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1. Introduction 
 

With economic development, increasing numbers of 

super high-rise buildings have been built around the world. 

Super high-rise buildings generally have a long service life, 

and as time goes on, the carrying capacity of such structures 

inevitably decreases. Therefore, structural health 

monitoring (SHM) and health assessment are extremely 

important. Many existing and newly built super high-rise 

buildings, such as the Burj Khalifa (Abdelrazaq et al. 2013), 

the Shanghai World Financial Center (Shi et al. 2012), the 

Canton Tower (Ni et al. 2009, Yi et al. 2015) and the 

Tianjin 117 Tower (Liu et al. 2016), are equipped with 

SHM systems. An SHM system usually consists of several 

subsystems, including a sensor system, a data acquisition 

and transmission system, a data management system, and a 

structural health assessment system. Among these 

subsystems, the most important is the structural health 

assessment system. 

In the methods for structural health assessment, the 

dynamic characteristics of structures are typically used as 

indicators of the structural state, especially the modal 

parameters. Such methods are based on the assumption that 

changes in the structural state are reflected by the dynamic 

characteristics of structures. However, most studies have 

noted that modal parameters are affected by environmental 

factors. Cornwell et al. (1999) studied the variability in the 

modal properties of the Alamosa Canyon Bridge in southern 

New Mexico. Peeters (2001) studied the environmental 
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effects on the modal parameters of the Z24-bridge during a 

one-year monitoring period and showed that changes in the 

vibration response resulting from damage can be separated 

from changes resulting from environmental variability. Yan 

et al. (2005a, b) proposed the use of principal component 

analysis (PCA) to remove the influence of environmental 

factors. In addition, the traditional modal parameter 

identification methods require human intervention, which 

make such methods difficult to use for online automatic 

structural health assessments. Therefore, some scholars 

have proposed fully automatic modal parameter 

identification methods. Magalhães et al. (2009) proposed a 

method based on covariance-driven stochastic subspace 

identification (SSI) and hierarchical clustering and applied 

the method to monitor a concrete arch bridge for two 

months. Reynders et al. (2012) proposed an automatic 

modal parameter identification method based on stochastic 

subspace identification and clustering methods and 

validated the method with monitoring data from the Z24-

bridge. Ubertini et al. (2013) proposed an automated modal 

identification procedure classified as an SSI technique 

based on clustering analysis. This method was applied in 

operational analyses of two bridges. In addition, this 

method was later applied in the long-term SHM of a 

historical bell tower in Italy (Ubertini et al. 2016). 

The automatic modal parameter identification methods 

based on clustering work well but are associated with high 

computational complexity. Sohn (2001) proposed that a 

time series model can be used to fit vibration data and that 

obtained time series model coefficients can reflect the 

dynamic characteristics of a structure. This method avoids 

the identification of modal parameters, requires no human  
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intervention, eliminates the cluster analysis steps and 

greatly reduces the number of calculations. A series of 

subsequent studies verified the feasibility of the method. Lu 

(2005) applied the auto-regressive with exogenous input 

time series model to diagnose structural damage and 

verified the model with numerical examples. Nair et al. 

(2006) applied a time series algorithm to obtain analytical 

and experimental results for an ASCE benchmark structure 

and found that the algorithm identified minor to severe 

damage at the local scale, as defined for the benchmark 

structure. In addition, de Lautour (2010) treated the 

coefficients of AR models as damage-sensitive features and 

showed that the combination of AR models and an artificial 

neural network was an efficient approach for damage 

classification and estimation based on experimental data 

from a 3-story structure and the ASCE Phase II 

Experimental SHM benchmark structure. Posenato et al. 

(2008) tested a time series method considering numerically 

simulated elements with sensors and a range of damage 

severities. The method demonstrated superior performance 

compared to traditional methods in identifying the state 

change of structure.  

Based on previous studies, this paper uses the AR model 

to fit the acceleration and inclination data from the 

Shanghai Tower. The data indicate that the environmental 

factors influence the coefficients of the AR model. 

Therefore, PCA is used to remove the influence of 

environmental factors on the coefficients of the AR model, 

and the control chart method is used to track the PCA 

reconstruction error for the coefficients of the AR model. As 

described above, an online automatic structural health 

assessment method for the Shanghai Tower is established. 

This method effectively indicated the structural state change 

caused by the damper lock during the damper test period of 

the Shanghai Tower in May 2016 and confirmed that the 

Shanghai Tower is in a healthy state. 

This article mainly includes the following sections: an 

overview of the Shanghai Tower; an introduction to the 

proposed online automatic structural health assessment 

method, which is based on time series analysis; an outline  

 

 

of PCA and the control chart method; and the application of 

the online automatic structural health assessment method at 

the Shanghai Tower. 

 

 

2. Overview of the Shanghai Tower 
 

2.1 Architectural and structural forms 
 

The Shanghai Tower, which is located in the Lujiazui 

Financial Center on the banks of the Huangpu River, was 

completed at the end of 2015 and is currently the tallest 

building in China (see Fig. 1). As discussed by Zhang et al. 

(2015), the building is a multipurpose skyscraper that 

mainly includes public facilities, such as offices, hotels, 

businesses, and tourist attractions. The tower has 124 floors 

above ground level, with a building height of 632 m. The 

tower is divided into 8 sections and a sightseeing layer in 

the vertical direction (see Figs. 1 and 2). The podium is 7 

floors above ground level, with a building height of 38 m 

and a basement of five floors. The foundation of the 

building is a piled raft foundation. The main structure 

adopts a mega-frame outrigger core tube system that 

consists of a reinforced concrete core tube, a mega-frame 

and an outrigger truss. The outer surface of the building is 

composed of a glass curtain wall. The plane shape is a 

chamfered triangle, and it is rotated clockwise by 120 

degrees along the height of the building to form the curved 

surface of the building and provide good resistance to wind 

loads. 

 

2.2 The structural health monitoring system 
 

Due to the importance of the Shanghai Tower, a 

complete SHM system (Su et al. 2013) was deployed by the 

cooperation of Tongji University, Hong Kong Polytechnic 

University and Tongji Architectural Design (Group) Co. 

Ltd. The SHM system consists of the following four parts: a 

sensor system, a data acquisition and transmission system, a  

 

            

Fig. 1 The Shanghai Tower 
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(a) Zone 1 (b) Zone 2 (c) Zone 3 (d) Zone 4 

   
 

(e) Zone 5 (f) Zone 6 (g) Zone 7 (h) Zone 8 

Fig. 2 Structural layout of typical floors in each zone 

 

Fig. 3 Vertical layout of the inclinometers and accelerometers 
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data storage system, and a structural health assessment 

system. 

The sensor system is used to measure environmental 

factors and the response of the structure, and it includes 2 

anemometers with acquisition sampling rate (ASR) of 100 

Hz, 55 temperature sensors with ASR of 1/60 Hz, 27 wind 

pressure gauges with ASR of 100 Hz, 36 accelerometers 

with ASR of 100 Hz, 46 inclinometers with ASR of 100 Hz, 

27 wind vibration sensors with ASR of 100 Hz, 183 strain 

gauges with ASR of 1/60 Hz, 18 welding crack sensors with 

ASR of 1/60 Hz, 2 seismographs, and 2 GPS sensors. The 

vertical layouts of accelerometers and inclinometers are 

shown in Fig. 3, and the horizontal layouts of the 

accelerometers and inclinometers in a typical floor (117
th
 

floor) are shown in Fig. 4. 

The data acquisition and transmission system consists of 

11 data collection substations along the height of the 

building. This system is responsible for collecting the data 

from each sensor in the section and transmitting the 

collected data to the data acquisition terminal in the 

underground 1st floor through optical fibers. 

The data storage system stores and manages the data 

collected by the data acquisition terminal through a 

database management system and periodically backs up the 

collected data to cloud storage. 

The structural health state assessment system acquires 

the dynamic characteristics of the structure based on the 

collected data, establishes health state indicators for the 

structure, and evaluates and tracks the health state of the 

structure. 

 

 

 

 

2.3 Finite element analysis 
 

To obtain the dynamic characteristics of the Shanghai 

Tower, several finite element (FE) models of the tower were 

established by different FE software during the structural 

design phase by Tongji Architectural Design (Group) Co. 

Ltd. The dynamic characteristics obtained from the finite 

element models can be used as a reference for those 

obtained from the measurement data. The first five modal 

frequencies of the Shanghai Tower obtained by finite 

element analysis (FEA) (Ding et al. 2010) and an ambient 

vibration test (AVT) are shown in Table 1. 

 

2.4 Ambient vibration test 
 

In the SHM of civil buildings, the ambient excitations 

are immeasurable; therefore, modal parameter identification 

is based on output-only methods. In this paper, the peak 

picking method is chosen to identify the modal frequencies 

of the Shanghai Tower. The basic theory of the peak picking 

method is shown in Eq. (1) 

𝐺𝑦(𝑗𝜔) = 𝐻(𝑗𝜔)𝐺𝑥(𝑗𝜔)𝐻(𝑗𝜔)𝑇 (1) 

where 𝐺𝑥(𝑗𝜔) is the power spectral density (PSD) of the 

input signal, 𝐻(𝑗𝜔) is the transfer function, and 𝐺𝑦(𝑗𝜔) 

is the PSD of the output signal.  

In general, the ambient input has white noise-like 

characteristics, and the PSD function 𝐺𝑥(𝑗𝜔) is a constant. 

Therefore, the peak value of 𝐺𝑦(𝑗𝜔) (the PSD function of  

  
(a) accelerometers (b) inclinometers 

Fig. 4 Horizontal layout of inclinometers and accelerometers in a typical floor 

Table 1 Comparison of the modal frequencies obtained from the FEA and AVT (Hz) 

  𝒇𝒙𝟏 𝒇𝒚𝟏 𝒇𝒕𝟏 𝒇𝒚𝟐 𝒇𝒙𝟐 

FEA 

(Ding et al. 2010) 

ETABS 0.110 0.112 0.179 0.306 0.318 

ABAQUS 0.110 0.111 0.243 0.324 0.328 

ANSYS 0.110 0.111 0.217 0.319 0.324 

AVT 
Acceleration 0.107 0.109 0.214 0.314 0.325 

Inclination 0.107 0.108 — 0.322 0.325 
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the output signal) is in accordance with the transfer function 

𝐻(𝑗𝜔), and the peak value of 𝐺𝑦(𝑗𝜔)  can be used to 

identify the characteristic frequencies. 

The PSD is estimated by using the function pwelch() in 

Matlab software based on the Welch's method. The discrete-

time signal vector of acceleration and inclination is divided 

into eight sections with 50% overlap, and each section is 

windowed with a Hamming window and eight modified 

periodograms are computed and averaged. In addition, the 

number of FFT points is 32678. The 30-minute acceleration 

time history curve and the corresponding PSD curve of the  

 

 

 

 

117th floor in the X and Y directions are shown in Figs. 5 

and 6, respectively. The 30-minute inclination time history 

curve and the corresponding PSD curve of the 117th floor 

in the X and Y directions are shown in Figs. 7 and 8, 

respectively. 

Table 1 shows that the modal frequencies obtained from 

the FEM and the AVT. The frequencies obtained by AVT are 

basically consistent with those obtained by FEM. This 

finding indicates that the response data acquired by the 

SHM system are accurate and can be used for further 

analysis. Moreover, the inclination data can also be used to  

  

(a) sample acceleration data (b) PSD 

Fig. 5 Measurement point acc-117-01 

  

(a) sample acceleration data (b) PSD 

Fig. 6 Measurement point acc-117-02 

  

(a) sample angle data (b) PSD 

Fig. 7 Measurement point inc-117-01 
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identify the modal frequencies, but the torsional mode 

cannot be well identified. 

 

 

3. Online automatic structural health assessment 
method 
 

Due to the variety of sensor types and the large number 

of measurement points in the SHM system of the Shanghai 

Tower, an online automatic structural health assessment 

method with limited computations and no manual 

intervention is needed. This paper proposes an online 

automatic health assessment method based on the 

combination of time series model, PCA and the control 

chart method. 

Based on previous research, the coefficients of the AR 

model can be used to reflect the dynamic characteristics of 

the structure. Therefore, we use the coefficients of the AR 

model as indicators to characterize the dynamic 

characteristics of the structure. However, an analysis of the 

measured data revealed that the coefficients of the AR 

model can be affected by environmental factors. Thus, PCA 

is utilized to analyze the coefficients of the AR model, and 

the principal components that reflect the influence of 

environmental factors can be obtained. The coefficients of 

the AR model are reconstructed using the acquired principal 

components, and the reconstruction error reflects the state 

of the structure with the influence of environmental factors 

eliminated. Finally, the control chart method is used to 

automatically monitor and track the health status of the 

structure based on the reconstruction error. 

 

3.1 Time series analysis 
 

The time series-based structural health assessment 

methods directly use the structural vibration signal to fit a 

time series model. Then, the coefficients of the time series 

model are used as structural state indicators to assess the 

structural health state. The assessment process does not 

require time-frequency domain transform, nor does it 

depend on the structural model; thus, it is suitable for the 

continuous online monitoring of structures. 

For a time series of observations, there is a certain 

correlation among the observations in the sample. The 

model used to describe this time series can be expressed as 

follows 

 

 

𝑥𝑡 = 𝑓(𝑥𝑡−1, 𝑥𝑡−2, … ) + 𝑎𝑡 (2) 

where 𝑓(⋅) is a function that relates the observation 𝑥𝑡 to 

𝑥𝑡−1, 𝑥𝑡−2, …. and can be obtained by time series analysis. 

𝑎𝑡 is the modeling error produced when 𝑓(⋅) is used to 

describe 𝑥𝑡. It is generally assumed that 𝑎𝑡 is Gaussian 

white noise with a mean of zero and a constant variance.  

Autoregressive moving average (ARMA) model is the 

basic time series model which have variation forms of AR 

and MA. For a stationary, normal, zero-mean time 

series  *𝑥𝑡+ (𝑡 = 1, 2, … , 𝑁) , the ARMA model can be 

expressed as follows 

𝑥𝑡 − ∑ 𝜙𝑖𝑥𝑡−𝑖 = 𝑎𝑡 −  ∑ 𝜃𝑗𝑎𝑡−𝑗

𝑚

𝑗=1

𝑛

𝑖=1

 (3) 

where 𝜙𝑖 is the autoregressive coefficient, which indicates 

the degree of influence of 𝑥𝑡−𝑖  on 𝑥𝑡 , and  𝜃𝑗  is the 

moving average coefficient, which indicates the degree of 

influence of 𝑎𝑡−𝑗 on 𝑥𝑡. 

Now, the post-shift operators 𝐵  and 𝐶 , where 

𝐵𝑖𝑥𝑡 = 𝑥𝑡−𝑖  and 𝐶𝑗𝑎𝑡 = 𝑎𝑡−𝑖 , can be introduced, and 

equation (3) can be reformulated as follows. 

(1 − ∑ 𝜙𝑖𝐵
𝑖

𝑛

𝑖=1

) 𝑥𝑡 = (1 − ∑ 𝜃𝑗𝐶𝑗

𝑚

𝑗=1

) 𝑎𝑡  (4) 

If we denote 𝜙(𝐵) = (1 − ∑ 𝜙𝑖𝐵
𝑖) and 𝜃(𝐶) =𝑛

𝑖=1

(1 − ∑ 𝜃𝑗𝐶𝑗)𝑚
𝑗=1 , then equation (3) can be simplified as 

𝑥𝑡 = 𝜃(𝐶)/𝜙(𝐵) 𝑎𝑡 . (5) 

Eq. (5) shows that if 𝑎𝑡  is the input and 𝑥𝑡  is the 

output, the ARMA model describes a system with a transfer 

function of 𝜃(𝐶)/𝜙(𝐵) . Under the principle of output 

equivalence, the system is an actual physical equivalent 

system with white noise as the input and 𝑥𝑡 as the output. 

In the equation, 𝜙(𝐵) characterizes the inherent 

characteristics of the system, and 𝜃(𝐶) characterizes the 

connection between the system and the outside world. 

In Eq. (3), when 𝜃𝑗 = 0, there is no moving average 

portion of the model, and the ARMA model becomes an AR 

model that which can be expressed as follows. 

  

(a) sample angle data (b) PSD 

Fig. 8 Measurement point inc-117-02 
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𝑥𝑡 − ∑ 𝜙𝑖𝑥𝑡−𝑖 = 𝑎𝑡

𝑛

𝑖=1

 (6) 

Eq. (6) is called an n-order AR model and is denoted as 

AR(n). Because the AR model does not contain the moving 

average part of the ARMA model, the coefficients are 

linearly estimated. The calculation is simple and rapid and 

has obvious advantages in engineering applications, such as 

in fault diagnosis, structure monitoring, and online control. 

In the following section, the AR model is used to model 

time series of acceleration and inclination data from the 

Shanghai Tower. 

 

3.2 Primary component analysis 
 

According to time series theory, the coefficients of the 

AR model of the structural vibration response reflect the 

state of the structure itself. However, based on an analysis 

of the data obtained from the actual monitoring of the 

Shanghai Tower, the environmental factors also have a 

certain influence on the coefficients of the AR model. The 

purpose of PCA is to obtain the principal components that 

have a large effect on the coefficients of the AR model. 

These principal components reflect the influence of 

environmental factors. If the principal components are 

properly selected, the PCA reconstruction error of the 

coefficients of the AR model will not include the influence 

of environmental factors. 

PCA (Jolliffe 2011) was first proposed by Carl Pearson 

in 1901. The method involves performing singular value 

decomposition on the covariance matrix of the data to 

obtain the feature vectors and feature values. The feature 

vectors are arranged according to the magnitude of the 

weights (the contribution of each feature vector to the 

variance) from large to small. In the general analysis, the 

first few feature vectors with a cumulative variance 

contribution greater than 85% are considered as the 

principal components. In the analysis of monitoring data 

from the Shanghai Tower, the principal components reflect 

the influence of environmental factors on the coefficients of 

the time series model. The illustration of PCA is as follows. 

𝒙𝒊 ∈  ℝ𝒏 is a sample vector of AR model coefficients. 

In the training phase, 𝑁 samples are used to form the AR 

model coefficient matrix 𝑿, where 𝑿 = , 𝒙𝟏, 𝒙𝟐, ⋯ , 𝒙𝑵-. 
Additionally, 𝑿 ∈ ℝ𝑛×𝑁, where 𝑛 is the order of the 

AR model and 𝑁 is the number of samples. 

A covariance matrix of 𝑿 is established, and singular 

value decomposition is performed on the matrix. 

𝑿𝑿𝑇 = 𝑼𝚲𝑼𝑇 (8) 

In Eq. (8), 𝑼 is an 𝑛 × 𝑛 feature vector matrix, and 

𝑼𝑼𝑇 = 𝐼, 𝚲 is the diagonal matrix formed by the feature 

values. 

𝚲 = [

𝜆1 0 … 0
0 𝜆2 … 0
⋮ ⋮ ⋱ ⋮
0 0 … 𝜆𝑛

] (9) 

According to the feature vector matrix and a parameter 

sample 𝒙𝒊 of the original AR model, the following relation 

can be obtained 

𝒚𝒊 = 𝑼𝑇𝒙𝒊 (10) 

where 𝒚𝒊 is a vector in the feature vector space and every 

member of the vector is the magnitude in the feature vector 

direction. The amount of information associated with the 

original variable for each feature vector is represented by 

𝛽𝑖 = 𝜆𝑖/ ∑ 𝜆𝑖
𝑛
𝑖=1 ; therefore, ∑ 𝛽𝑖

𝑚
𝑖=1  is the cumulative 

variance contribution of the first m feature vectors. The 

number of principal components can be determined 

according to the cumulative variance contribution of feature 

vectors. In the selection of the principal component, the first 

m feature vectors with a cumulative variance contribution 

greater than 85% can be selected in most cases. The matrix 

formed by the principal components is denoted as 𝑈̂. 

The reconstruction of vector 𝒙𝒊, can be expressed as 

follows. 

𝒙𝑖 = 𝑼̂ 𝑼̂𝑇 𝒙𝒊 (11) 

Moreover, the reconstruction error vector 𝒆𝒊  can be 

obtained by Eq. (12). 

𝒆𝒊 = 𝒙𝒊 − 𝒙𝒊 (12) 

 

3.3 Control chart method 
 

In the analysis above, it is clear that the PCA 

reconstruction error 𝒆𝒊 of the AR model coefficients can be 

used as a structural state indicator. The structural state 

change will cause the probability distribution of the 

reconstruction error 𝒆𝒊  to change; therefore, after 𝒆𝒊  is 

obtained, the state change can be determined by the 

abnormal distribution of the reconstruction error. The 

magnitude of the reconstruction error 𝒆𝒊 is measured using 

the Euclidean distance. Changes in the magnitude of 𝒆𝒊 are 

tracked using the control chart method. The illustration of 

the control chart method is shown in Fig. 9. 

The application of the control chart method is divided 

into two phases: the initial phase and the operation phase. In 

the initial phase, the structure is considered to be in a 

healthy state. The SHM system acquires a large amount of 

data in this phase. The vibration data are periodically fitted 

by the AR model to determine the coefficients of the AR 

model, and PCA is performed with the coefficients. After 

obtaining the principal components, the coefficients of the 

AR model are reconstructed to obtain the statistical 

distribution of the Euclidean distance of the reconstruction 

error. In the operation phase, for the coefficients of the AR 

model obtained by the new observations, the principal 

components obtained in the initial phase are used to 

reconstruct the coefficients of the model, and the 

reconstruction error is then obtained. 

The magnitude of the reconstruction error 𝒆𝒊 is denoted 

as 𝑑𝑖, and 𝑑𝑖  is always greater than 0; thus, the lower 

control limit is 0. The upper control limit (UCL) is 

determined by statistical methods and corresponds to the  

95% cumulative probability distribution. Points that exceed 

the UCL are deemed outliers. Tracking the 𝑑𝑖 value, if  
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the unit time span (such as weekly) percentage of outliers is 

greater than 5% and lasts for a long time, the structure may 

be in an unhealthy state, and further inspection is required. 

 

 

4. Structural health assessment of the Shanghai 
Tower 

 

In the SHM system of the Shanghai Tower, to measure 

the response of the main structure under environmental 

excitation, accelerometers and inclinometers are arranged  

 

 

 

 

 

on the key floors to measure the vibration and inclination of 

the main structure. The data sampling frequency is 100 Hz 

for both acceleration and inclination measurements. In the 

following analysis, the acceleration and inclination data 

from the 117
th

 floor are analyzed using the method proposed 

above. The time span of the monitoring data analyzed in 

this paper ranges from May 1, 2016, to September 24, 2016. 

During the data analysis period, the time history curve 

of the 10-minute-averaged temperature is shown in Fig. 

10(a), and the temperature varies from 15 degrees Celsius to 

38 degrees Celsius. The time history curve of the 10- 

 

Fig. 9 Illustration of the control chart method 

  

(a) temperature (b) wind speed 

Fig. 10 Time histories of the 10-minute-averaged temperature and wind speed 

  

(a) acceleration (b) inclination 

Fig. 11 Time histories of the standard deviation of acceleration and inclination 
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minute-averaged wind speed is also shown in Fig. 10(b). 

Since the data analysis period is mainly in the summer, the 

main distribution of the wind direction is between 180 and 

270 degrees, which is a southeast wind (the wind direction 

angle definition of the anemometers on Shanghai Tower is 0 

degrees north, and the angle increases in the 

counterclockwise direction). Since the distribution of wind 

direction angles is relatively concentrated, in the analysis of 

the correlation between the AR model parameters and the 

wind speed, the corresponding correlation coefficient is 

calculated using the total wind speed to simplify the 

calculations. 

During the data analysis period, the 10-minute standard 

deviations of the X-direction acceleration and inclination 

time histories on the 117
th

 floor are shown in Fig. 11. The 

standard deviation of the inclination significantly increased 

in mid-May, and abnormal state lasted about three days. 

This increase occurred because the damper of the Shanghai 

Tower was tested in mid-May, and the damper was locked 

during the test, which caused a change in the dynamic 

characteristics of the structure. The standard deviation of 

the inclination reflects a change in the dynamic structural 

characteristics. However, changes in the dynamic structural 

characteristics were not reflected in the standard deviation 

of acceleration. 

 

 
 
4.1 Environmental effects on AR model coefficients 
 

According to the autocorrelation and partial 

autocorrelation analyses of the acceleration and inclination 

time history data, the AR model can be used to model the 

time series of acceleration and inclination data. According 

to the AIC criterion (Akaike 1973), the order of the AR 

model is determined to be 30. 

For the collected acceleration and inclination data, AR 

model fitting is performed every 10 minutes to obtain the 

corresponding model coefficients. Then, the time history 

curves of the AR model coefficients can be obtained. In the 

data analysis period in this paper, the time history curves of 

the first four AR model coefficients of acceleration and 

inclination in the X direction on the 117
th

 floor are shown in 

Figs. 12 and 13, respectively. Due to the damper test in mid-

May, the AR model coefficients of inclination displayed 

obvious variations around May 17. However, the AR model 

coefficients of acceleration did not significantly change 

during the damper test. 

The correlation analysis results in Table 2 indicate that 

the AR model coefficients of acceleration have a certain 

degree of correlation with the temperature, and there is no 

obvious correlation with the wind speed. There is no 

significant correlation between the AR model coefficients  

 

Fig. 12 Time histories of the first four AR model coefficients of acceleration on the 117th floor 

 

Fig. 13 Time histories of the first four AR model coefficients of inclination on the 117th floor 
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of inclination and the temperature or wind speed. In Table 

2, the correlation coefficients vary between -1 and 1, and 

the higher the absolute value of a correlation coefficient is, 

the stronger the correlation. A negative coefficient indicates 

a negative correlation, and a positive coefficient indicates a 

positive correlation.  

 

 

 

 

 

As shown in Figs. 14 and 15, the absolute value of 

acceleration’s AR model coefficients increases with the 

increase of temperature, while the inclination’s AR model 

coefficients have a low correlation with temperature. The 

comparison of Figs. 14 and 15 validated the results in Table 

2 as well. 

 

Table 2 Correlation coefficients between the first four AR model coefficients and environmental factors 

 Acceleration Inclination 

 𝜙1 𝜙2 𝜙3 𝜙4 𝜙1 𝜙2 𝜙3 𝜙4 

Temperature 0.207 -0.157 0.149 -0.147 0.143 -0.079 0.083 -0.085 

Wind speed -0.161 0.134 -0.134 0.129 -0.067 0.036 -0.048 0.042 

  

(a) φ1 (b) φ2 

Fig. 14 First two AR model coefficient of acceleration vs. temperature 

  

(a) φ1 (b) φ2 

Fig. 15 First two AR model coefficients of inclination vs. temperature 

328



 

Online automatic structural health assessment of the Shanghai Tower 

 

 

 

 

 

 

4.2 Principal component analysis 
 

In May, a damper test of the Shanghai Tower was 

performed, and the damper was locked during the test 

period, which resulted in changes in the structural state. 

Therefore, the AR model coefficients in June and July were 

selected to obtain the principal components in the reference 

state. The cumulative variance contribution of the feature 

vectors of acceleration and inclination in the X direction on 

the 117
th

 floor are shown in Fig. 16. According to the 95% 

cumulative variance contribution, the first three and the first 

two feature vectors of acceleration and inclination are 

selected as principal components. Using the obtained 

principal components, the AR model coefficients are 

reconstructed, and the Euclidean distance of the obtained 

reconstruction error vector is used as a structural state 

indicator. 

 

 

 
 
 

 
 
4.3 Novelty detection 
 

According to the statistics of the AR model parameter 

reconstruction error in June and July, the value 

corresponding to 95% of the cumulative probability 

distribution is determined as the UCL, and the points that 

exceed the UCL are defined as outliers. Therefore, the 

percentage of the outliers in the normal structural state is 

approximately 5%. 

As shown in Figs. 17 and 18, during the damper test, the 

reconstruction errors of acceleration and inclination exhibit 

obvious anomalies, and the percentage of outliers during the 

damper test reaches 69.5% and 67.3%, respectively, 

indicating that the method can successfully identify the 

changes in the structural state. For the data from August and 

September, the percentage of outliers is calculated weekly, 

and the statistical results are shown in Table 3. The 

maximum weekly percentage of outliers in the two months  

  

(a) acceleration (b) inclination 

Fig. 16 Cumulative contributions of the feature vectors of the AR model coefficients 

 

Fig. 17 Control chart of the PCA reconstruction error for the AR coefficients of acceleration data from the 117
th

 floor 

Table 3 Percentage of outliers in the control chart (%) 

 Mid-May Week 1 Week 2 Week 3 Week 4 Week 5 Week 6 Week 7 Week 8 

Acceleration 69.5 0.0 3.0 0.0 2.7 0.3 0.0 4.2 3.0 

Inclination 67.3 2.3 5.7 1.7 1.7 2.4 3.3 7.7 4.9 
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is 7.7%, which means that in reference to June and July, the 

state of the structure does not change significantly. 

The above analysis of the monitoring data indicates that 

the structural health assessment method proposed in this 

paper is suitable for the Shanghai Tower and can provide an 

early warning regarding structural state changes. A detailed 

plan for evaluating the health status of the Shanghai Tower 

and providing early warnings is proposed in the following 

section. 

 

 
 
4.4 Online automatic structural health assessment 

plan for the Shanghai Tower 
 

The online automatic structural health assessment plan 

for the Shanghai Tower is divided into two phases: the 

initial data accumulation phase and the structural health 

assessment system operation phase. The initial data 

accumulation phase lasts for one year to fully consider the 

effects of environmental factors. During the initial data 

 

Fig. 18 Control chart of the PCA reconstruction error for the AR coefficients of inclination data from the 117
th

 floor 

 

Fig. 19 Online automatic structural health assessment plan for the Shanghai Tower 
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accumulation phase, the principal components of the AR 

model coefficients and UCL values of reconstruction errors 

are determined and will be used in the operation phase. In 

the operation phase, the principal components of the AR 

model and UCL values of reconstruction errors are 

periodically (such as once a year) updated to consider the 

long-term changes in the structural state due to the factors 

such as the aging of materials and environmental erosion. 

The specific implementation of the online automatic 

structural health assessment plan is presented in Fig. 19. 

 

 

5. Conclusions 
 

In this article, the Shanghai Tower is introduced in 

detail, including the architectural and structural forms, the 

SHM system, and the dynamic characteristics obtained by 

AVT and FEM. Then, an online automatic structural health 

assessment method based on time series analysis, PCA and 

the control chart method is proposed. Finally, the proposed 

online automatic structural health assessment method is 

applied to analyze the acceleration and inclination data from 

the Shanghai Tower. The main conclusions of the paper are 

as follows. 

Based on the data collected at Shanghai Tower, the 

average correlation coefficient between AR model 

coefficient of acceleration and temperature is 0.17 and the 

average correlation coefficient between AR model 

coefficient of inclination and temperature is 0.10, which 

indicates that acceleration’s AR model coefficients are more 

sensitive to temperature. 

During the damper test of the Shanghai Tower, the 

damper was locked, which led to changes in the state of the 

structure. In addition, the state change was clearly reflected 

by a shift in the time history curves of the inclination data 

and corresponding AR model coefficients. However, there 

was no obvious shift in the time history curves of the 

acceleration data and corresponding AR model parameters. 

For the inclination and acceleration data, the control 

charts of the reconstruction error of the AR model 

coefficients displayed obvious shifts during the damper test 

period, and the percentage of outliers reached 67.3% and 

69.5%, respectively. This result indicated that the 

reconstruction error of the AR model coefficients can 

effectively reflect a change in the structural state. 

In the control charts of the reconstruction errors of AR 

model coefficients, the UCL was determined based on data 

from June and July. The control charts show that in August 

and September, most of the reconstruction error values were 

below the UCL and that the weekly percentage of outliers 

for both inclination and acceleration was less than 10%. 

Therefore, we can consider the Shanghai Tower to be in a 

healthy state. 
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