 

proposed vision-based method and the potentiometer. The 

calibration method for the camera used for displacement 

measurement is scale ratio and in this experiment, it is 

0.0316 mm/pixel. From Fig. 15, it is easy to see that the 

result obtained from the proposed method is quite consistent 

with those obtained from the potentiometer. The normalized 

cross-correlation (NCC) (Dong et al. 2019a) is calculated to 

evaluate the similarities between them. The NCC between 

the two methods is 99.91%, which shows a very high fit of 

goodness between the test method (the proposed vision-

based method) and the ground truth (potentiometer). 

Combining the displacement obtained from the vision-

based method and the vehicle location information 

estimated using vehicle tracking, the UIL is built. In Fig. 16, 

the blue curve (UIL-raw) is the extracted UIL without any 

post-processing and filtering. As this bridge displacement is 

the response under the moving load, it also includes the 

high vibration modes in the response signal. By applying 

the Fourier filter, the high vibration modes are removed and 

the final UIL is shown the red curve (UIL-Fourier). 

 

 

 

Fig. 14 Vehicle tracking in the rectified images from fish 

camera 
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Fig. 15 Displacement comparison between the proposed 

vision-based method and the potentiometer 

 

 

Fig. 16 Extracted UIL using the proposed system 

 

 

The maximum value of the UIL is 0.16 mm/kg and 

minimum value is -0.047 mm/kg. Here the downward 

direction of deck motion is the positive direction and it 

means the displacement has a positive sign. The negative 

portion of UIL is obtained when the truck is located on the 

other span next to the one has the measurement point. 

 

 

5. Field application 
 

5.1 Experimental setup 
 

A field application is demonstrated on a footbridge 

under small scale vehicle (golf cart) load as shown in Fig. 

17. The bridge comprises of 19.5 m long vertical truss 

frames that are connected via splice connection in the 

middle and spans an entire length of 39 m over a pond. The 

width of the bridge is 4.17 m. The vertical truss members 

on the left and the right side have HSS 10×10×3/8 top and 

  

 

Fig. 17 Experimental setup of a footbridge 

 

 

bottom chords and are stabilized with HSS 6×4×3/8 type 

vertical and HSS 4×4×1/4 type diagonal steel members. The 

lateral stability is provided by another truss frame that is 

3.65m wide which is constructed with HSS 3×3×1/4 type 

diagonal cross braces, W12×22 type lateral members. Two 

separate spans are spliced in the middle and the entire frame 

holds a thin layered aluminum-concrete composite deck. 

The bridge is located at a university campus and is 

generally under a light human traffic and small-scale 

vehicles.  

The experimental setup is shown in Fig. 17. To track the 

vehicle during the whole loading process in this experiment, 

the iPhone XS MAX is employed. The homography 

transform matrix of the iPhone camera, H, is [3.27, 0.15, 

289.09; 0.59, 1.23, -398.85; 5.94 × 10-4, 4.75 × 10-5, 1]. The 

camera used for displacement measurement of the midspan 

is also Z-CAM E1 camera with a 75-300 mm lens, the same 

with the one in the laboratory experiment. The scale ratio of 

this camera is 0.302 mm/pixel. The video format of both 

cameras are 4K resolution at a speed of 30 FPS. The videos 

from the two different cameras are also synchronized with 

the normalized cross-correlation based pattern matching of 

audio signals introduced in Fig. 13. 

A golf cart with three people including the driver drove 

through the bridge back and forth from one end to the other. 

The weight of the golf cart is 496.69kg and the weights of 

the three people are 94.34 kg, 78.47 kg, 75 kg respectively. 

Before starting the golf cart, there was a group of people 

coming and crossing the bridge. The cameras also recorded 

this event. 

 

5.2 Result analysis 
 

Fig. 18 shows the tracking results of the golf cart in the 

rectified images obtained from the iPhone camera after 

planar transformation. The original images captured by the 

iPhone camera are shown in Fig. 4. The scale and view 

angle of the golf cart changes during the loading process 

because the iPhone camera is not perpendicular to the 

longitudinal direction of the footbridge. The images in Fig. 

4 are first transformed to the fashion in Fig. 18 using 

homography matrix. Then the vehicle tracking is performed 

in the transformed images.  
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Fig. 18 Vehicle tracking in the planar transformed images: 

(top) tracking when the vehicle starts from the left end of 

the footbridge; (middle) tracking when the vehicle is at the 

midspan; (bottom) tracking when the vehicle arrives the 

right end 

 

 

 

Fig. 19 Displacement of the midspan under different loads 

 

 

During the loading process, even though the view and scale 

of the truck changes and the truss part of the footbridge 

occludes the golf cart, the CSRT tracker can still 

successfully estimate the location of the golf cart in each 

image. 

The displacement of the midspan during loading process 

is shown in Fig. 19. The proposed vision-based method 

successfully recognized the pedestrian loads when a group 

of people crossed the bridge before the starting of the golf 

cart. The maximum static displacement response (removing 

the high vibration modes) of the midspan under the 

pedestrian load is about 0.6 mm. From the displacement 

time histories, it also shows the displacement responses 

when the golf cart crossed the bridge back and forth and 

both of them are very similar with almost the same 

maximum static response (removing the high vibration 

modes), around 1.35 mm. It is reasonable because the 

weight of the golf cart is constant during the experiment and 

enough time is spent to let the vibration of the bridge 

attenuate after the golf cart drove from one end to the other. 

In this experiment, the video clips when the golf cart 

from left end to the right are used to extract the UIL. As 

shown in Fig. 20, the original UIL is represented with the 

blue curve and removing the high vibration modes with 

Fourier filter, the UIL is obtained as represented as the red  

 

 

Fig. 20 Extracted UIL of the midspan of the footbridge 

using the proposed system 

 

 

curve. The maximum value of the UIL is 1.70 mm/ton. With 

the UIL and the maximum static displacement of the bridge 

under pedestrian loads, the maximum static pedestrian 

loading is calculated, and it is 353 kg. Recalling the 

pedestrian loading event from the iPhone video, there are 

six middle-aged female people crossing the bridge. With the 

predicted total load, 353 kg, the average weight of each 

pedestrian is around 58.8 kg, which is acceptable.  

 

 

6. Conclusions 
 

To overcome the inconveniences and disadvantages of 

the conventional structural health monitoring practices such 

as high cost, excessive setup time, labor forces with cable 

wiring work, it would be important and useful to build a 

structural identification framework with a normalized 

structural response indicator irrespective of the type and/or 

the loads for better decision making with a completely non-

contact recognition system. In this study, bridge unit 

influence line (UIL) using only portable cameras and 

computer vision is proposed. The feasibility of the proposed 

method is verified through a comparative study of a series 

of laboratory experiments and a field application. The main 

approaches, findings, and conclusions are as follows: 

• A five-step general procedure for vision-based 

structural input (vehicle location) recognition is presented. 

CSRT tracker is implemented to track the vehicle 

successfully even the scale and view changes and occlusion 

happens during the visual tracking process. 

• To broaden the field of view of camera and to 

track the vehicle during the whole process, a fisheye camera 

with wide angle is employed and the full camera calibration 

is carried out to rectify the radial distortion for accurate 

vehicle localization. 

• A normalized cross-correlation coefficient using 

edge map (Canny) for template matching is proposed to 

achieve reliable displacement measurement. The proposed 

627



 

Chuan-Zhi Dong, Selcuk Bas and F. Necati Catbas 

method avoids the pseudo peaks in NCC map when doing 

template matching using the traditional NCC based 

template matching using grayscale images. The 

displacement results obtained from the proposed method 

have high consistency with that obtained from conventional 

displacement sensor with an NCC coefficient of 99.91%. 

• The two video recordings from two different 

portable cameras are successfully synchronized by using the 

normalized cross-correlation based pattern matching of 

audio signals. 

• The displacement UIL is successfully identified 

by combining the vehicle location estimated using visual 

tracking and homography transformation and the 

displacement record obtained with vision-based method. It 

makes the whole identification process in a completely non-

contact fashion and UIL is extracted in daily traffic flow. 

• The extracted displacement UIL is employed for 

pedestrian load estimation and the predicted weights of 

pedestrians are observed to be in acceptable ranges. It 

makes the proposed system work as non-contact weigh-in-

motion (WIM) system as presented in this example. 

The proposed UIL recognition system also shows great 

probability to detect damage by using statistical analysis of 

UILs, bridge load capacity evaluation by regarding UIL as a 

normalized structural performance indicator and load rating 

by extracting UILs with the daily traffic flow. The future 

work will focus on the investigation of them and extend to 

more possible aspects of structural condition assessment at 

global level. 
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