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1. Introduction 
 

The structural health monitoring (SHM) of civil 

infrastructures mainly aims to monitor the structural 

condition, detect the structural damage/abnormality, and 

evaluate the structural safety based on the long-term 

monitoring data from a variety of sensors installed on the 

structure. It is a cutting-edge and multi-disciplinary 

technology acting as a powerful tool for improving and 

upgrading the level of intelligent maintenance and 

management of civil infrastructures (Ni et al. 2010, Ni et al. 

2012, Ye et al. 2012, Hakim and Razak 2014). In addition, 

the comprehensive understanding of in-service structural 

performance and behavior under realistic environmental and 

loading conditions will benefit from the long-term 

monitoring of a civil engineering structure (Ye et al. 2013, 

Ye et al. 2015, Ye et al. 2016a,b,c, Dong et al. 2018). 

Although many kinds of SHM systems have been 

designed and implemented on many kinds of civil  
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infrastructures and a huge amount of monitoring data has 

been obtained in the past two decades, a big gap still exists 

between SHM and structural maintenance and management 

(SMM). One of the main reasons is that the current data 

processing methods are confronted with challenges from 

environmental noise, the volume of measurement data, the 

complexity of computation, etc., which severely constrains 

the pervasive application of SHM technology (Kesavan et 

al. 2005, Matos et al. 2009). Realization of the autonomous, 

accurate and robust processing of the monitoring data has 

been a great concern of the SHM community (Gao and 

Spencer 2007, Jang et al. 2010, Min et al. 2010, Cho et al. 

2015, Sony et al. 2019). 

With the arrival of the fourth revolution of science and 

technology, the technology of artificial intelligence (AI) is 

subversively renovating the activities of human life and 

social production (Weng et al. 2001). It has been deeply 

integrated into the planning, design, construction, 

maintenance and management of civil infrastructures (Onat 

and Gul 2018, Salehi and Burgueno 2018). In the SHM 

community, researchers have devoted efforts to analyzing 

and processing the huge amount of monitoring data by the 

use of machine learning methods, which are key 

components of AI. Extracting and mining the patterns and 

rules inherent in the original multi-source heterogeneous 

field monitoring data will not only help us accurately and 

effectively grasp the structural service condition and the 

characteristics of the long-term deterioration of the target 

 
 
 

A review on deep learning-based structural health monitoring  
of civil infrastructures 

 

X.W. Ye, T. Jina and C.B. Yunb 
 

Department of Civil Engineering, Zhejiang University, Hangzhou 310058, China 

 
(Received June 23, 2019, Revised August 25, 2019, Accepted August 30, 2019) 

 
Abstract.  In the past two decades, structural health monitoring (SHM) systems have been widely installed on various civil 

infrastructures for the tracking of the state of their structural health and the detection of structural damage or abnormality, through 

long-term monitoring of environmental conditions as well as structural loadings and responses. In an SHM system, there are plenty 

of sensors to acquire a huge number of monitoring data, which can factually reflect the in-service condition of the target structure. In 

order to bridge the gap between SHM and structural maintenance and management (SMM), it is necessary to employ advanced data 

processing methods to convert the original multi-source heterogeneous field monitoring data into different types of specific physical 

indicators in order to make effective decisions regarding inspection, maintenance and management. Conventional approaches to 

data analysis are confronted with challenges from environmental noise, the volume of measurement data, the complexity of 

computation, etc., and they severely constrain the pervasive application of SHM technology. In recent years, with the rapid progress 

of computing hardware and image acquisition equipment, the deep learning-based data processing approach offers a new channel 

for excavating the massive data from an SHM system, towards autonomous, accurate and robust processing of the monitoring data. 

Many researchers from the SHM community have made efforts to explore the applications of deep learning-based approaches for 

structural damage detection and structural condition assessment. This paper gives a review on the deep learning-based SHM of civil 

infrastructures with the main content, including a brief summary of the history of the development of deep learning, the applications 

of deep learning-based data processing approaches in the SHM of many kinds of civil infrastructures, and the key challenges and 

future trends of the strategy of deep learning-based SHM. 
 

Keywords:   structural health monitoring; deep learning; convolutional neural network; structural damage detection; 

structural condition assessment; artificial intelligence; machine learning; computer vision 

 



 

X.W. Ye, T. Jin and C.B. Yun 

structure, it will also promptly issue warning information as 

well as make decisions regarding inspection, repair and 

strengthening (Min et al. 2015, Feng and Feng 2018). 

The artificial neural network (ANN) algorithm is a 

classical machine learning method, and has been applied to 

civil engineering since 1989 (Adeli and Yeh 1989). Early 

ANNs were perceptrons with one or two hidden layers, and 

had a limited capacity for non-linearity abstraction (Wu et 

al. 1992, Szewczyk and Hajela 1994, Yun and Bahng 2000). 

Meanwhile, the application frameworks were realized based 

on the general-purpose computing languages such as 

FORTRAN, MATLAB or C language (Adeli 2001, Ni et al. 

2002). Later studies employed the hand-crafted algorithms 

to extract features from the data and applied ANNs with a 

limited number of hidden layers for classification (Ceylan et 

al. 2014); while the capacity of autonomous feature 

learning from raw data was not available before the training 

of a deep neural network (DNN) (Hinton et al. 2006). In 

recent years, along with the significant improvement of 

network architecture and computing capacity, deep learning 

algorithms, e.g., convolutional neural networks (CNNs), 

recurrent neural networks (RNNs), etc., have experienced 

rapid growth, and have been applied to automatically 

process all kinds of data, especially image data (Dong et al. 

2016). Many kinds of DNN frameworks and datasets have 

been developed to deal with various data processing 

scenarios and to satisfy different types of industrial 

demands (Vodrahalli and Bhowmik 2017). 

Much research has been carried out to explore the 

application of deep learning-based approaches in the field 

of the SHM of civil infrastructures (Spencer et al. 2019). 

This paper aims to address a review on deep learning-based 

SHM of civil infrastructures, and is organized as follows: 

Section 2 briefly summarizes the history of the development 

of deep learning with incidents of milestones. Section 3 

presents the applications of deep learning-based approaches 

for SHM on various kinds of civil infrastructures. Section 4 

discusses the current key challenges and future trends of the 

deep learning-based SHM strategy. Section 5 gives some 

conclusions of issues dealt with in the paper. 

 

 

2. A brief history of deep learning research 
 

2.1 Significant contributions to deep learning 
 
Nowadays, deep learning-based approaches have played 

an increasingly important role in the field of image 

recognition, natural language processing, recommendation 

systems, etc., to execute automated, time-saving and low-

cost operations (Schmidhuber 2015, Goodfellow et al. 

2016, Silver et al. 2016). Deep learning is a kind of 

representational learning method, which enables a network 

architecture to autonomously learn highly abstract features 

from raw data to fulfill recognition or classification tasks 

(Hinton and Salakhutdinov 2006, LeCun et al. 2015). It is a 

branch of machine learning, which belongs to a part of AI. 

Machine learning is a process of enabling a computer to  

 

 

Fig. 1 Relationship of AI, machine learning & deep 

learning 

 

 

learn hidden patterns among extracted features and targets 

for classification or prediction (Lake et al. 2015). Machine 

learning algorithms contain ANNs, support vector machines 

(SVMs), random forests, decision trees, Bayesian inference, 

etc. (Bishop 2006). AI is a system that is able to 

demonstrate the intelligence by machines, similar to but not 

the same as the natural intelligence of human beings 

(Russell and Norvig 2016, Silver et al. 2017), which 

contains computer vision, machine learning, robotics, 

speech recognition, expert systems, etc. The relationship 

among AI, machine learning and deep learning is shown in 

Fig. 1. 

The development of deep learning has mainly evolved 

from the ANN. The basic element of an ANN was called the 

neural cell, and has not been changed much since the first 

neural cell model, i.e., the MP model, was proposed in 1943 

by McCulloch and Pitts (1943). A neural cell with three 

input elements and one output element is shown in Fig. 2. 

The input elements, i.e., x1, x2 and x3, are multiplied by 

weights, i.e., w1, w2 and w3, for summation, and a bias, b, is 

added for modification. An activation function, f(x), 

implements nonlinear transformation to generate an output. 

Rosenblatt (1958) proposed a single layer perceptron 

structure that consisted of multiple neural cells, which could 

learn through perceptron convergence algorithms to 

improve the capacity for classification. Rumelhart et al. 

(1986) applied a back-propagation algorithm to train multi-

layer neural networks, enabling the hidden layers to 

construct useful features for classification. 

 

 

 

Fig. 2 The MP model (McCulloch and Pitts 1943) 
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LeCun et al. (1989) developed the first deep CNN, 

trained by a back-propagation algorithm, to recognize 

handwritten zip codes. Later, they proposed LeNet-5 for the 

recognition of handwritten characters with over 99.65% 

accuracy (LeCun et al. 1998), as shown in Fig. 3. The RNN 

is an important DNN for the processing of time-series data. 

Hopfield (1982) proposed a network with a circular 

structure, which was considered to be the rudiment of the 

RNN. Unlike the previous feed-forward neural networks, 

the processing of input elements in this network architecture 

had backward paths. Elman (1990) proposed a fully-

connected RNN with local memory units and feedback 

connections to deal with time-series data. Hochreiter and 

Schmidhuber (1997) developed the long short-term memory 

network (LSTM) with gate units to solve the problem of 

long-term dependence. An LSTM cell has a forgetting gate 

and an input gate to filter input data, and an output gate to 

generate output data. However, due to the issues of gradient 

vanishing or explosion, it is difficult to train a DNN. This 

challenge prevented the development of deep learning until 

the deep belief network (DBN) was developed by Hinton et 

al. (2006). They trained the DBN by unsupervised greedy 

training for each layer and then fine-tuning by a supervised 

back-propagation algorithm. 

 

 

 

 

 

 

Furthermore, the training of a DNN requires the 

processing of a massive amount of data with the help of a 

great computing power. The improvement of the efficiency 

of training is critical to the practical application of a DNN. 

To accelerate the training process, Chellapilla et al. (2006) 

proposed a graphics processing unit (GPU)-accelerated 

convolutional network and produced a 3.1X-4.1X speedup. 

Raina et al. (2009) constructed a GPU-aided deep 

unsupervised learning network which was simple to 

program and needed less time for training. Ciresan et al. 

(2010) presented a GPU-accelerated approach to efficiently 

train the multi-layer perceptron (MLP). With the progress of 

GPU-based training methods, the efficiency of training a 

DNN has been drastically improved. However, when the 

neural networks become deeper, the number of parameters 

grows explosively and this generates the problem of 

overfitting. 

Krizhevsky et al. (2012) won the 2012 ImageNet 

challenge by the proposal of AlexNet with proper treatment 

of the overfitting issue. To reduce the overfitting effect, 

relu, dropout, and data augmentation were jointly adopted 

to train the network architecture with about 60 million 

parameters. Also, two GPUs were applied to speed up the 

training process of the CNN. The joint application of these 

techniques enabled AlexNet to obtain a 15.3% top-5 error 

rate in the image classification for 1000 different categories. 

 

Fig. 3 The architecture of LeNet-5 (LeCun et al. 1998) 

 

Fig. 4 Historical development of deep learning 
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The milestone success of AlexNet shocked scholars and 

engineers all over the world and attracted more attention to 

the research on deep learning. Up to now, a lot of DNNs 

have been proposed for many kinds of application purposes. 

CapsuleNet is able to recognize and reconstruct target 

objects in images (Hinton et al. 2011, Sabour et al. 2017). 

VGG-Net (Simonyan and Zisserman 2014), ZF-Net (Zeiler 

and Fergus 2014), GoogLeNet (Szegedy et al. 2014) and 

ResNet (He et al. 2016) are good at classification. U-Net 

(Ronneberger et al. 2015), DeconvNet (Noh et al. 2015), 

CRF-RNN (Zheng et al. 2015), ENet (Paszke et al. 2016), 

PSPNet (Zhao et al. 2017), RefineNet (Lin et al. 2017), 

fully convolutional network (FCN) (Shelhamer et al. 2017), 

DenseNet (Huang et al. 2017) and Deeplab (Chen et al. 

2018) are suitable for segmentation tasks. R-CNN (Girshick 

et al. 2014, Ren et al. 2015), MobileNet (Howard et al. 

2017), SegNet (Badrinarayanan et al. 2017) and ShuffleNet 

(Zhang et al. 2018) are fit for target detection tasks. GAN 

(Goodfellow et al. 2014), f-GAN (Nowozin et al. 2016), 

EBGAN (Zhao et al. 2016) and InfoGAN (Chen et al. 

2016) could be utilized for imaginary processing of images, 

videos, etc. More studies can be found in LeCun et al. 

(2015). The historical development of deep learning is 

illustrated in Fig. 4. 

 

2.2 Frameworks and datasets for deep learning 
 

Deep learning frameworks are crucial tools for the 

application of deep learning-based approaches and have 

been developed by many companies and research institutes. 

Caffe was proposed by the University of California, 

Berkeley in 2013, and it supports CNN well. The 

explanations, demos and related papers can be found at 

http://caffe.berkeleyvision.org/. Tensorflow is an open 

source software developed by Google in 2015, which can 

connect well with python and C++. The detailed resource 

can be found at https://tensorflow.google.cn/. PyTorch was 

developed by Facebook in 2016, and it supports a dynamic 

computation graph. Examples and tutorials are available at 

https://github.com/pytorch. Besides the above-mentioned 

popular frameworks, there are other frameworks. MXNet 

was developed by Amazon in 2015, and is available at 

http://mxnet.incubator.apache.org/. CNTK was developed 

b y  M i c r o s o f t  i n  2 0 1 6 ,  a v a i l a b l e  a t 

https://archive.codeplex.com/?p=cntk. PaddlePaddle was  

 

 

developed by Baidu in 2016, available at 

https://www.paddlepaddle.org.cn/. 

The demand for tremendous training data is a big 

challenge in the training process. To sufficiently train DNNs 

for different tasks, the number of training samples is 

counted by tens of thousands. Thus, a variety of datasets 

were established to support the training demand. MNIST is 

a dataset of handwritten digits containing 60000 training 

images and 10000 testing images, available at 

https://datahack.analyticsvidhya.com/contest/practice-

problem-identify-the-digits/#data_dictionary. MS-COCO is 

a dataset for object detection and segmentation, available at 

http://cocodataset.org/#people. WordNet is a large lexical 

dataset of English, containing words of nouns, verbs, 

adjectives and adverbs, available at 

https://wordnet.princeton.edu/. ImageNet is a dataset of 

images built based on WordNet to provide the graphical 

explanation of each word in the form of synonym sets, 

available at http://www.image-net.org/. Open images 

dataset contains millions of images covering thousands of 

classifications with labeled bounding boxes, available at 

https://github.com/openimages/dataset. Wikipedia Corpus 

contains words from over 4 million articles and is a 

powerful natural language processing dataset, available at 

https://nlp.cs.nyu.edu/wikipedia-data/. More datasets of 

different categories can be found at 

https://www.analyticsvidhya.com/blog/2018/03/comprehens

ive-collection-deep-learning-datasets/. The industrial chain 

of deep learning is illustrated in Fig. 5. 

 

 

3. Applications of deep learning in the SHM of civil 
infrastructures 

 

Researchers and engineers in the field of civil 

engineering have already noticed the fantastic prospects and 

innovative technological strength brought about by deep 

learning-based approaches (DeVries et al. 2018, Spencer et 

al. 2019). Many kinds of attempts have been made to apply 

deep learning-based approaches to the SHM of civil 

infrastructures (Vodrahalli and Bhowmik 2017). In this 

section, the research work has been collected and mainly 

classified into two categories: structural damage detection 

and structural condition assessment. 

 

 

Fig. 5 Industrial chain of deep learning 
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Table 1 Applications of deep learning-based structural damage detection 

Structure type Application Reference Technology 

Bridge 

Crack detection 

Alipour et al. (2019) FCN 
Dung et al. (2019) VGG-16+Transfer learning 
Kim et al. (2018) UAV+R-CNN+Transfer learning+IPT 
Sajedi and Liang (2019) SegNet 

Damage detection 

Bao et al. (2019) Auto-encoder+Unsupervised learning 
Duan et al. (2019) CNN 
Liang (2019) VGG-16+Faster R-CNN+SegNet 
Tang et al. (2019) CNN 
Yeum et al. (2019) CNN+UAV+Structure from motion 

Loosened bolt detection Huynh et al. (2019) R-CNN 
Damage state classification Khodabandehlou et al. (2019) CNN 

Tunnel 

Crack detection 
Li et al. (2019) Faster R-CNN 
Song et al. (2019) ResNet+MobileNet+CrossNet 

Multiple damage detection 
Huang et al. (2018) FCN 
Gao et al. (2019) Faster R-CNN+FCN 
Xue and Li (2018) FCN+Faster R-CNN 

Highway Crack detection 

Bang et al. (2019) Encoder-decoder network 
Gopalakrishnan et al. (2017) VGG-16+Transfer learning 
Hoang et al. (2018) CNN 
Maeda et al. (2018) MobileNet+Inception 
Park et al. (2019) FCN+CNN 
Tong et al. (2017) CNN 
Tong et al. (2018) CNN+Transfer learning 
Zhang et al. (2017) CNN without pooling 
Zhang et al. (2018) Light weight CNN 
Zhang et al. (2018) AlexNet+Transfer learning 
Zhang et al. (2019) RNN 

Railway 
Fastener damage detection 

Liu et al. (2019) CNN 
Wei et al. (2019) VGG-16+Faster R-CNN 

Insulator damage detection Kang et al. (2019) Faster R-CNN 
Multiple damage detection Gibert et al. (2017) CNN 

Concrete building 
 

Crack detection 

Cha et al. (2017) CNN 
Dorafshan et al. (2018) AlexNet+Transfer learning 
Dung and Anh (2019) FCN+Transfer learning 
Kang and Cha (2018) UAV+CNN 
Kim and Cho (2018) UAV+AlexNet+Transfer learning 
Kim and Cho (2019) Mask R-CNN 
Ni et al. (2019) GoogLeNet+ResNet 
Ni et al. (2019) GoogleNet+Transfer learning 
Yang et al. (2018) VGG-19+FCN 
Ye et al. (2019) FCN 
Zhang et al. (2019) SegNet 
Zhang et al. (2019) ResNet+FCN 

Multiple damage detection 

Gao and Mosalam (2018) VGG+Transfer learning 
Li et al. (2018) Faster R-CNN 
Li et al. (2019) DenseNet+FCN 
Lin et al. (2017) CNN 
Wang et al. (2018) AlexNet+GoogLeNet 
Xu et al. (2019) Faster R-CNN 
Yeum et al. (2018) AlexNet 

Spalling detection Beckman et al. (2019) Faster R-CNN 
Damage dataset generation Gao et al. (2019) GAN 

Steel building 

Damage detection 

Gulgec et al. (2019) CNN 
Liu and Zhang (2019) CNN 
Pathirage et al. (2018) Auto-encoder 
Yu et al. (2019) CNN 
Zhao et al. (2019) VGG-16+MobileNet 

Multiple damage detection 
Chen and Jahanshahi (2018) CNN+Naive Bayes 
Wu et al. (2019) VGG-16+ResNet-18 

Stiffness degradation detection Zhou et al. (2019) Auto-encoder 
Joint damage detection Abdeljaber et al. (2017) 1D-CNN 
Corrosion detection Atha and Jahanshahi (2018) CNN 
Crack detection Cha et al. (2018) Faster R-CNN 

Pipe Defect detection 

Cheng and Wang (2018) Faster R-CNN 
Kumar et al. (2018) CNN 
Li et al. (2019) ResNet 
Wang and Cheng (2019) CNN+FCN 
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3.1 Structural damage detection 
 

Structural damage inspection is essential for the safety 

of in-service structures, and thus many research groups 

have utilized the deep learning-based approaches to carry 

out damage detection on a variety of structures. 

Applications of deep learning-based studies are collected 

and listed in Table 1. There have been numerous image-

based and CNN-based studies as many kinds of structural 

damages are visible. To overcome the lack of annotated 

image datasets for specific inspection purposes, transfer 

learning was implemented by pre-training with a large 

number of open-source image datasets and fine-tuning with 

a small number of collected images. Also, conventional data 

augmentation techniques as well as deep learning-based 

approaches such as GAN were used to enlarge the datasets. 

To detect, localize and quantify the structural damages such 

as spalling and cracks, the Faster R-CNN and FCN 

approaches were adopted to precisely locate the damages 

and the image processing techniques (IPTs) were applied to 

obtain the damage parameters. Addition to the images, the 

time-series data such as acceleration and displacement were 

used for damage detection in those studies. To process the 

time-series data, the auto-encoder networks and 1D-CNN 

were developed by several research groups. Besides, 

transforming the raw time-series data into the frequency 

spectra or spatial time-frequency spectra for further 

processing was also being investigated. 

 

3.1.1 Bridges 
Kim et al. (2018) proposed a UAV and R-CNN-based 

approach to detect cracks in the aged concrete bridges. A 

pre-trained R-CNN was fine-tuned by crack images for 

crack detection, and the IPTs were adopted to quantify the 

detected cracks. Liang (2019) proposed a three-level deep 

learning-based method for the inspection of post-disaster 

bridges. VGG-16 was applied to detect system-level failure, 

and Faster R-CNN and SegNet were adopted to detect 

component-level and local-level damage respectively.  

 

 

 

Sajedi and Liang (2019) developed a semantic segmentation 

neural network based on SegNet to automatically localize 

cracks. The performance of different training algorithms, 

i.e., stochastic gradient descent (SGD), RMSprop, Adagrad, 

Adadelta, Adam, and Adamax, were compared by precision 

rate and recall rate. Yeum et al. (2019) developed an 

automatic and robust technique for the localization and 

classification of the region of interest (ROI) for the vision-

based weld line assessment, as shown in Fig. 6. A 3D 

geometric relationship between the targeted region and the 

images was generated by utilizing a structure from motion 

algorithm. The most useful ROI was obtained by using a 

CNN acting as a binary occlusion classifier. 

Khodabandehlou et al. (2019) established an eleven-layer 

CNN to conduct damage state classification. Acceleration 

data from shaking table tests of a reinforced concrete bridge 

model under different loads were utilized for validation. 

Bao et al. (2019) developed an auto-encoder-based network 

to detect data anomalies. The proposed network was trained 

by unsupervised pre-training and supervised fine-tuning. 

Acceleration data from a cable-stayed bridge was used for 

validation, and six kinds of data anomalies were detected 

with a global accuracy of 87%. 

Dung et al. (2019) compared three deep learning-based 

methods based on transfer learning to detect the cracks at 

the welded joints of gusset plates. A shallow CNN trained 

from scratch, a pre-trained VGG-16 with a fine-tuned 

classifier, and a pre-trained VGG-16 with a fine-tuned 

convolution layer and classifier were compared by use of 

accuracy rate, precision rate, and recall rate. Raw images 

from experiments and daily inspections were collected for 

the establishment of the dataset, and data augmentation was 

adopted to reduce overfitting. Huynh et al. (2019) proposed 

an R-CNN and Hough line transform-based approach to 

detect the loosened bolts of steel connections. A 15-layer R-

CNN was pre-trained without bolt images and fine-tuned 

with bolt images. The Hough line transform algorithm was 

adopted to assess the condition of the loosening of the 

detected bolts. Alipour et al. (2019) proposed an FCN-based  

 

Fig. 6 UAV and CNN-based weld line damage detection (Yeum et al. 2019) 
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approach to detect cracks for refined crack assessment. Five 

models with different upsampling rates were tested based 

on the pre-trained state. The image dataset was established 

by the collected on-site crack images with careful 

annotation, and the influence of the size of the dataset was 

analyzed. Duan et al. (2019) proposed a CNN-based 

approach to detect bridge damages by acceleration 

responses. Numerical analysis of a tied-arch bridge with 

different damage conditions was conducted to generate 

acceleration responses. The acceleration responses and 

generated Fourier spectra were used as datasets, and the 

performances of damage detection were compared. Tang et 

al. (2019) designed a five-layer CNN to detect and classify 

anomalous monitoring data from an SHM system, as shown 

in Fig. 7. Acceleration data from a cable-stayed bridge was 

utilized and divided into training sets with different sizes 

for performance evaluation. 

 

3.1.2 Tunnels 
Xue and Li (2018) developed a three-stage deep 

learning-based framework for the classification and 

localization of tunnel lining damages. An FCN was 

developed to extract feature maps of input images, a region 

proposal network was applied to select suspicious regions 

on the feature maps, and a position-sensitive pooling  

 

 

 

 

method was applied to precisely locate damages. Huang et 

al. (2018) employed an FCN-based two-stream approach to 

implement semantic segmentation for cracks and leakages 

in tunnels. Comparison of performance was conducted 

among the proposed approach, a region growing algorithm, 

and an adaptive thresholding algorithm. Song et al. (2019) 

compared the performance of three different kinds of DNNs 

for semantic segmentation of tunnel cracks. To train the 

tested networks, tunnel images of real-world situations were 

collected and a tunnel crack dataset with semantic 

segmentation annotation was established. Gao et al. (2019) 

established a Faster R-CNN and FCN-based framework for 

quick and accurate detection of multiple tunnel defects, as 

shown in Fig. 8. A Faster R-CNN was used to select defect 

images, and then an adaptive border boundary module was 

employed to reduce the size of the selected images. Finally, 

an FCN was applied to detect defects in the pixel-wise 

level. Li et al. (2019) proposed an image processing and 

Faster R-CNN-based framework to detect tunnel cracks. A 

dataset containing three crack types was built to train the 

Faster R-CNN. 

 

3.1.3 Highways 
Gopalakrishnan et al. (2017) developed a pre-trained 

VGG-16-based method to detect pavement cracks. The pre- 

 

Fig. 7 CNN-based anomaly detection of time series data (Tang et al. 2019) 

 

Fig. 8 FCN and R-CNN-based tunnel crack detection (Gao et al. 2019) 
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training of the VGG-16 was based on the pavement dataset 

of ImageNet, and the complexity of recognition was 

introduced by a mixture of hot-mix asphalt pavement and 

concrete pavement images. Tong et al. (2017) combined 

three CNNs for recognition, location, and feature extraction 

operations to implement the 3D reconstruction of concealed 

pavement cracks. Images of cracks underneath the asphalt 

pavement were obtained by a ground penetrating radar. 

Zhang et al. (2017) proposed a CNN model called CrackNet 

to automatically detect pavement cracks on 3D images of 

asphalt road surfaces. The proposed CrackNet had no 

pooling layers to keep the size of feature maps for pixel-

wise detection of cracks. 

Zhang et al. (2018) proposed a modified model of 

CrackNet called CrackNet II for crack identification with 

greater precision and better recall rates. In comparison with 

CrackNet, the modified version had a deeper architecture 

with fewer parameters and a better degree of computing 

efficiency. Tong et al. (2018) proposed a two-stage CNN-

based approach for the automatic measurement of the length 

of pavement cracks. The proposed CNN was pre-trained by 

images with crack labels, and fine-tuned by images with 

detailed labels of the length of cracks. The k-means 

clustering analysis was adopted to preprocess raw crack 

images for the establishment of a crack dataset. Hoang et al. 

(2018) compared two edge detection methods and a CNN-

based approach for the recognition of pavement cracks. The 

Sobel and Canny detection methods were applied with a 

thresholding optimization method to enhance the robustness 

of crack detection, and a 7-layer CNN was trained to detect 

cracks for comparison. Zhang et al. (2018) proposed an 

AlexNet and IPT-based framework to detect the pavement 

cracks in a real-world situation. A pre-trained and fine-

tuned AlexNet was adopted to detect crack regions from the 

captured raw images. Maeda et al. (2018) applied 

MobileNet and Inception to detect multiple road damages. 

A large dataset containing plenty of images obtained by on-

board smartphones was established to provide sufficient 

training and validation images. The accuracy and time of 

computation were compared in order to evaluate the 

performance. 

Zhang et al. (2019) proposed an RNN-based model 

called CrackNet-R to detect pavement cracks in 3D images 

in pixel-level. To improve the capacity of feature extraction, 

a recurrent unit and gated recurrent multi-layer perceptron 

were proposed to implement the nonlinear transformation 

on gating units. Bang et al. (2019) proposed an encoder-

decoder network for the detection and localization of road 

cracks in video frames obtained by on-board cameras. For 

the extraction performance of the encoder architecture, a 

comparative study was conducted to select the best 

architecture from VGG-16, ResNet-152, ResNet-200, 

ResNet-101 and ResNet-50. Park et al. (2019) proposed an 

FCN and CNN-based framework to implement pavement 

crack identification. An FCN was adopted to select the road 

images with the presence of disturbing objects such as 

vehicles, pedestrians, plants, etc. A CNN was applied to 

detect cracks in the selected images. 

 

 

3.1.4 Railways 
Gibert et al. (2017) proposed a CNN-based framework 

to detect multiple railway damages. The framework shared 

three convolutional layers for material classification, 

fastener classification, and fastener damage detection. Kang 

et al. (2019) developed a two-step framework to detect 

insulator damage. A Faster R-CNN was applied to grab 

component images containing insulators, and a deep multi-

task neural network was applied to evaluate the conditions 

of the insulator. Liu et al. (2019) proposed a similarity-

based CNN for the inspection of the conditions of fasteners. 

The similarity of pairs of fastener images was calculated to 

assess the capacity of feature extraction in the pre-training 

stage. To enlarge the training dataset, a template matching-

based classification approach was adopted to select large 

numbers of fastener images from online railway images. 

Wei et al. (2019) compared the performance of the capacity 

for the detection of defects for the fasteners among IPTs, 

VGG-16 and Faster R-CNN. The Faster R-CNN achieved 

the best performance evaluated by precision rate and recall 

rate. 

 

3.1.5 Concrete buildings 
Cha et al. (2017) proposed a CNN-based method for the 

detection of structural cracks. Testing images contained 

cracks with different widths, lighting conditions, and noise 

levels. The Sobel and Canny detection methods were 

adopted for the comparison of the capacity for detection. 

Lin et al. (2017) proposed a CNN-based method to 

automatically extract features from time domain data for 

damage detection. A wavelet-based method was adopted for 

comparison of detection performance. Yeum et al. (2018) 

proposed an AlexNet-based two-stage framework for 

collapse classification and spalling detection in post-event 

analysis for concrete buildings. A dataset for post-event 

reconnaissance images was built by collecting a large 

number of images after natural disasters including 

hurricanes, tornadoes, and seismic incidents. Li et al. (2018) 

proposed a Faster R-CNN-based framework to detect and 

localize multiple defects in different scenarios. To 

strengthen the capacity for detection of multiple defects, the 

multi-scale training, data augmentation and negative mining 

strategies were jointly adopted. For the localization of 

defects, a location block was introduced and improved in 

the framework. Kang and Cha (2018) proposed an 

automatic unmanned aerial vehicle (UAV) and CNN-based 

damage detection approach for application in indoor 

environments. The geo-tagging method based on stationary 

beacons was applied to navigate the UAV and locate the 

damage. Dorafshan et al. (2018) conducted a comparison 

between edge detection methods and AlexNet for the 

detection of concrete cracks. Edge detection algorithms 

contained Roberts, Prewitt, Sobel and LoG algorithms in 

the spatial domain, and Butterworth and Gaussian 

algorithms in the frequency domain. The performance of 

AlexNet was compared in a transfer learning mode and a 

fully trained mode. Gao and Mosalam (2018) proposed a 

VGG-based architecture to detect damage to structural 

components, as shown in Fig. 9. Transfer learning was 

adopted to obtain a robust recognition performance with a  
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small training dataset. An image dataset called Structural 

ImageNet was built to collect images for the training 

process. Yang et al. (2018) proposed a VGG-19 based FCN 

to detect cracks in different scales. Segmented crack pixels 

were processed to a single pixel width skeleton for post 

evaluation of morphological features including crack 

topology and length, etc. Kim and Cho (2018) proposed a 

method consisting of a probability map and an AlexNet 

trained by online images to detect cracks. On-site images 

and video frames taken by a UAV were collected for testing. 

The average precision rate and recall rate for image-based 

crack detection were about 10% higher than those for video 

frame-based crack detection. Wang et al. (2018) applied 

AlexNet and GoogLeNet to detect multiple damages to 

masonry walls, and the sliding window techniques were 

used to locate the damages. A comparative study was 

conducted by the use of the image datasets with different 

sizes. 

Zhang et al. (2019) proposed a residual block-based 

FCN with dilated convolution to detect concrete cracks. 

Residual blocks were used to extract features and dilated 

convolutions were conducted with different dilation rates 

for different receptive fields. Dung and Anh (2019) 

proposed an FCN-based method for the detection of cracks  

 

 

 

 

on concrete surfaces. A VGG-16-based model, an 

InceptionV3-based model, and a ResNet-based model were 

compared for feature extraction performances to select the 

best encoder for the proposed FCN. Ni et al. (2019) 

proposed a GoogLeNet and ResNet-based method for the 

detection of cracks. Zernike moment operator was used to 

process crack images detected by the proposed method for 

the quantification of thin cracks. Li et al. (2019) proposed a 

DenseNet-121-based FCN to detect the concrete defects 

including spalling, cracks, efflorescence and holes. Model-

based transfer learning was adopted to assign the initial 

parameters of the FCN in the training procedure. Zhang et 

al. (2019) proposed a SegNet-based model with context 

awareness to detect cracks in images of arbitrary sizes. A 

context-aware fusion algorithm was developed to merge the 

detected crack image patches generated by a sliding 

window technique. Datasets including the CrackForest 

dataset, the Management dataset, the Tomorrows Road 

Infrastructure Monitoring dataset, and the Customized Field 

Test dataset were tested for the validation of the proposed 

model. Ni et al. (2019) proposed a CNN-based two-stage 

method to detect structural cracks. Pre-trained and fine-

tuned GoogleNet was utilized to detect cracks, and a crack 

delineation network was adopted to conduct feature map  

 

Fig. 9 Transfer learning-based multiple damage detection (Gao and Mosalam 2018) 

 

Fig. 10 GAN-based dataset generation (Gao et al. 2019) 
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fusion for the delineation of pixel-wise cracks. Xu et al. 

(2019) proposed a Faster R-CNN based model to detect and 

localize multiple types of seismic damages such as cracks 

and spalling. A region proposal network was merged into a 

Fast R-CNN by sharing preliminary feature maps. The 

image dataset was established by on-site picturing and data 

augmentation was adopted to enlarge the dataset. Kim and 

Cho (2019) proposed a Mask R-CNN-based framework for 

the detection and quantification of concrete cracks. The 

training images of concrete cracks were collected from an 

on-site concrete wall and it contained cracks with different 

widths. Ye et al. (2019) developed a U-Net-based FCN to 

automatically detect cracks on concrete surfaces. An online 

dataset of crack images with pixel-wise labels was collected 

for training and validation. Gao et al. (2019) proposed a 

GAN-based architecture to generate concrete structural 

damage images for the establishment of a training dataset, 

as shown in Fig. 10. A leaf-bootstrapping method was 

adopted to improve the capacity for generation of the 

proposed model. The generated synthetic images were 

evaluated by a self-inception score and indices of the 

generalization ability. Beckman et al. (2019) proposed a  

 

 

 

 

Faster R-CNN and depth camera-based approach to detect 

and quantify the spalling of structural components. The 

Faster R-CNN was trained by on-site spalling images and 

applied to detect the spalling areas in images, and the depth 

of the spalling was measured by a depth camera for the 

volumetric evaluation of the detected spalling. 

 

3.1.6 Steel buildings 
Abdeljaber et al. (2017) developed a one-dimensional 

CNN for vibration-based structural damage detection of a 

steel structure with acceleration data. Atha and Jahanshahi 

(2018) proposed two CNN-based architectures called 

Corrosion-5 and Corrosion-7 to detect corrosion on metallic 

surfaces. The performance of the proposed architectures 

was compared with ZF Net, VGG-15, and VGG-16 by the 

precision rate, recall rate and F1 score. Chen and 

Jahanshahi (2018) combined a CNN-based approach with a 

Naive Bayes data fusion method to detect the cracks in 

video frames of nuclear power plants. A CNN was applied 

for the detection of cracks in each video frame, and a naive 

Bayes decision-making scheme was used to eliminate non-

crack patches. Cha et al. (2018) proposed a Faster R-CNN-

 

Fig. 11 ResNet-based sewer defect detection (Li et al. 2019) 

Table 2 Applications of deep learning-based structural condition assessment 

Structure type Application Reference Technology 

Bridge 
Serviceability analysis Liang et al. (2016) CNN+RNN 

Rebar assessment Dinh et al. (2018) CNN+IPT 

Pavement 
Texture depth assessment Tong et al. (2018) CNN 

Friction assessment Yang et al. (2018) CNN 

Bridge 

Data reconstruction Fan et al. (2019) FCN 

Modal analysis Kim and Sim (2019) Faster R-CNN 

Ship detection Li et al. (2019) VGG-16+Transfer learning+IPT 

Spectrum analysis Liu et al. (2019) LSTM 

Condition assessment Zhang et al. (2019) 1D-CNN 

Vehicle load analysis Zhang et al. (2019) Faster R-CNN 

Railway Condition assessment Wang et al. (2019) ResNet+DenseNet 

Truss Deformation assessment Lee et al. (2018) MLP 

Building 
Condition assessment Rafiei and Adeli (2018) Encoder-decoder network 

Dynamic response estimation Oh et al. (2019) CNN 

Electric tower Condition assessment Dick et al. (2019) CNN 

Steel frame Dynamic response estimation Wu and Jahanshahi (2019) CNN 

Offshore platform Load prediction Lyu et al. (2019) DBN 
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based method for the structural visual inspection of defects 

including concrete cracks, bolt corrosion, steel corrosion, 

and steel delamination. Pathirage et al. (2018) proposed an 

auto-encoder-based architecture to identify structural 

damage by vibration responses. Numerical and 

experimental studies were conducted to generate datasets 

for the training, validation and testing of the proposed 

architecture. 

Gulgec et al. (2019) proposed a CNN-based approach to 

classify damaged and undamaged steel structure 

components generated by numerical simulations. To select a 

feature extractor, 50 CNNs with different learning rates, 

convolutional and fully-connected layers were trained and 

compared. To build a localization detector, a similar 

comparative study was conducted based on 70 settings. Liu 

and Zhang (2019) developed a CNN-based method for the 

assessment of damage conditions for the post-hazard 

evaluation of structural steel fuse members. Images of 

cumulative plastic strain contours generated by numerical 

analysis and experimental study were adopted for the 

training and validation of the proposed method. Zhou et al. 

(2019) trained an auto-encoder-based network by histogram 

of stiffness to implement damage identification via stiffness 

deterioration. A training dataset of the histogram of stiffness 

including typical linear and nonlinear structural behavior 

was obtained by analysis of simulated random hysteresis 

loops. Yu et al. (2019) proposed a deep CNN-based 

framework to recognize the damage of a smart steel 

structure with isolators. The training dataset was generated 

by the numerical simulation of the steel structure models. 

Wu et al. (2019) proposed a DNN and pruning algorithm 

based method to detect structural damages. VGG-16 and 

ResNet-18 were trained by a high performance server, and 

the damage dataset contained crack and corrosion images 

that were carefully collected from field infrastructures. 

Zhao et al. (2019) proposed a VGG-16-based method to 

detect the condition of bolt loosening for steel structures. 

After training, validation and testing, a MobileNet was 

utilized to implement the detection process with a 

smartphone. 

 

3.1.7 Pipes 
Cheng and Wang (2018) established a Faster R-CNN-

based approach to detect defects in sewer pipes. Training 

was conducted with images collected from closed-circuit 

television inspection. Six models with different parameters 

were compared, and indices including training time, 

accuracy and detection speed were adopted for performance 

evaluation. Kumar et al. (2018) developed a CNN-based 

system to detect and classify defects including deposits, 

root intrusions, and cracks. Training was conducted with 

12000 images collected from in-situ inspection of 200 

pipes. Wang and Cheng (2019) proposed an integrated 

architecture called DilaSeg-CRF to improve the accuracy of 

segmentation for the detection of defects in sewer pipes. 

DilaSeg-CRF combined a deep CNN with dense conditional 

random fields, and adopted a multi-scale convolution 

strategy to address the segmentation of the defects with 

different scales. FCN, DilaSeg-Basic and DilaSeg were 

compared by the IoU index. Li et al. (2019) proposed a 

two-level ResNet-based approach for sewer defect detection 

with consideration of imbalanced distribution of the dataset, 

as shown in Fig. 11. The high-level framework was used to 

select images with defects, and the low-level framework 

was used to detect specific defects. 

 

3.2 Structural condition assessment 
 

Structural condition assessment is helpful for obtaining 

the structural state for maintenance, and for revealing the 

long-term evolutionary law of structural service behavior. 

Investigations of deep learning-based structural condition 

assessment are collected and listed in Table 2. The image-

based structural condition assessment was conducted by use 

of CNN-based approaches. As for the processing of time-

series data, 1D-CNN and LSTM were utilized to deal with 

the time-dependent issue. Applications of deep learning-

based structural condition assessment are mainly divided 

into two categories: transportation infrastructure and 

buildings. 

 

3.2.1 Transportation infrastructures 
Liang et al. (2016) established a multi-scale SHM 

system to assess the serviceability of the bridge based on a 

Hadoop Ecosystem. To implement the analysis of 

component-level reliability, images were processed by a 

CNN, and streaming data were processed by an RNN. Yang 

et al. (2018) proposed a CNN model called FrictionNet for 

pavement skid resistance and safety analysis by pavement 

texture data. High-speed texture profiles and grip tester 

friction data were collected for training and validation. Dinh 

et al. (2018) proposed a two-stage framework based on IPT 

and CNN to detect and localize the rebars in the ground 

penetrating radar images. The image migration and 

thresholding method was adopted to select the potential 

rebar images and a 14-layer CNN was adopted to detect the 

rebars. Tong et al. (2018) proposed a CNN-based approach 

to analyze the depth of the texture of the surface of the 

pavement by use of the 3D on-site scanning images. IPTs 

were used to verify the robustness of the proposed 

approach. 

Wang et al. (2019) proposed a dual path network 

consisting of ResNet and DenseNet to classify different 

railway events by monitoring data containing environmental 

noise. A dataset of a spatial time-frequency spectrum was 

established by multi-dimensional vibration signals. An on-

site railway safety monitoring test was conducted to 

validate the proposed method. Zhang et al. (2019) proposed 

a Faster R-CNN-based framework to track multiple vehicles 

on bridges to evaluate the load condition, as shown in Fig. 

12. Based on the detection results, image calibration was 

adopted to obtain vehicle parameters including vehicle 

length, speed, detailed lanes, etc. Eight types of vehicle 

images were selected as the dataset. 

Zhang et al. (2019) proposed a one-dimensional CNN-

based approach to assess the structural state by acceleration 

signals. A dataset for training, validation and testing was 

established from an indoor test of a bridge model, an 

outdoor test of a full-scale bridge model, and a test of an in-

service bridge. Kim and Sim (2019) proposed a deep  
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learning-based framework consisting of a Fast R-CNN and 

a region proposal network for the automated peak picking 

in the mode identification in frequency domain. An 

acceleration dataset was established from the model 

experiments of a simply supported beam and a simply 

supported truss, and the on-site test of a cable-stayed 

bridge. Fan et al. (2019) proposed an FCN-based 

architecture to reconstruct incomplete acceleration data of a 

pedestrian bridge monitored by wireless sensors. The 

training dataset was obtained from a long-term SHM 

system, and the testing dataset was generated by the 

processing of original data with different loss ratios. The 

reconstructed data was compared with the original one in 

the time and frequency domain for the performance 

evaluation of the proposed architecture. Li et al. (2019) 

proposed a modified VGG-16 and IPT-based framework to 

detect multiple parameters of ships coming towards bridges 

to prevent collision incidents. The modified VGG-16 

network was pre-trained and fine-tuned by the online ship 

images to coarsely detect and localize the incoming ships. 

IPTs were applied to calculate the ship parameters including 

width, length, velocity, etc. Liu et al. (2019) proposed a 

video frame and LSTM-based approach to measure the 

vibration frequency of multiple structures. The indoor beam 

test and in-service bridge test were conducted to validate 

the proposed method, and accelerometers were used to 

perform a frequency analysis in the conventional way for 

the comparison of performance. 

 
3.2.2 Buildings 

Rafiei and Adeli (2018) presented an unsupervised 

learning-based framework for the assessment of local and 

global conditions of structural systems via collected 

vibration response data. The effectiveness of the proposed 

method was verified by experimental data from a shaking 

table test. Lee et al. (2018) compared DNN architectures 

with different hidden layers, activation functions, and 

optimization algorithms to test the performance of different 

combinations. A truss structure was numerically analyzed, 

and the response was adopted as a training and validation 

dataset. Dick et al. (2019) developed a proof-of-concept  

 

 

deep learning and vision based system to assess the state of 

the security of the energy infrastructure. The improvement 

of robust assessment including the ground truth data of the 

fine grained, the centralization of the data, and iterative 

model modification was discussed. Wu and Jahanshahi 

(2019) addressed a deep CNN-based approach to estimate 

the dynamic responses of three systems. The capacity for 

prediction of the proposed CNN was compared with an 

MLP, and different noise levels were added into the 

acceleration data for comparative study. Oh et al. (2019) 

proposed a CNN-based architecture to predict strain levels 

of tall buildings under wind loadings. The training dataset 

containing displacements and wind speeds was collected 

from a wind tunnel test of a model of a steel structure. Lyu 

et al. (2019) proposed a deep belief network-based 

approach to assess the state of the health of offshore 

platforms. A model platform was fabricated and tested to 

collect the wave force, strain, and acceleration data to 

establish the dataset for the validation of the proposed 

method. 

 

 

4. Challenges and trends of the deep learning-based 
SHM strategy 
 

Deep learning-based approaches are growing rapidly 

and have been applied to a variety of SHM applications, 

including structural damage detection and structural 

condition assessment. However, some theoretical and 

technical challenges are still standing in the way of 

spreading the applications of deep learning-based 

approaches to the SHM of civil infrastructures. Several 

major challenges are presented as follows: 

(i) The dataset is extremely important in the training 

process of a DNN. For example, in the case of crack 

detection, a VGG-16 has more than 100 million parameters 

to be modified which requires thousands of labeled images 

for training. However, the images from inspectors are 

unlabeled and scattered at the hand of big or small 

inspection companies, and image sizes vary a lot depending 

on the digital cameras used. Also, the training dataset is 

 

Fig. 12 Faster R-CNN-based vehicle detection (Zhang et al. 2019) 
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expected to contain complicated real-world situations; 

otherwise misjudgment might occur during the testing of 

image classification from on-site inspections. Thus, a large 

amount of collecting, selecting, cleaning, and labeling work 

is inevitable for establishing an efficient image dataset. 

There are some techniques available to expand limited 

numbers of image data such as cropping, stretching, and 

adding salt and pepper noise. However, the image datasets 

for the training of DNNs for an SHM of civil infrastructures 

are still not enough. 

(ii) Over-fitting is also a problem that needs to be solved 

when millions of parameters are to be modified in a deep 

architecture. For instance, the lack of enough training 

samples for structural damage detection will lead to over 

extraction of irrelevant features such as environmental 

noise. Increasing the sample numbers by expanding 

techniques will not work efficiently if training samples 

cannot reflect the real-world situation well, especially for 

image-based structural damage detection under multiple 

environmental conditions. The existing techniques, e.g., 

dropout, batch normalization, data cleaning, etc., will help, 

but efficient measures are still needed. 

(iii) Interpretability is another problem troubling 

scholars and engineers for understanding the mechanism of 

deep learning-based approaches. The processing of DNNs is 

a black box which lacks of theoretical background and 

contains many kinds of uncertainties that cannot be clearly 

explained. For example, even though the decoding of 

feature maps in CNNs reveals that the CNN architecture 

will detect edges in the preliminary layers, the latter layers 

will eventually combine feature maps of edges to form 

motifs (LeCun et al. 2015). When it comes to designing a 

DNN for SHM application, problems such as what kind of 

kernels, how many layers or what kind of combinations 

should be adopted for efficient training and robust 

performance are still puzzling. To build a DNN with a 

satisfying performance, multiple times of training and 

validation are needed. 

(iv) The ability for generalization is also a problem 

requiring further investigation. The DNNs, after repeated 

training and validation, might perform well for a single 

purpose. For example, a network for the detection of steel 

cracks might not work well to detect concrete cracks. This 

is because the concrete surface will contain many kinds of 

noises, e.g., spalling and calcification, and its crack edge is 

not identical to that of steel. A neural network for the 

detection of wind data anomaly might fail in the anomaly 

detection for earthquake monitoring data due to different 

patterns of anomalies. Transfer learning is a good method 

for improving the generalization ability, but novel theories 

and algorithms are far from enough to better improve the 

ability for broader SHM applications. 

(v) Requirements for high performance hardware 

increase the cost for deploying deep learning-based 

approaches for SHM systems. To adequately train a DNN, 

repeated training with massive data is required. To store the 

massive data, especially images and videos, hard disks with 

a large volume are required. To implement the training 

process, multiple GPU, CPU and a large capacity memory 

are required. Extra computing and storage hardware is 

required, such as high performance workstations, servers or 

cloud computing platforms. Thus, DNNs with fewer 

parameters and efficient training strategies are needed to 

speed up the training process and reduce the cost for the 

deployment of deep learning-based approaches for SHM. 

Despite so many challenges in the development of deep 

learning-based approaches, they are still promising tools for 

SHM. As time goes by, datasets based on the real world 

situation will be established, and unsupervised training 

algorithms will be developed to fully make use of the data 

obtained from SHM systems. New model architectures such 

as the Capsule network will be developed to provide a 

better capacity for feature extraction and detection to deal 

with different SHM scenarios. Combination of deep 

learning-based approaches with mobile devices (UAV) will 

be developed to provide better on-site detection for all kinds 

of civil infrastructures. Besides, the deep learning-based 

approaches will be integrated into an SHM system to 

provide timely and accurate structural damage detection and 

condition assessment, and this will certainly benefit the 

long-term SMM. Meanwhile, cloud computing and big data 

will be adopted to process the tremendous accumulation of 

monitoring data for the realization of deep learning-based 

recognition and classification with a higher efficiency. To 

consolidate and enlarge the deep learning-based SHM 

applications, joint efforts are required from scholars and 

engineers of computer science, civil engineering, etc., to 

establish a complete chain of data collection, algorithm 

development, hardware development and field applications. 

Deep learning-based approaches will play a more important 

role in the field of SHM to fulfill more complicated tasks 

including multiple damage detection and evaluation, 

structural condition assessment, structural behavior 

prediction, big data mining, etc. 

 

 

5. Conclusions 
 

This paper presented an overview of the recent research 

and development of deep learning for the SHM of civil 

infrastructures. Based on the comprehensive investigation 

of deep learning-based approaches, cases of application, 

challenging issues, the following conclusions can be made: 

(i) the development of deep learning including novel 

architectures, efficient training and validation algorithms, 

new frameworks, etc., will provide easier and more 

powerful data processing approaches for scholars and 

engineers to deal with professional issues; (ii) the main 

applications of deep learning-based approaches for the 

SHM of civil infrastructures are structural damage detection 

and structural condition assessment. Among them, vision-

based applications draw great attention from the research 

community; (iii) overcoming challenges in the applications 

of the deep learning-based approaches to SHM requires the 

collection of specific datasets, the development of new 

architectures for better performance, and novel training 

strategies to release issues such as over-fitting and gradient 

vanishing. The deep learning-based approaches have been 

proven to have significant value for dealing with various 

kinds of SHM problems. With the development of new 
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algorithms and frameworks, the establishment of sufficient 

datasets, and the improvement of computing power, deep 

learning-based approaches will significantly promote 

advances in the SHM research and applications. 
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