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1. Introduction 
 

In this study, a Bayesian dynamic linear model based on 

the structural health monitoring data is presented for the 

stress response prediction and load effect separation of a 

revolving auditorium structure. This structure is a steel truss 

structure for outdoor musical performances in the area of 

Mt. Wuyi in China. It can revolve on a track system to 

provide 360-degree panoramic views of the stage show and 

background natural landscapes. An extensive structural 

health monitoring (SHM) system, primarily consisting of 55 

wireless channels of wireless strain sensors, was installed 

after the completion of construction in 2015 to assure the 

safety of the audience, which can reach a maximum 

capacity of 2000 people, as well as the integrity of the 

structure (Luo et al. 2014). This structure is subjected to 

various loads, such as structural weights, equipment load, 

audience load, temperature load, operational load, 

movements of a large number of performers, and to harsh 

outdoor environmental conditions. 

In recent decades, there have been numerous studies on 

various types of SHM systems with various kinds of sensors 

and their applications to civil engineering structures 

(Siringoringo and Fujino 2009, Rice et al. 2010, Pakzad 

2010, Zonta et al. 2010, Min et al. 2010, Shen et al. 2013, 

Wang et al. 2018, Wu et al. 2018). Vibration data such as 

accelerations have been commonly used for the assessment  
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of global behavior and damage detections (Hua et al. 2009, 

Cho et al. 2010, Shinozuka et al. 2010, Ni et al. 2011, Kim 

and Lynch 2012, Kim et al. 2016). However, static data 

such as strains, have been widely used in local monitoring 

for the damage detection and the condition assessment on 

structural members and joints (Chen et al. 2004, Strauss et 

al. 2008, Catbas et al. 2008, Zhu and Frangopol 2013, 

Zhang et al. 2017, Wan and Ni 2018a). 

The condition assessments of structures have 

traditionally been carried out by the model-based approach, 

such as finite element (FE) model updating (Brownjohn et 

al. 2003, Skolnik et al. 2006, Beck 2010, Chung et al. 

2012). However, the revolving structure is subjected to 

various uncertainties in the loading, particularly the 

audience load and the wheel-rail contact conditions during 

and after the rotating operations. Hence it is difficult to 

create a reliable FE model for the structure while in service. 

A data-driven condition assessment approach is taken in this 

study. There are many studies that have examined this 

approach, for instance time series methods such as the 

autoregressive model (Noh and Nair 2009, Gul and Catbas 

2009), the autoregressive moving average model (Zheng 

and Mita 2008, Carden and Brownjohn 2008), the machine 

learning algorithms (Yun and Bahng 2000, Lee et al. 2005, 

Min et al. 2012, Lin et al. 2017, Kim et al. 2018), the 

Gaussian process-based Bayesian model (Wan and Ni 

2018a, b), and the Beyesian inference (Jin 2019). The main 

procedure of those methods is to build a proper prediction 

model for the structural response, and then compare the 

predictions with the current measurements. The occurrence 

of outliers indicates abnormal changes in the structure.  
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address the temporary audience load effect, improved inference for the variance of observation noise to be updated continuously, 
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the root mean square errors, standard deviations, and 95% confidence intervals of the predictions. Bayes factors are used for 

evaluating the probability distributions of the predictions, which are essential to structural condition assessments, such as outlier 
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Accurate predictions of structural responses for different 

kinds of loads are highly essential for reliable condition 

assessment of the structures in-serve. However, structures 

are always under varying environmental and operational 

conditions. It has been often reported that the structural 

response changes caused by environmental loads (e.g., 

temperature) can conceal the damage-induced changes 

(Sohn 2006, Xu et al. 2010, Xia et al. 2012). If those load 

effects are not fully understood, false structural condition 

assessment may occur. Many studies have been focused on 

separation of the load effects and extraction of the 

environmental effects to have a reliable assessment of the 

structural condition (Jin et al. 2015, Kromanis and 

Kripakaran 2016, Zhu et al. 2018, Zhu et al. 2019). 

The main objective of this study is to develop a data-

driven method for the prediction of stress response and the 

separation of various load effects for the revolving 

auditorium structure. A Bayesian dynamic linear model 

(BDLM) (West and Harrison 1997) is employed in which 

the predictions for the responses and the state variables 

representing various load effects can be updated based on 

the new monitoring data at each time step. The BDLM is 

capable of modeling structural behavior under operational 

conditions by including various components, such as trend, 

seasonal, and regression components. There have seen a 

large volume of research works on the BDLM for various 

applications in the SHM field, such as prediction of 

structural performance (Wang and Liu 2010), modeling of 

real-time structural response and external effects (Goulet 

2017, Goulet and Koo 2018, Wang et al. 2019), and  

detection of unexpected changes (Zhang et al. 2018).  

 

However, the BDLM variants used in the above studies are 

not suitable for the structures subjected to a large-scale 

temporary load (such as the audience load in this study). 

Furthermore, those models treat the variance of the 

observation noise as a constant value, which is not 

reasonable to the present structure subjected to various 

uncertainties related to environmental and operational 

conditions. Hence, a novel BDLM needs to develop to 

better characterize the temporary audience load effect and 

the uncertainty related to the daily revolving operation of a 

revolving auditorium. 

Three improvements are introduced to the BDLM for 

the revolving auditorium in this study. First, a classificatory 

regression BDLM is employed to address the unknown 

temporary audience load effect. Then, the variance of 

observation noise is treated as a random variable and 

updated along with other random variables using the 

Bayesian inference at each time step. Finally, component 

discount factors are introduced to the covariance matrix of 

the system noise to address the different uncertainties in 

each state parameter, so that the load separation result can 

be improved. Effects of those improvements are evaluated 

regarding the root mean square errors, standard deviations, 

and 95% confidence intervals of the predictions. Bayes 

factors are used for evaluation of the probability 

distributions of the predictions. Verification of the present 

BDLM is successfully carried out using the simulation data 

and the real monitoring data obtained from the long-term 

online SHM system on the structure. 

 

 

 

 
(a) Revolving structure and its drive system 

  
(b) Photo of revolving structure (c) Photo of wheel-rail system 

Fig. 1 Revolving structure and its wheel-rail system 
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2. Revolving auditorium and its monitoring system 
 

2.1 Revolving auditorium 
 

In this study, the response prediction and load effect 

separation are carried out on a large revolving structure using a 

Bayesian dynamic linear model. The structure is an auditorium 

for outdoor musical performances, Impression Dahongpao, in 

the area of Mt. Wuyi in China. As shown in Fig. 1, the 

auditorium revolves on 4 circular steel rails. It is driven by a 

hydraulic motor drive system and has a maximum rotation 

speed of 1.2 °/𝐬. During the show, it carries as many as 2000 

audience members and provides 360-degree views of the stage 

show and the background natural landscape. The main 

structure of the auditorium is a steel truss structure, which has a 

maximum height of 10.88 m, a diameter of 46.6 m, and a 

weight of 520 tons. More details about this structure can be 

found in the reference (Luo et al. 2014). 

 

 

 
 
2.2 Wireless monitoring system 
 

A long-term wireless SHM system has been installed on 

this structure for online monitoring by Zhejiang University 

(Luo et al. 2014). Similar SHM systems have been used for 

several other large-scale structures (Shen et al. 2013, Zhang et 

al. 2017). The wireless system is suitable for this revolving 

auditorium because it does not need to consider wiring 

problems in the rotating of the structure. Fig. 2 shows the 

wireless sensor node, sensor installation, and the wireless 

monitoring system. The measured strain and temperature data 

are transmitted to the base station through wireless nodes. After 

finishing measurements at each time point, all of the monitored 

data are uploaded to the monitoring cloud database, and then 

displayed at the cloud-based websites and the monitoring 

center at Zhejiang University. 

There are a total of 55 vibrating wire strain sensors 

installed on the main structure, as shown in Fig. 3. Among  

    
(a) Wireless sensor node (b) Sensor installation 

 
(c) Wireless monitoring system 

Fig. 2 The wireless monitoring system of revolving auditorium 

 

Fig. 3 Layout of strain sensors on the revolving structure 
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them, 34 are installed on column members, 12 are on beam 

members, and 9 are on diagonal members. Strain and 

temperature are measured 8 times at every 3 hours each day, 

and the strain data are converted into stresses. The 

measurement at 21:00 is during the musical performance; 

therefore, the last monitoring data on each day include the 

audience load effect. The monitoring data at 6 big red points 

marked in Fig. 3 are analyzed for the response prediction and 

load effect separation in this study. C4, C18 and C25 are 

column members, B42 is a beam member, and D45 and D50 

are diagonal members. Fig. 4 shows the stress and temperature 

data at C25 during a period of 16 August – 5 September 2017. 

The stress responses are mainly influenced by the temperature 

change and the audience loads at the end of the days. 

 

 

3. Methodology 
 

3.1 Bayesian forecasting and dynamic linear model 
 
3.1.1 Dynamic linear model 
The dynamic linear model (DLM) is commonly used for 

time series analysis in Bayesian forecasting. If    denotes 

the observation variable at time t and θt denotes the n × 1 

state vector, the general DLM is defined as (West and 

Harrison 1997) 

Observation equation 

t t t ty  F θ ,    ~ [ , ]t tN O V  (1) 

System equation 

1t t t t θ G θ ω
,   

~ [ , ]t tNω O W
 (2) 

Initial information 

0 0 0 0( | ) ~ [ , ]D Nθ m C
 

(3) 

where    and θt are a random variable and a vector; 𝜈  is 

the observation noise that represents the measurement error; 

𝝎  is the system noise or modeling error that is treated as a 

stochastic change in the state vector θt; 𝜈  and 𝝎  are 

generally assumed as normal (Gaussian) random variables 

with zero means and variance Vt and covariance matrix Wt; 

Ft (n × 1) is the known observation vector; and Gt (n × n) 

is the known state transition matrix. The initial distribution 

for θt at time 0 may be determined based on the information  

 

 

from the past, as m0 and C0 are the mean value and 

covariance matrix, respectively. With Eqs. (1) and (2), the 

updating relationship between the measurement and 

unknown state parameters can be obtained. 

There are many different forms for the DLM, such as a 

trend model, regression model, season model, and their 

combinations (Goulet 2017). The regression DLM is used 

as the basic DLM for the revolving auditorium in this study, 

which is defined as follows 

Observation equation 

t t t t ty x    
,  

~ [0, ]t tN V
 (4) 

System equation 

1

t t

t t

 

 


   
     
   

θ ω

,  
~ [ , ]t tNω O W

 

(5) 

where    is the observed structure response at time t; 𝛼  

denotes the basic structural response due to the self-weight 

and dead loads; 𝑥  is a measurable regression variable 

related to a time-varying load such as temperature; and 𝛾  
is a regression parameter for 𝑥 . Therefore 𝛾 𝑥  represents 

the structure response caused by 𝑥 . In Eqs. (4) and (5), 𝐹  

and 𝐺  are taken as 𝐹 
′ = 〈1, 𝑥 〉  and G = 𝐼(2×2) . The 

state parameters 𝛼  and 𝛾  will be updated and the 

posterior probability distribution will be estimated based on 

the newly monitored data    at each time step. 

 

3.1.2 Bayesian forecasting 
The posterior probability distributions for the state 

parameters at t and the distribution for the predicted 

structural response at the next time step t+1 can be obtained 

by Bayesian inference. The inference procedures of the 

general Bayesian dynamic linear model (BDLM) can be 

summarized as (West and Harrison 1997) 

(a) With posterior distribution for θt-1: 

-1 1 1 1| ) ~ [ , ]t t t tD N  (θ m C , where Dt-1 denotes the past 

observations up to     ; and mt-1 and Ct-1 are based on the 

previous inference results at t-1. 

(b) The prior distribution for θt at t can be obtained as 

1( | ) ~ [ , ]t t t tD Nθ a R , where 
1t t ta G m and 

1t t t t t
 R G C G W . 

 

 

Fig. 4 Examples of measured stress and temperature data at C25 
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(c) A one-step forecast distribution for    can be 

estimated as 
1( | ) ~ [ , ]t t t ty D N f Q

, where 
t t tf  F a  

and t t t t tQ V F R F . 

(d) With new observation    at t, the posterior 

distribution for θt can be obtained as ( | ) ~ [ , ]t t t tD Nθ m C , 

where 
t t t te m a A ; 

t t t t tQ  C R A A ; 1

t t t tQ A R F ; 

and the one-step forecast error 
t t te y f  . 

 

3.1.3 Load effect separation 
After obtaining the posterior distribution of each state 

parameter, the posterior distribution of the component 

response can be obtained by model decomposition. If   𝑖  

denotes the structure response caused by the i
th

 load, then its 

posterior distributions are as follows 

ˆ ˆ ˆ~ [ ,    ]ti ti t ti t tiy N  F m F C F
 

(6) 

ˆ 0, 0, ,0, ,0ti tiF   F  
(7) 

where 𝒎  and 𝑪  are the posterior mean and covariance 

of the state vector; �̂� 𝑖  is a column vector, whose i
th

 

element 𝐹 𝑖 is equal to the i
th

 element of the observation 

vector 𝑭 , and the remaining elements are 0. With the 

formulation above, the different load effects can be 

separated from the monitored structure response. For 

example, the environmental load influence can be separated 

from the response of the structure. Then by eliminating the 

environmental load influence, the structure change or 

damage can be identified more clearly. At the same time, 

the effect of the environmental load can be analyzed 

accurately. 

 

3.2 BDLM for the revolving auditorium 
 
3.2.1 Classificatory regression BDLM 
If the wheel-rail influence is considered to be the 

uncertainty, the revolving auditorium is mainly subjected to 

basic, temperature, and temporary audience loads. However, 

the audience load during the performance is very difficult to 

measure; hence, the regression BDLM defined by Eqs. (4) 

and (5) is modified as a classificatory regression model in 

this study. By introducing a classificatory regression 

variable 𝑧  as 

1,    under the temporary load

0,              no temporary load
tz


 


 (8) 

a classificatory regression BDLM is defined as 
Observation equation 

1, ,t t t t t t t t t t

t

y x z x z



     



 
 

        
 
   

(9) 

System equation 

 

 

1

t t

t t

 

 

 


   
   

     
   
   

θ ω

 

(10) 

where 𝜆  is the temporary load effect, 𝜽 
′ = 〈𝛼 , 𝛾 , 𝜆 〉, 

and 𝑭 
′ = 〈1, 𝑥 , 𝑧 〉 . With the classificatory regression 

BDLM, the temporary load parameter 𝜆  will be updated 

along with the others (𝛼  and 𝛾 ) based on the observation 

  . However, when there is no temporary load, the 

prediction model becomes an ordinary regression BDLM 

and the parameter 𝜆  is no longer updated. This 

classificatory regression BDLM can also be used for other 

temporary loads, such as snow load. 
 

3.2.2 Improvement for Vt estimation 
The variance of the observation noise Vt, which is to be 

predescribed, will directly influence the predicted variance 

of   . However, it is very difficult to estimate it in real 

structure monitoring. Therefore, in this study, Vt is 

considered as a random variable and estimated during the 

forecast inference. According to Bayes’ theory, the variance 

of a normal random variable follows an inverse-gamma 

distribution, whereas its mean value follows Student’s t-

distribution (Lindley 1972). The forecast inference 

procedure by treating Vt as a random variable can be 

summarized as follows (West and Harrison 1997): 

(a) Posterior distribution at time t-1 

1 1 1 1( | ) ~ [ / 2, / 2]t t t tV D IG n d     
(11) 

1 1 1 1( ) ( / 2) / ( / 2 1)t t t tS E V d n       
(12) 

11 1 1 1( | ) ~ [ , ]
tt t n t tD T
   θ m C

 
(13) 

where Vt-1 is the variance of the observation noise 𝜈   , 

which follows the inverse gamma distribution with the 

shape and scale parameters 𝑛   /2 and 𝑑   /2; 𝑆    is 

the expected value of V t-1; and 𝑛    is the number of 

degrees of freedom of Student’s t variable 𝜽   . 

(b) Prior distribution at time t 

11( | ) ~ [ , ]
tt t n t tD T
θ a R

 
(14) 

where 1 ttt mGa  and ttttt WGCGR  1 . 

(c) One-step forecast distribution of    

11( | ) ~ [ , ]
tt t n t ty D T f Q
  

(15) 

where ttt aFf   and 1 ttttt SFRFQ . 

(d) Posterior distribution at time t 

( | ) ~ [ / 2, / 2]t t t tV D IG n d
 

(16) 

( ) ( / 2) / ( / 2 1)t t t tS E V d n    (17) 
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( | ) ~ [ , ]
tt t n t tD Tθ m C

 
(18) 

where 
2

1 1 /t t t t td d S e Q   ; 
1 1t tn n   ; t t te y f  ; 

t t t te m a A ; 
1

t t t tQ A R F ; and

1( / )( )t t t t t t tS S Q
 C R A A . 

In this inference procedure, St is the posterior estimation 

for the observation error variance Vt, which is continually 

updated along with other parameters. It can be seen from 

Eqs. (15) and (18) that St directly affects the results of 𝑄  

and 𝑪 , which are covariances of the predicted values for 

   and θt. 

 
3.2.3 Component discount factors for 𝑾  
The covariance matrix of the system noise 𝑾 , which is 

also to be predescribed,  will determine the level of 

stochastic change in the state vector θt. The discount factor 

𝛿 (West
 
and Harrison 1997) has been customarily applied 

to the system covariance Wt as 

1 (1 ) /t t t t  
 W G C G

 
(19) 

Then, Rt in Eq. (14) becomes 

1 1 /t t t t t t t t  
   R G C G W G C G

 
(20) 

Discount factor δ ∈ (0,1]  denotes the ratio of the 

covariance of the state vector θt before and after considering 

the system noise 𝝎 . If 𝛿 = 1 , 𝑾 = 0  and the state 

parameters do not change, which means the BDLM is static. 

The smaller 𝛿 is, the larger Wt is, which means that the 

state vector is subjected to a greater change. Usually, 𝛿 is 

determined by a parametric analysis. In real structures, the 

state parameters may have the different variations. For 

example, a state parameter 𝛼  for the basic static load may 

be almost constant, while other parameter 𝜆  related to 

temporary audience load varies significantly. Therefore, co

mponent discount factors are introduced for Wt in this 

study as 

11, 1 1

22, 2 2

33, 3 3

(1 ) / 0 0

0 (1 ) / 0

0 0 (1 ) /

t

t t

t

P

P

P

 

 

 

 
 

  
  

W

 

(21) 

where 𝑃𝑖𝑖,  is the i
th

 diagonal element of 𝑷 = 𝑮 𝑪   𝑮 
′ ; 

𝛿𝑖  is the component discount factor for the i
th

 state 

parameter defined in Eq. (10). 

 

3.3 Performance indices 
 

The performance of the BDLMs is evaluated using two 

indices i.e., the root mean square error and the Bayes factor. 

The root mean square error (RMSE) of the prediction is 

defined as 

2

1
( )

tn

t tt

t

y f
RMSE

n







 

(22) 

where    is the measured structural response, and 𝑓  is 

the predicted value as in Eq. (15). The RMSE denotes the 

accuracy of the predicted mean value.  

The Bayes factor (Jeffreys 1961) is used to compare the 

predicted probability density functions (PDF) for two 

models M1 and M0. If 𝑝 (  |𝐷   ) and 𝑝0(  |𝐷   ) are 

the PDF values of M1 and M0 at   , the Bayes factor for M1 

versus M0 is defined as 

1 1

0 1

( | )

( | )

t t
t

t t

p y D
H

p y D







 

(23) 

If 𝐻 > 1, M1 gives a higher probability density for    

than M0, which means M1 is better for    than M0.  

For the overall model assessment for tn time steps, the 

cumulative Bayes factor is defined assuming independent 

observational noise as 

1 1 1 0

1 0 1 1 0

( , , , | )
( )

( , , , | )

nt

t t
n r

r t t

p y y y D
CH t H

p y y y D



 

 
 

(24) 

where 𝐶𝐻(𝑡𝑛) denotes the overall prediction performance 

of M1 at 𝑡𝑛 relative to M0. Eq. (24) can be changed into the 

log-cumulative Bayes factor at time t as 

1

(t) log[ ( )] log( )
t

r

r

LCH CH t H


 
 

(25) 

If 𝐿𝐶𝐻(𝑡)  is increasing with time, which means 

log(𝐻𝑟) > 0, M1 can be judged to be better than M0. 

 
 

4. Simulation analysis for verification 
 

4.1 FE model and response simulation 
 
For stress response simulation, an FE model was 

constructed using the ANSYS package based on the design 

information of the auditorium structure as shown in Fig. 3. 

Beam and truss elements are used for modeling the steel 

members with density of 7.9×10
3
 kN/m

3
 and elastic 

modulus of 2.06×10
11

 Pa. The spring elements are used for 

modeling wheel-rail boundary conditions. Considering the 

outer rubber layer of a steel wheel, its stiffness is 

approximately taken as 1×10
9
 N/m (equivalent to a similar 

rubber support) in the vertical direction. On the other hand, 

it is taken as 1×10
5
 N/m in the circular and radial directions, 

so that the rotation (revolving) frequency of auditorium 

structure can be equivalent to the measured value. There are 

a total of 1171 nodes and 2964 elements. Three different 

load sequences containing 160 data points for 20 days are 

applied to the FE model and the stress responses are 

obtained 8 times a day, similar to the monitoring schedule 

for the real structure. Load 1 is the basic load consisting of 

the self-weight of the structure and uniform static load on 

the auditorium floor. The uniform static load is assumed to 

have a normal distribution of N(1.5, 0.015) in kN/m
2
. The 

mean value of 1.5 kN/m
2 

is the load used in the design for 

the self-weight of the floor, seats and other equipment. The 

standard deviation of 0.015 kN/m
2
 is used to consider the  
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uncertainty induced by the wheel-rail contact condition. 

Load 2 is the temperature load shown in Fig. 5(a), which 

was defined based on the real temperature measurement 

shown in Fig. 4. Load 3 is the uniform audience load on the 

floor, as shown in Fig. 5(b), which is applied only at the 

time instance of 21:00 on each day. It was obtained based 

on a rough estimation of the number of audiences on each 

day. The stress responses were simulated on 6 members 

marked in Fig. 3, and used to build the BDLM. 

Measurement noises are added to the simulation data, which 

are assumed to be white noises with zero means and 

standard deviations with 20% level of the RMS values of 

the simulated responses. The noise level was approximately 

estimated based on the real measurement data, whereas the 

effects of different noise levels are also discussed in Section 

4.3.3. 

 

4.2 Establishment of BDLMs for comparative study 
 

To investigate the effectiveness of the model 

improvements, 4 different BDLMs are considered, as 

shown in Table 1 CRICM represents the classificatory 

regression BDLM with improvements for Vt estimation and 

component discount factors for Wt. CRIM denotes the 

classificatory regression BDLM with improvement for Vt  

 

 

 

 

 

estimation and an overall discount factor for whole Wt. On 

the other hand, CRM represents the classificatory regression 

BDLM with a constant Vt and an overall discount factor, 

and RM stands for the basic regression BDLM with a 

constant Vt and an overall discount factor. 

First, the best discount factors were determined for 4 

BDLMs using the RMSE for the first 50 stress data. As 

shown in Fig. 6(a) for C25, the best component discount 

factors are found to be 𝛿 = 𝛿2 = 0.95, and 𝛿3 = 0.75, 

which indicates that the audience effect has more variation 

than the basic and temperature effects. For other members, 

the best 𝛿  and 𝛿2 are also found to be almost same as 

0.95. However those for 𝛿3 are 0.7, 0.8, 0.9, 0.8, and 0.6 

for C5, C18, B42, D45, and D50, respectively. These results 

show that the sensitivity of the audience load varies 

significantly with different members. Fig. 6(b) shows that 

the best overall discount factor for C25 in CRIM is 

𝛿 = 0.85, whereas those for C5, C18, B42, D45, and D50 

are obtained as 0.8, 0.9, 0.9, 0.9, and 0.8, respectively. The 

best overall discount factors for 6 members in CRM are the 

same as those in CRIM. On the other hand, the overall 

discount factors vary for different members in RM as 0.95, 

0.95, 0.9, 0.9, 0.95, and 0.85 for C5, C18, C25, B42, D45, 

and D50, respectively. 

 

    
(a) Temperature variation (b) Audience load at 21:00 

Fig. 5 Temperature and audience load variations in simulation 

    
(a) RMSE for component 𝛿𝑖 of CRICM (b) RMSE for overall 𝛿 of CRIM 

Fig. 6 RMSE of the prediction for different discount factors on Member C25 
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4.3 Prediction of stress response 
 
4.3.1 Mean response and RMSE 

Fig. 7 shows example cases of the predicted stress 

responses for a column member C25 by different BDLMs. 

The initial values for the basic load effect 𝛼0  and 

temperature coefficient 𝛾0 are obtained as -2.5 MPa and 

0.15 MPa/
o
C by a regression analysis of the first 7 data 

points. The initial value for the audience load effect is taken 

as 𝜆0 = 0. For CRICM and CRIM, the initial distribution 

for the observation noise variance is taken as 

𝑉0~IG(2, 0.1MPa2), with 𝐸(𝑉0) = 0.1MPa
2
. On the other 

hand, the variance for CRM and RM is taken as a constant, 

with 𝑉 = 0.1MPa
2
. The predicted stresses by CRICM, 

CRIM and CRM are found to be very close to the 

observation, whereas the results of CRICM and CRIM 

converge more quickly than those of CRM. The predicted 

stress by RM has the largest difference from the observation, 

especially when the structure is subjected to audience loads.  

 

 

 

 

 

When there is no audience load, the predictions by RM and 

CRM are basically the same. 

Table 2 shows the RMSEs of the predicted stresses for 

the last 15 days on 6 members by different BDLMs. The 

RMSE levels of the predictions are found to be very small 

in the range of 5-8% and 2-6% in comparison with the 

means and the ranges (|ymax-ymin|) of the observations, 

respectively, except for RM. It is more relevant to compare 

the RMSE level with the range of the observations, because 

the RMSE is regarding to the observation which varies 

significantly with time. The RMSEs of CRICM are the 

smallest. However, for a beam member B42, the RMSEs by 

all models are almost the same, because for the beam 

member, the stress response caused by the audience load is 

very small. In summary, the CRICM gives the smallest 

predicted errors compared with the other BDLMs, although 

its RMSE levels are fairly close to those of CRIM and CRM. 

 

Table 1 Four different BDLMs 

Models Classificatory regression component 
Improvement  

for Vt estimation 
Component discount factors for Wt 

CRICM √ √ √ 

CRIM √ √ x 

CRM √ x x 

RM x x x 

 

Fig. 7 Stress response predictions for C25 by four BDLMs based on simulation data 
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4.3.2 Standard deviation and confidence interval 
Standard deviations of the predicted responses give an 

estimation for the uncertainties in the predictions, which are 

essential to the outlier analysis for damage detection (Zhang 

et al. 2018) and the online structural reliability assessment 

(Strauss et al. 2008). Table 2 also shows the standard 

deviations of the predicted stresses (in the parentheses), 

which are obtained from the variances of the predicted 

observation (𝜎 = √𝑄 ) for the last 2 days. The standard 

deviations are found to be less than 7% in comparison with 

the ranges of the observations in CRICM and CRIM where 

the improvement of inference is considered. Fig. 7 also 

shows the 95% confidence intervals, which indicates that 

after updating with a few days’ data, almost all the 

measurement data are found to be within the confidence 

regions by 3 BDLMs except RM. The confidence intervals 

of CRICM and CRIM are smaller than those of CRM and 

RM. 

 

 

 

 

4.3.3 Effect of initial value and observational noise 
In the present BDLM, the state variables (𝛼 , 𝛾  and 𝜆 ) 

and the variance of the observation noise (𝑉 ) are treated as 

random variables and updated sequentially using 

observation data. A parametric study has been conducted to 

investigate the effect of the initial values for those variables. 

The results in Fig. 8 show that the state and noise variables 

converge very well to the true values with wide ranges of 

initial values, which means that initial values do not affect 

much on the analysis results. 

Fig. 9 shows the RMSE of the predicted stresses for the 

last 15 days’ data and its averaged standard deviation for the 

last 2 days for various observational noise levels. The 

RMSE and standard deviation gradually increase as the 

noise level increases. The results of two methods (CRICM 

and CRIM), which treat the variance of the observational 

noise as a random variable, are found to be reasonable and 

equivalent to the RMSE level. On the other hand, the results  

Table 2 RMSEs and standard deviations of the predicted stresses (unit: MPa) 

Members 
Measured Data RMSEs of Predictions 

Mean |ymax-ymin| CRICM CRIM CRM RM 

C5 -3.64 3.38 0.17* (0.20**) 0.19 (0.22) 0.19 (0.36) 0.84 (0.29) 

C18 -2.32 3.76 0.18 (0.20) 0.19 (0.21) 0.19 (0.36) 0.74 (0.31) 

C25 -1.78 3.40 0.18 (0.18) 0.20 (0.21) 0.20 (0.38) 0.54 (0.31) 

B42 -10.25 18.83 0.41 (0.47) 0.44 (0.50) 0.44 (1.01) 0.44 (0.95) 

D45 -6.56 18.56 0.53 (0.62) 0.55 (0.66) 0.63 (0.88) 2.86 (0.79) 

D50 17.75 37.62 0.98 (1.33) 1.12 (1.44) 1.18 (2.34) 1.49 (2.17) 

* RMSE and |ymax-ymin| are for the last 15 days. 

** Standard deviations shown in the parentheses are the average for the last 2 days. 

  
(a) Basic load effects: 𝛼  (b) Temperature load coefficient: 𝛾  

  

(c) Audience load effect: 𝜆  (d) Variance of observation noise: Vt 

Fig. 8 Effect of different initial guesses for variables in CRICM 
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of other two methods (CRM and RM) are not acceptable. 

The overall performance of CRICM is found to be the best. 

 

4.3.4 Bayes factors 
The log-cumulative Bayes factor, LCH, is used to 

evaluate the performance of the prediction models more 

comprehensively. Fig. 10 shows three cases of LCH among 

three models (CRICM vs. CRM, CRIM vs. CRM, and 

CRICM vs. CRIM) for 6 members. The LCHs are found to 

be incremental for all cases, which means that the 

performance of CRICM is the best. The large positive value 

of LCH of CRIM versus CRM indicates the large 

contribution of the improved inference for the observation 

noise variance to the probability distribution of the 

prediction. For D50 the performance of 3 models is found 

to be similar for the first 35 data. This is because the stress 

data on D50 have more variations, making the time to 

converge longer in the BDLMs. 

 

 

 

 

 

 

 

4.4 Load effect separation 
 

The revolving structure is mainly subjected to three 

loads, which are the basic, temperature, and audience loads. 

The stress response caused by these three loads can be 

separated using Eqs. (6) and (7). The results of the load 

effect separation for C25 are shown in Fig. 11. They are the 

posterior (mean) values and standard deviations for the 

separated load effects. 

Figs. 11(a) and 11(b) shows the results for the basic load 

effect. The mean values by CRICM are found to be 

consistently close to the true value, while the other results 

are very erroneous. CRIM and CRM give mean values that 

wildly fluctuate around the true value because a single 

overall discount factor is used for the state parameters. RM 

yields completely incorrect results because the audience 

influence is not considered separately from the basic load. 

CRICM gives the smallest standard deviation, indicating the 

highest confidence in the load effect separation. The 

temperature load effect can be examined more clearly based  

  
(a) RMSE (b) Predicted standard deviation 

Fig. 9 RMSE of mean and standard deviation from the probability distribution for C25 with different noise levels 

 

Fig. 10 Log-cumulative Bayes factors LCH(t) 
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on the results of the temperature load coefficient 𝛾  shown 

in Figs. 11(e) and 11(f) Similar to the basic load effect, the 

mean values by CRICM are found to be closest to the true 

value and its standard deviation is smallest. Figs. 11(g)-11(h) 

shows the results of the audience load effect, which 

converge reasonably well to the true value after updating 

for a few days’ data by three methods except RM. 

 

 

Table 3 shows the load effect separation results for the 

RMSEs and predicted standard deviations on four members 

by different BDLMs. The results of CRICM are the smallest. 

CRICM gives much smaller RMSEs in the load effect 

separation than those of CRIM, although both models give 

very similar results in the total response predictions. Fig. 12 

shows the LCHs of the load effect separation for C25 and  

  
(a) Basic load effect (b) Standard deviation of basic load effect 

5   
(c) Temperature load effect (d) Standard deviation of temperature load effect 

  
(e) Temperature load coefficient (f) Standard deviation of temperature load coeff. 

  
(g) Audience load effect (h) Standard deviation of audience load effect 

Fig. 11 Load effect separation results for C25 (based on simulation data) 
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D50. The LCHs of CRICM versus CRIM show large 

positive values, which indicates the large benefit of the 

component discount factors to improve the accuracy of the 

load effect separation. 

 

 

 

 

 

 
 
 
5. Analysis of real monitoring data 

 

The performance of the four BDLMs is analyzed for stress 

response prediction and load separation based on real 

monitored data on the revolving auditorium for 2 adjacent 

periods (Period I in 16 August - 5 September 2017 and Period 

II in 6 September- 26 September 2017). The stress response  

Table 3 Results of the load effect separation: RMSEs and standard deviations (unit: MPa) 

Members 

(|ymax-ymin|*) 
BDLMs Basic Load Temperature Load Audience Load 

C18 

(3.76) 

CRICM 0.03** (0.05***) 0.03 (0.06) 0.17 (0.06) 

CRIM 0.13 (0.27) 0.12 (0.23) 0.19 (0.08) 

CRM 0.13 (0.48) 0.12 (0.41) 0.17 (0.14) 

RM 0.30 (0.06) 0.09 (0.05) — 

C25 

(3.40) 

CRICM 0.02 (0.05) 0.02 (0.04) 0.20 (0.13) 

CRIM 0.12 (0.29) 0.10 (0.24) 0.21 (0.09) 

CRM 0.12 (0.49) 0.10 (0.42) 0.21 (0.14) 

RM 0.29 (0.06) 0.12 (0.05) — 

D45 

(18.56) 

CRICM 0.06 (0.10) 0.08 (0.13) 0.92 (0.25) 

CRIM 0.25 (0.65) 0.25 (0.55) 0.95 (0.25) 

CRM 0.21 (0.95) 0.24 (0.81) 0.94 (0.27) 

RM 0.87 (0.15) 0.04 (0.12) — 

D50 

(37.62) 

CRICM 0.16 (0.20) 0.13 (0.18) 0.72 (0.80) 

CRIM 0.90 (2.00) 0.92 (1.68) 0.84 (0.57) 

CRM 0.94 (3.55) 0.92 (3.00) 0.85 (0.82) 

RM 1.17 (2.92) 0.88 (2.48) — 

*|ymax-ymin| are ranges of the measured total stresses for the last 15 days. 

**RMSEs are for the last 15 days. 

*** Standard deviations shown in parentheses are averages for the last 2 days. 

 

Fig. 12 Log-cumulative Bayes factors for load effect separation: C25 and D50 
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measurements do not include the self-weight and static load 

applied to the structure because the sensors were installed after 

the revolving auditorium was constructed. However, there is 

still a significant basic load effect because there were some 

changes after the sensor installation, such as equipment 

movements and wheel maintenance. 

 

 
 

 
 
5.1 Prediction of stress response 
 
The initial values for the state variables and the variance of 

the observational noise are estimated from the first 8 data 

points: for instance, 𝑚0
′ = 〈−8, 0.3, −1.39〉, E(𝑉0) = 1.0, 

and 𝑉0~IG(1.5, 0.5)  for column C25. The first two  

Table 4 RMSEs and standard deviations of the predicted stresses (unit: MPa) 

Period 

(2017) 
Members 

Measured Data RMSEs of Predictions 

Mean |ymax-ymin| CRICM CRIM CRM RM 

Period I 

(16/8-5/9) 

C5 -8.04 13.64 0.65* (1.06**) 0.74 (1.37) 0.76 (3.01) 1.90 (1.99) 

C18 -6.19 9.57 0.65 (1.45) 0.75 (1.60) 0.82 (2.69) 2.19 (1.83) 

C25 -5.62 7.27 0.87 (1.04) 0.91 (1.16) 0.90 (2.63) 1.11 (2.28) 

B42 -2.70 8.43 0.71 (0.94) 0.75 (0.92) 0.78 (1.66) 1.11 (1.56) 

D45 -15.5 8.97 0.59 (0.71) 0.70 (0.84) 0.71 (1.56) 1.20 (1.49) 

D50 -4.02 11.53 0.76 (1.35) 0.86 (1.36) 0.88 (2.63) 1.77 (2.28) 

Period II 

(6/9-26/9) 

C5 -8.44 11.64 0.49 (0.52) 0.67 (0.64) 0.68 (1.63) 1.76 (1.42) 

C18 -6.91 8.30 0.55 (0.50) 0.66 (0.63) 0.68 (2.26) 1.62 (1.88) 

C25 -5.25 5.94 0.77 (0.73) 0.84 (0.74) 0.84 (1.42) 1.10 (1.26) 

B42 -2.65 7.68 0.66 (0.61) 0.72 (0.60) 0.77 (1.70) 0.99 (1.45) 

D45 -15.9 9.44 0.54 (0.53) 0.58 (0.60) 0.77 (1.43) 1.29 (1.26) 

D50 -3.56 11.98 0.35 (0.28) 0.34 (0.32) 0.35 (0.52) 1.87 (0.45) 

* RMSE and |ymax-ymin| are for the last 15 days 

** Standard deviations shown in the parentheses are the averages for the last 2 days. 

 

Fig. 13 Response predictions for C25 by four BDLMs based on real monitored data 
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component discount factors for CRICM are found to be same 

for six members as 𝛿 = 0.9 , 𝛿2 = 0.95. However, the 𝛿3 

values are 0.6, 0.6, 0.75, 0.85, 0.5 and 0.6 for C5, C18, C25, 

B42, D45, and D50, respectively. The overall discount factors 

𝛿 for CRIM and CRM are obtained as 0.75, 0.75, 0.8, 0.9, 0.7, 

and 0.75 for C5, C18, C25, B42, D45, and D50, respectively, 

whereas those for RM are the same for all members as 0.95. 

Fig. 13 shows the predicted results of the stress for C25 by 

different BDLMs during Period I. The predicted values by 

CRICM, CRIM and CRM are found to be in good agreement 

with the measurement data, while those by RM are quite 

different especially for the cases with audience loads at the end 

of each day. The 95% confidence intervals show that CRICM 

gives the smallest intervals. 

Table 4 lists the RMSEs of the predicted stresses and the 

predicted standard deviations for six members by 4 BDLMs 

during two periods of the measurement. The RMSE and 

standard deviation levels of the predictions in two different 

periods are found to be fairly similar, since two periods are 

adjacent so that the operational and environmental conditions 

are similar. The RMSEs by CRICM are still smallest, while 

those by RM are largest. It can also be found that the standard 

deviations by CRICM are smallest. The RMSE levels and 

standard deviations of the prediction by CRICM are less than 

13% and 16% of the range of the measured data, respectively. 

The fluctuating amplitudes of the predicted responses and the 

prediction errors are found to be generally larger in the real 

monitoring data analyses than those in the simulation study. 

This may be caused by three factors: additional loads such as 

wind load, movements of a large number of performers, and 

revolution angle of the auditorium; larger observation noise; 

and limitation in the present FE model for accurate stress 

evaluations.  

Fig. 14 shows log-cumulative Bayes factor (LCH) curves 

for three cases (CRICM vs. CRM, CRIM vs. CRM, and 

CRICM vs. CRIM) in Period I. Similar to the simulation study, 

all three LCHs are found to be incremental, which means that  

 

 

the predicted probability distributions by CRICM are better 

than those by the other two methods. The large positive values 

for LCH of CRIM versus CRM indicate the big beneficial 

effects of the improved inference for the observational noise to 

the probability distribution of the predicted response. 

 
5.2 Load effect separation 
 

Fig. 15 shows the posterior mean values and standard 

deviations of the load effect separation for C25 in Period I. 

Figs. 15(a) and 15(b) shows the results of the basic load effect, 

which shows large fluctuations than the simulated case owing 

to the higher uncertainty in the operational condition of the 

revolving auditorium. The results by CRICM are found to be 

more stable than those by the other two models, and its 

standard deviation is also smallest. Figs. 15(c) and 15(d) shows 

the results for the temperature load effect results, which clearly 

shows a periodical pattern. The results for the temperature load 

coefficient shown in Figs. 15(e) and 15(f) indicate that CRICM 

yields the most stable estimates with the smallest standard 

deviation. Figs. 15(g) and 15(h) shows that the results for the 

audience load effect by the three models are very similar. 

Fig. 16 shows the posterior mean values of the load effect 

separation for C25 during Period II. The results of the basic 

and temperature load coefficient are more stable than those for 

Period I. However, the mean values of the load effect 

separation are found to be fairly similar to those for Period I, 

which indicates the consistent performance of the BDLMs, 

particularly CRICM, on the real monitoring data under similar 

environmental and operational conditions. 

 

 

6. Conclusions 
 

In this study, a Bayesian dynamic linear model (BDLM) is 

presented for data-driven analyses of structure response 

prediction and load effect separation on a revolving  

 

Fig. 14 Log-cumulative Bayes factors LCH(t) for real monitoring data 
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auditorium. Three improvements are introduced, which are a 

classificatory regression component to address the temporary 

audience load effect, improved inference for the variance of 

observation noise to be updated continuously, and component 

discount factors for effective load effect separation. The 

proposed method is called as the Bayesian classificatory 

regression model with inference improvement on the 

observation noise and component discount factors (CRICM). 

 

 

 
 

The performance of the CRICM has been verified based 

on the simulated data and the real monitoring data on the 

revolving structure. The results of this study are 

summarized as follows: 

 The classificatory regression component brings 

significant improvements not only in the load effect 

separation for the temporary audience but also in the total 

stress response prediction. The results of the simulation 

study show that the RMSE levels of the prediction become  

  
(a) Basic load effect (b) Standard deviation of basic load effect 

  
(c) Temperature load effect (d) Standard deviation of temperature load effect 

  
(e) Temperature load coefficient (f) Standard deviation of temperature load coeff. 

  
(g) Audience load effect (h) Standard deviation of audience load effect 

Fig. 15 Load effect separation results for C25 using real monitored data in Period I 
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less than 6% of the range of the observations by including 

the classificatory term. 

 The results of Bayes factors indicate that the 

improved inference for the variance of the observation noise 

results in a large improvement in the probability distribution 

of the prediction, which is essential for the outlier 

identification and reliability assessment of structures. The 

variance is found to converge to the true value from a wide 

range of the initially assumed values. The standard 

deviations of the prediction become less than 7% of the 

range of the observations by including the improved 

inference. 

 The results of Bayes factors on the separated load 

effects show that the component discount factors result in 

significant improvements in the accuracy of the load effect 

separation. 

 The proposed CRICM gives reasonable results for 

the cases with real monitoring data, although the estimated 

results show larger errors than the simulation cases owing 

to the higher uncertainty in the real structural and operation 

conditions of the revolving auditorium. The RMSE levels 

and standard deviations for the stress response prediction by 

CRICM are less than 13% and 16% of the range of the 

observations, respectively. The results of the total stresses 

prediction and load effect separation are found to be fairly 

consistent for the observation data in 2 adjacent periods 

with similar operational and environmental conditions. 
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