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1. Introduction 
 

As a non-contact measurement method, machine vision 

and image processing have been widely used in structural 

health monitoring. For example, in the field of civil 

engineering, Ye et al. (2013, 2016a) developed a vision-

based system used for structural dynamic displacement 

measurement. The verification experiments were performed 

to measure the mid-span vertical displacement of the long-

span bridges during loading tests. 

Digital image correlation (DIC) is also one of the vision 

measurement methods based on speckle images, which is 

usually used for measuring material’s mechanical properties 

in experimental mechanics. It has been widely applied in 

mechanics, civil engineering, aerospace, biomedicine, and 

other disciplines. Aggelis et al. (2016) applied acoustic 

emission and DIC during four-point bending tests of large 

beams to follow the damage accumulation. Dai et al. (2017) 

investigated the bond behavior and buckling behavior of 

CFRP-steel composite members. Kumar et al. (2019) used 

digital single-lens reflex (DSLR) camera to do tension and 

fatigue tests on steel specimens. As a numerical method 

based on speckle images, the quality of speckle patterns has 

an important influence on the measurement accuracy (Hu et 

al. 2018). Therefore, problems such as what is a good 

speckle pattern, how to make a good speckle pattern, and 

how to adjust the calculation parameters to control the 

measurement accuracy according to the quality of the 

speckle pattern have attracted a large number of scholars. 
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Lecompte et al. (2006) thought the speckle pattern is 

composed of size and density of the particles and calculated 

the speckle size distribution by image morphology. 

Nevertheless, both in natural speckle pattern such as 

microscopic crystalline grain and rock fracture surface and 

artificial speckle by spraying paint, most particles are not in 

discrete state and have no distinct boundaries. Lin (2007) 

used full width at half maximum (FWHM) as average 

diameter of the speckle and calculated by the auto-

correlation function. Subsequently, some methods based on 

the grayscale of image were presented, including subset 

entropy (Sun et al. 2007), sum of square of subset intensity 

gradients (SSSIG) (Pan et al. 2008), mean intensity gradient 

(MIG) (Pan et al. 2010), mean subset fluctuation (Tao et al. 

2011) and Shannon entropy (Liu et al. 2015). These 

methods do operation directly on image grayscale and are 

often mentioned because of the convenience of calculation. 

However, Wang et al. (2009) derived interpolation function, 

noise, sub-pixel displacement and image subset grayscale 

are all the factors that affect the measurement accuracy. 

Dong et al. (2015) thought it is not simply considered that 

the larger the grayscale gradient, the higher the quality of 

speckle pattern. In the last few years, it has been believed 

that the quality of speckle images should be evaluated from 

multiple perspectives. Crammond et al. (2013) identified 

that pattern’s physical properties have a large influence on 

the measurement precision, and devised a morphological 

methodology using edge detection to evaluate the physical 

properties of different speckle patterns. Yu et al. (2014) 

considered the smooth transition of image gray gradient and 

introduced the mean intensity of the second derivative 

based on MIG. Reu (2014 and 2015) described four 

properties of a speckle including size, contrast, speckle edge 

sharpness, and speckle density and distribution. Dong et al. 

(2017) comprehensively summarized the classification, 
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preparation and evaluation methods of speckle patterns, and 

concluded that the quality of speckle patterns should not be 

evaluated with a single parameter. Su et al. (2016) analyzed 

the influence of interpolation function and speckle patterns 

on measurement accuracy in detail, stated that the 

measurement accuracy includes mean deviation and 

standard deviation, and then used the root mean square error 

(RMSE) to describe the overall accuracy. However, these 

two kinds of deviations may be in different orders of 

magnitude. 

In this paper, the average particle size and image 

sharpness are used to evaluate the quality of speckle 

images. Different from the above research, the former is 

calculated by a simplified auto-covariance function and the 

latter by focusing function. Appropriate particle size reflects 

the smoothness of speckle brightness and facilitates 

accurate sub-pixel interpolation; large image sharpness 

ensures prominent features and is conducive to the stable 

convergence of the iteration. The two parameters can be 

ultimately mapped on a physical model. 

 

 

2. Principle and methodology 
 

The calculation of digital image correlation includes 

correlation function, interpolation function, shape function 

and iterative method (Pan et al. 2009). The gray value and 

gray gradient at sub-pixel need to be continuously updated 

during the iteration process. This indicates that the 

calculation precision is directly related to the gray value 

prediction ability of the interpolation function at sub-pixel. 

Therefore, a good speckle pattern should help to provide 

accurate grayscale at sub-pixel. Moreover, in order to avoid 

the iteration falling into local minimum, there should be a 

great difference on the grayscale at different locations of the 

subset. 

In this paper, both the average particle size and image 

sharpness are used as two key factors to describe speckle 

patterns. The particle size affects the smoothness of the gray 

distribution of the image, and then determines the 

interpolation accuracy. If the particle size is too small, the 

intense gray fluctuation would weaken the grayscale 

prediction ability of interpolation function at sub-pixel. 

However, if the particle size is too large, the difference of 

gray level in the subset will not be obvious. The less 

information content of the subset may cause the iteration to 

converge to local minimum. So the image sharpness should 

be considered at the same time. 

 
2.1 A simplified auto-covariance function and 

Gaussian fitting to calculate the average particle size 
 

Typical speckle pattern is composed of a large number 

of small particles. After imaging by camera, the edges of 

particles are no longer sharp, but show smooth gray 

transition. The point spread function of the imaging system 

can be described by Gaussian distribution. Therefore, the 

speckle pattern have the characteristics of Gauss spot after 

imaging. 
 

Choose the speckle region on the original image

Calculate the half-autocovariance sequence by row

Average the sequences  to get the mean vector

Filter elements of the vector by descending order

Fit valid data with Gaussian function

Calculate the horizontal particle size
 

Fig. 1 Calculation process of the average particle size 

 

 

For the image with randomly and densely distributed 

speckle particles, a method by simplified auto-covariance 

function and Gaussian fitting is presented to calculate the 

average diameter of particles in the horizontal and vertical 

direction. Taking the horizontal size of the particles as an 

example, the calculation flow is shown in Fig. 1. After 

choosing the speckle region on the image, the specific steps 

are as follows: 

1) For grayscale data  1 2, , , ng g g g  of each row, 

Set  1 2, , , nx x x x , sample centralization

1

1 n

i i i

i

x g g
n 

   ; 

Set  1 2, , , nz z z z , 
1

1

1

n i

i j j i

j

z x x
 

 



  ; half-autocovariance 

sequence  1 2, , , nv v v v  can be obtained by 
1v z z . 

2) Average the sequences of all rows to get a mean 

vector w . Check the elements of w  in order. If the 

current element is positive and less than the previous one, 

put it into the vector y  orderly. Otherwise, stop 

examination. 

3) Assume that the final length of y is m+1. Set

 0,1, ,t m . Fit y and t to get a and b with Gaussian 

function  2expy a t b  . If the fitting deviation (RMSE) 

is larger than 0.05, remove the final element of y  and fit 

the function again. 

4) The value of t at 2y e is taken as the average 

particle size D:  2 2expa D b e  ,  2 lnD b a  . 

 

2.2 Focusing functions to calculate image sharpness 

 

Imagine that a camera is facing a plane with speckle 

patterns. When changing the focal length of lens 

continuously, the speckle image gradually ranges from 

blurred to clear. Therefore, speckle image is the 

combination of speckle pattern and imaging process. 

Naturally, the assessment of speckle images should be 

regarded as the evaluation of both “speckle” and “image”. 

The former has been evaluated by particle size. We use  

660



 

Assessment of speckle image through particle size and image sharpness 

 

 

 

 

focusing functions to evaluate the latter. 

As shown in Fig. 2, the commonly used evaluation 

functions of image sharpness are divided into four 

categories. 1) Grayscale fluctuation: grayscale jump 

intensely (large grayscale variance); 2) Grayscale gradient: 

texture is obvious (high gradient level); 3) Image entropy: 

information content is large (large entropy value); 4) 

Frequency spectrum: the high frequency component of 

image is prominent (large amplitude). 

All of them are consistent. A high quality speckle image 

has great diversity of grayscale and large information 

content. The distinct image shows clear texture and high 

contrast, which can be described by the grayscale gradient. 

In addition, the frequency is an indicator of the grayscale 

fluctuation in the image. The frequency spectrum can be 

obtained by the two-dimensional Fourier transform of the 

image. If there are a large number of bright pixels in the 

image of the frequency spectrum, the edges of the original 

image are obvious and the details are rich. The calculation 

formulas for image clarity are shown in Table 1 in the 

section 3.2. 

 

 

 

 

 

 

 

3. Numerical simulation and discussion 
 

Zhou et al. (2001) had designed a speckle pattern in 

which each speckle provides brightness for adjacent areas. 

The grayscale of each pixel is derived from the sum of the 

luminance projected by the surrounding speckles. Since this 

model is beneficial to produce speckle image whose 

deformation is controllable, it is used to generate speckle 

images and their deformed images for verification in this 

paper. The formulas for the initial and deformed images are: 
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(1) 

where D is the particle diameter, s is the total number of 

speckle particles, ( , )k kx y and
kA is the position and intensity 

of the k-th particle. u stands for translation in the horizontal 

direction. The resolution of all images is 800 × 800 pixels2. 

 

 

 

clear speckle image

(focusing function)

rich image details, high 

frequency component is 

dominating

large amount of image 

information, energy and 

entropy

 sharp edge,meticulous 

texture,large grayscale 

gradient

intense change of gray 

level, strong contrast and 

large variance

 

Fig. 2 Image sharpness evaluation 

 

Fig. 3 Calculation results of average particle size under different particle densities 
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3.1 Verify the calculation method of average particle 

size 

 

According to the above formula, the particle size D is 

set to 2~9 pixels to generate a series of speckle images. For 

each D, the validity of the calculation method for particle 

size is tested. Firstly, record the number of particles when 

MIG of the generated speckle image is maximum. 

Secondly, 21 speckle images are generated from a small 

particle number to the above number in the form of 

arithmetic progression. Then, noise with standard deviation 

of 4 is added to each speckle image. Finally, Calculate the 

average particle size of these speckle images by the 

proposed method. The calculation results are shown in Fig. 

3. The legend shows the number of particles and the 

corresponding MIG. 

The deviation in Fig. 3 is mainly derived from the 

conversion of double to uint8 when generating the speckle 

image. It can be seen that the simplified auto-covariance 

function can correctly calculate the average particle size 

under different particle densities. The calculation results are 

still correct when inverting the value of the speckle images. 

It is also shown that with the increase of particle size, the 

maximum MIG decreases, which indicates that the size and 

the sharpness of particles are contrary to a certain extent. 

 

3.2 The equivalence of the calculation method of 
image sharpness 
 

In this paper, we believe that subset entropy (Sun et al. 

2007), mean intensity gradient (Pan et al. 2010), mean 

subset fluctuation (Tao et al. 2011) and Shannon entropy 

(Liu et al. 2015) are the evaluations of the image sharpness 

essentially. In Table 1, two typical focusing functions for 

image sharpness evaluation are added. These six functions 

are used to calculate the image sharpness of the 21 speckle 

images generated in the section 3.1 (D=2). For the two local 

evaluation parameters SubF and SubE, the whole image is  

 

 

regarded as a subset. When calculating gray gradient in 

horizontal and vertical directions (
xf and

yf ), central 

difference and backward difference are used in MIG and 

SMD, respectively. W×H is the size of the speckle region 

here refers to image size. 

The results of each calculation method are normalized 

independently. Then draw curves in Fig. 4. It can be seen 

from the curves that these evaluation functions are 

equivalent. All of the four methods in the above literatures 

evaluated the sharpness of speckle image. Therefore, image 

sharpness can be calculated by focusing evaluation 

function, such as frequency domain evaluation function 

LFT and Sum of difference function SMD. SMD is 

recommended, for it works well with small computation. 

 

 

 

Fig. 4 Sharpness evaluation functions under different 

particle densities 

 

 

 

Table 1 Formulas for calculating the image sharpness 

Evaluation function Expression 

Mean subset fluctuation 

1 1 1 1 1 1

2 2 1 1 1 1

1 1
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0
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3.3 The influence of evaluation factors on the 

accuracy 
 

Generate 21 speckle images by translating 0.05 pixels 

gradually in the horizontal direction. Analyse the influence 

of each factor on the measurement accuracy based on single 

variable principle. Statistics on the calculated displacement 

includes mean deviation 
je  and standard deviation 

j  are 

as follows 

2

1

1
( )

1

j j j

N

j ji j

i

e u u

x u
N




 


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


 
(2) 

where 

1

1 N

j ji

i

u x
N 

  ,
jix is the calculated displacement of 

the i-th node on the j-th speckle image, 
ju is the theoretical 

displacement of the j-th speckle image, N is the total 

number of nodes. 

In this paper, sum of squared differences (SSD) with 

linear intensity coefficients is used as correlation function 

(Pan et al. 2009); bilinear interpolation and first order shape 

function are chosen. The subset size is 27×27 pixels, and 

the step length is 15 pixels. The total number of compute 

nodes is 2256. The termination condition of iteration is that 

the change of each coefficient is less than 0.01. Items are as 

follows, whose results are shown in Fig. 5 and Fig. 6. 

1) Mean intensity gradient is same (MIG=21) while the 

particle size different (D=2, 3..., 9) 

2) The particle size is same (D=4) while mean intensity 

gradient different (MIG=22, 29, 36, 43) 

From Figs. 5 and 6, it can be seen that the average 

particle size mainly affects the mean deviation. When MIG 

is same, the smaller the particle size, the larger the mean 

deviation. The image sharpness mainly affects the standard 

deviation. When the particle size is same, the clearer the 

image, the smaller the standard deviation. 

 

 

 

 

The average particle size affects the smoothness of gray 

distribution. Large average particle size makes the 

fluctuation of the grayscale slow, so interpolation is more 

accurate at sub-pixel. Large image sharpness means large 

gray change, which can ensure the iteration with global 

convergence. However, it is negative correlation between 

particle size and image sharpness. With the increasing of 

particle size, the maximum image sharpness decrease. For 

the accuracy of measurement, when the image sharpness is 

large, the intense fluctuation of the grayscale distribution 

reduces the interpolation accuracy. Then a higher-order 

interpolation function is needed. In a comprehensive 

consideration, first the average particle size should be in 

3~6 pixels, and then the larger the image sharpness, the 

higher the quality of the speckle image. If MIG is used to 

evaluate the image sharpness, Fig. 3 provides the best 

sharpness corresponding to each particle size for reference. 

For other focusing functions, the best sharpness can be 

easily obtained by numerical simulation. Because the 

interpolation function works separately in the horizontal 

and vertical directions during correlation matching, the 

particle size in the horizontal direction affects the accuracy 

of displacement calculation in the corresponding direction. 

From view of this paper, Gaussian filtering can smooth 

the image, so that the average particle size of the speckle 

image after Gaussian filtering is increased, which is 

conducive to accurate interpolation. However, Gaussian 

filtering causes the image details lost slightly and the image 

sharpness smaller. Therefore, Gaussian filtering before 

correlation calculation will reduce the mean deviation, 

while increase the standard deviation. When the speckle 

image has noise and average particle size is small, the 

appropriate filter parameters according to the proposed 

evaluation method can improve the overall measurement 

accuracy. 

 

  
(a) Mean deviation (b) Standard deviation 

Fig. 5 The deviations under different particle diameters (MIG=21) 
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4. Physical model 
 
As shown in Fig. 7, a physical model from speckle 

projection to image acquisition is established to further 

explain the proposed view. Set D = 2 and s = 2.4e5 to 

generate a speckle image. Convert the image to binary one, 

and then engrave it on the glass.  

 

 

Fill light

Lens group

Aperture

Speckle slide

Left 

camera
Speckle 

projector

Measured surface

Lens group

Aperture

Control of particle 

size and image 

sharpness

Speckle 

pattern
Speckle 

image

Projection

Flash 

lamp

Right 

camera

Photoreceptor

 chip

 

Fig. 7 Physical model for producing of speckle image 

 

 

 

 

 
The focal length of the camera lens controls the clarity of 

imaging, while the focal length of the projector lens 

controls the size and sharpness of the particles. In practical 

application, in order to get high quality speckle image, 

firstly adjust the focal length of the camera lens to make the 

image clearest, and then adjust the focal length of the 

speckle projector lens to make the particle size and 

sharpness appropriate. 

 
 
5. Application 

 
5.1 Evaluation and adjustment of projective speckle 

image 
 

As shown in Fig. 7, the speckle pattern is projected on 

the measured surface. The surface profile of the measured 

object can be obtained by the 3D digital image correlation. 

The physical model has been applied in body scanning. It is 

able to resist the interference from the body’s subconscious 

tremble because of its rapid measurement. As the contour of 

the measured surface is complex, it is necessary to get high 

quality speckle image for stereo matching. In Fig. 8, the left 

column is the images obtained after adjusting the focal 

length of the projector lens, and accordingly the right 

column is a gray distribution of 80×80 pixels on the white 

paper. Data below the picture are the average particle size in 

the horizontal and vertical direction and image sharpness on 

the feature region. Based on the calculation results, the 

speckle quality in Fig. 8(d) is the best. 

To verify the quality of speckle images, there are 20×20 

nodes on the binocular speckle images under each 

projection situation are matched. Left image point 

( , ,1)l l l T

i i im u v and right image point ( , ,1)r r r T

i i im u v  are a 

pair of corresponding image points. The matching errors 

can be compared according to epipolar geometry. In each 

case of projection: Estimate the fundamental matrix F  by 

random-sample consensus (RANSAC) from corresponding 

image points. Then matching error can be defined as 

  
(a) Mean deviation (b) Standard deviation 

Fig. 6 The deviations under different MIG (D=4) 
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lT r

i im m F . After comparison, the deviation in (d) is the 

smallest. It confirms that the matching accuracy in (d) is the 

highest. Thus, the quality of speckle image in (d) is the best. 

 

 

 

 

 

5.2 Evaluation and improvement of integrated 
speckle image 

 
Both artificial and natural speckle patterns are integrated 

speckle patterns. They are mainly used to obtain the 

deformation field on the measured surface under force. 

According to the proposed method, the evaluations of  

 

 

 

 
(a) 7.4, 7.2, 10.3 (b) 5.3, 5.7, 17.5 

 

 

 

 
(c) 4.7, 4.7, 22.8 (d) 3.9, 4.3, 28.4 

Fig. 8 Speckle images with different size and sharpness and its local gray distribution: Data below the picture are the 

average particle size in horizontal and vertical direction and image sharpness on the feature region 
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speckle patterns from different experiments are shown in 

Fig. 9. The meaning of the data are consistent with Fig. 8. 

The good speckle image are f, e, b and a, while the bad are 

c and d. 

For the limitation of space, only the computational 

process of horizontal particle size in Fig. 9(c) is shown in 

Fig. 10. In Fig. 10 (a), the first six data of mean vector w  

are marked as '+' for clarity. After filtering, there are 4 valid 

data left. It can be seen from Fig. 10(b) that the deviations 

of fitting with Gaussian function is small, which proves that 

the computation method is practical for speckle images with 

random particles. 

 

 

 

The proposed method can guide the design of the 

template for thermal transfer (Mazzoleni et al. 2015, Chen 

et al. 2015, Ashrafi et al. 2016). According to the size of the 

measured surface and the camera resolution, the delimiter 

of the solid circular is increase the density of the particles 

gradually to generate speckle patterns. The speckle patterns 

is the best when the sharpness is the largest. 

The method can also optimize the experimental 

conditions. It was demonstrated that illumination had a 

critical effect on the measurement results of the vision-

based system (Ye et al. 2016b). Spray white and black paint 

on the white paper to make speckle pattern. Hold the 

distance unchanged between the industrial camera and 

(a) 3.8, 3.8, 17.6 (b)  3.5, 3.2, 20.6 (c) 4.0, 3.8, 6.1

(d) 2.6, 2.7, 21.2 (e) 5.6, 5.3, 17.1 (f) 4.6, 5.0, 26.5  

Fig. 9 Evaluations of speckle patterns from different experiments 

  

(a) Mean vector w (b) Fit valid data by Gaussian function 

Fig. 10 The calculation of particle size in Fig. 9(c) by half-autocovariance and Gaussian fitting 
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speckle pattern. Take speckle images in fixed focus under 

illumination with different brightness. Calculate the particle 

size of the collected images. The calculation results indicate 

that light intensity on the measured surface does not change 

the average particle size of the speckle image, but has a 

great influence on the image sharpness. Therefore, in actual 

measurement, sufficient, even and invariable illumination 

should be provided to improve the image sharpness, which 

can reduce the standard deviation. If average particle size is 

small after imaging, by changing the resolution of camera 

and adjusting the focal length of the lens and shooting 

distance, particle size can be increased and the mean 

deviation reduced. 
 
 
6. Conclusions 

 

In this paper, based on texture features and imaging 

process, a comprehensive method for evaluating the quality 

of speckle patterns is proposed, verified by numerical 

simulation and then applied in engineering practice. The 

main conclusions are as follows: 

1) The quality of speckle patterns should be evaluated 

by both average particle size and image sharpness. The two 

evaluation parameters are calculated by a simplified auto-

covariance function and focusing evaluation function, 

respectively. 

2) The average particle size affects the grayscale 

prediction ability of the interpolation function at sub-pixel. 

In a certain range, the larger the particle size, the more 

smooth the gray distribution of the speckle image. Thus, the 

interpolation result is more accurate and the mean deviation 

is smaller. The image sharpness determines information 

content of the subset. The clearer the texture, the more 

stable the correlation matching and the smaller the standard 

deviation. 

3) There is a negative correlation between the average 

particle size and the image sharpness. Large particle size 

makes the gray change of the image slow and the grayscale 

gradient small, and then the image sharpness is weak. 

Therefore, the mean deviation and the standard deviation 

are the two aspects of the accuracy evaluation and are 

negatively correlated. 

4) High quality speckle image can be defined like this: 

On the premise of average particle size with 3~6 pixels, the 

greater the image sharpness, the higher quality of speckle 

image. The former ensures the smooth gray distribution, 

which is conducive to accurate interpolation. The latter 

ensures that the subset contains sufficient information to 

make iteration stable. 

5) The evaluation method is mainly used to guide the 

preparation of speckle patterns and adjustment of the 

experimental conditions in contour and deformation 

measurement. In contour measurement, to adjust each 

component of speckle projection device can optimize the 

speckle patterns. In deformation measurement, to select the 

proper focal length of the lens and camera resolution and 

provide adequate lighting can improve the accuracy of 

measurement. To design the template for thermal transfer, 

maximize the image sharpness after setting the proper 

particle size. 

Finally yet importantly, from the perspective of texture 

image, gray-level co-occurrence matrix (GLCM) is 

expected to be used in the further study. 
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